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Motivation (I)

I Reverse engineering → reconstruction (learning) of GRN
models from experimental data (time-course gene expression).

I In practice, this is an ill-posed problem, number of time
points of gene expression << number of genes analyzed.

I In Boolean networks, the available data is significantly less
than the complete transition table.

I E.g., a network with 10 nodes → 1024 states, whereas
typically the time-course gene expression data obtained from
the lab is less than 3% (or even fewer) of all the
configurations.

I There may be several networks capable of
representing/modeling the time-course gene expression.

I Which of those networks is the most plausible?
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Motivation (II)

I Something similar also occurs, when given a Boolean network
that models a certain biological phenomenon.

I Typically the biological properties of the model is captured
only by a small subset of states of the total 2n configurations.

I This opens the opportunity to search for other synthetic
networks that have the same function as the original base
model, also known as the wildtype network, but not
necessarily all the dynamics.

⇒ Study the neutral space of a regulatory network model.
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Neutral space

The study of the neutral space consists of analyzing topological
and dynamical properties of different regulatory networks that
share the same function.

⇒ This analysis is carried out through the construction of a
neutral network.
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Neutral network

I Neutral network: network of networks

I Each node represents a network

I Two nodes connected means that the Hamming distance
between the interaction (adjacency) matrix of one network
and the other is one.

wildtype

functional
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Robustness in neutral networks

(a) Low robustness (b) High robustness
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E.g. The fission yeast cell-cycle Boolean network

Cdc2/
Cd13*

SK

Start

Ste9
Cdc2/
Cd13 Rum1

Cdc25PP

Slp1
Wee1
/Mik1

M. I. Davidich and S. Bornholdt, Boolean network model predicts cell cycle sequence

of fission yeast, PLoS ONE, vol. 3(2), p. e1672, 2008.
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Updating the nodes values

xi (t + 1) = u

(
n∑

j=1

wijxj − θi

)

=


0, if

∑n
j=1 wijxj − θi < 0

1, if
∑n

j=1 wijxj − θi > 0

xi (t), if
∑n

j=1 wijxj − θi = 0

W =



Start SK Cdc2/Cdc13 Ste9 Rum1 Slp1 Cdc2/Cd13∗ Wee1/Mik1 Cdc25 PP
Start −1 0 0 0 0 0 0 0 0 0
SK 1 −1 0 0 0 0 0 0 0 0

Cdc2/Cdc13 0 0 0 −1 −1 −1 0 0 0 0
Ste9 0 −1 −1 0 0 0 −1 0 0 1
Rum1 0 −1 −1 0 0 0 −1 0 0 1
Slp1 0 0 0 0 0 −1 1 0 0 0

Cdc2/Cd13∗ 0 0 0 −1 −1 −1 0 −1 1 0
Wee1/Mik1 0 0 −1 0 0 0 0 0 0 1

Cdc25 0 0 1 0 0 0 0 0 0 −1
PP 0 0 0 0 0 1 0 0 0 −1



Θ = (0 0 −0.5 0 0 0 0.5 0 0 0)T
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Temporal evolution of sate vectors defining the fission yeast cell cycle

Time Start SK Cdc2/Cdc13 Ste9 Rum1 Slp1 Cdc2/Cd13∗ Wee1/Mik1 Cdc25 PP Phase

1 1 0 0 1 1 0 0 1 0 0 START
2 0 1 0 1 1 0 0 1 0 0 G1

3 0 0 0 0 0 0 0 1 0 0 G1/S
4 0 0 1 0 0 0 0 1 0 0 G2

5 0 0 1 0 0 0 0 0 1 0 G2

6 0 0 1 0 0 0 1 0 1 0 G2/M
7 0 0 1 0 0 1 1 0 1 0 G2/M
8 0 0 0 0 0 1 0 0 1 1 M
9 0 0 0 1 1 0 0 1 0 1 M

10 0 0 0 1 1 0 0 1 0 0 G1
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Problem description

I We desire to construct a neutral network of the fission yeast
cell cycle network.

I Regulatory networks that reproduce the ten state sequences of
the fission yeast cell cycle will be called functional networks,
while the original fission yeast cell cycle network will be called
wildtype network.

I The search space for functional networks is huge, which makes
it a difficult problem.

I The search consists in finding the weight matrix elements wij

and the threshold vector elements θi that can replicate the
desired state sequences.

I An opportunity for intelligent search strategies arises, in
particular the use of evolutionary computation.
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Evolution strategy proposed to search for functional networks

Initial random 
candidate 
networks

Found 
solution?

Random 
candidate 
networks

Fitness 
evaluation

Finish

Rank 
networks

Select top    
m% 

Mutation 

New 
candidate 
networks

yes

no
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Initial random candidate networks

The wildtype weight matrix is changed using the following rule:
Rule 1

1. Select randomly a position (i , j) in the matrix.

2. If the position contains a non-zero number, then replace by a
zero.

3. Else, replace with a value selected randomly from the
following set {−2,−1, 1, 2}.

The wildtype threshold vector is changed using the following rule:
Rule 2

1. Select randomly a position i in the vector.

2. Replace with a value selected randomly from the following set
{−2,−1,−1/2, 0, 1/2, 1, 2}.

both rules are repeated ngh times, where ngh is selected randomly
in the range of [1, 30], for every new candidate network generated.
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Fitness evaluation

The fitness function for the Boolean regulatory network B, is
computed by the deviation of the network’s output, defined by oi
for each node i , and the target value si (sequence of the cell cycle)
for each node i :

fitness(B) =
1

10n

10∑
t=1

n∑
i=1

(oi (t)− si (t))2 (1)

where n is the number of nodes in the network, and 10 is the
number of state vector sequences that the network must contain.
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Mutation

New candidate networks are generated using the following rule:
Rule 3

1. Select randomly one of the top m% solutions.

2. Mutate the selected solution. This is done by applying Rule1
and Rule2 with ngh = 1.
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Simulations

I Simulation 1: ES was set to search for 10000 functional
networks.

I Simulation 2: we search for the connected component of the
wildtype network. To do this, we run the ES but using
ngh = 1 for the initial random candidate network stage.

I Simulation 3: Results using a standard real-valued GA.
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Histograms of the functional networks topologies of the neutral graph
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Neutral graph using 100 functional networks
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Neutral graph using 1000 functional networks
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Wildtype network and a functional network in the connected component
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Wildtype network and a functional network not in the connected component
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Connected component vs. not in the connected component (1)
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Connected component vs. not in the connected component (2)
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Connected component vs. not in the connected component (3)
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Density of the basin of attraction for the G1 fixed point

Functional networks in the wildtype connected component (blue/dashed line) and the

rest of the networks (green/solid line)
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Other updating schemes?
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Neutral graph of the wildtype component
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Neutral graph of the wildtype component without the wildtype network
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Neutral graph generated using a genetic algorithm
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Conclusion

I There are significant differences (topological and state space)
between the functional networks in the connected component
of the wildtype network and the rest of the network.

I Functional networks in the wildtype connected component,
can mutate up to no more than 3 times, then they reach a
point of no return where the networks leave the connected
component of the wildtype.

I The neutral space analysis may allow us to formulate new
biological hypotheses studying the functional networks in the
wildtype connected component, for example, analyzing which
edges are in common, yielding a core structure that could
explain the preservation of the functionality of the network.

I Research problems: Sensitivity analysis, comparisons, neutral
network disintegration, functionality.
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