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A boolean network is a function

f:{0,1}" — {0,1}"
T = (xlv"'vxn) = f(.’E) = (fl(x)vvfn(m))

The interaction graph of f is the digraph G defined by
- the vertex set is {1,...,n}

- thereis an arc j — i if f; depends on x;
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. Dynamics of f
Example with n =3
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Many applications

- Neural networks [McCulloch & Pitts 1943]
- Gene networks [Kauffman 1969, Tomas 1973]

- Epidemic diffusion, social network, etc

Very often

- reliable information concern the interaction graph

- fixed points have strong meaning

Natural question

What can be said on the dynamics of a boolean
network according to its interaction graph only 7
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Graph parameters

¢(G) = maximum number of fixed points in a boolean network
with G as interaction graph

7(G) := transversal number
minimum Feedback Vertex Set (FVS)

v(G) := packing number

maximum number of vertex-disjoint cycles

Q=B 4-4

NV
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Graph parameters

¢(G) = maximum number of fixed points in a boolean network
with G as interaction graph

7(G) := transversal number
minimum Feedback Vertex Set (FVS)

v(G) := packing number

maximum number of vertex-disjoint cycles

Q=B 4-4

NV
& y=1
Remark We always have v < 7

5/10



Theorem [Riis 07, Aracena 08, Aracena-R-Salinas 16+]

For every digraph G,
v+1 < ¢ <27
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Theorem [Riis 07, Aracena 08, Aracena-R-Salinas 16+]

For every digraph G,
v+1<¢ <27

Problem Characterize the digraphs G such that ¢ = 27

Remarks The binary network coding problem from Info Theory asks:

Do there exist H C G such that ¢(H) = 27(¢) 2
Problem Show that the lower bound v + 1 is tight

Problem Find a (reasonable) up. bound on ¢ that depends on v only
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Theorem [Reed-Robertson-Seymour-Thomas 95|
There exists h : N — N such that, for every digraph G,

Corollary < 27 < 2k
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Theorem [Reed-Robertson-Seymour-Thomas 95]
There exists h : N — N such that, for every digraph G,

7 < h(v)

Corollary < 27 < 2k

Remarks 1. The upper-bound on h(v) is astronomic
2. The only exact value is h(1) = 3 [McCullaig 93]
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Theorem [Reed-Robertson-Seymour-Thomas 95]
There exists h : N — N such that, for every digraph G,

7 < h(v)

Corollary < 27 < 2k

Remarks 1. The upper-bound on h(v) is astronomic
2. The only exact value is h(1) = 3 [McCullaig 93]

Conjecture 7 < cvlogv for some constant c

Remarks 1. True for undirected cycles [Erdds-Pdsa 65]

2. We may have 7 > z5vlog v [Seymour 93]
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Theorem [Reed-Robertson-Seymour-Thomas 95]
There exists h : N — N such that, for every digraph G,

7 < h(v)

Corollary < 27 < 2k J

Remarks 1. The upper-bound on h(v) is astronomic
2. The only exact value is h(1) = 3 [McCullaig 93]

Conjecture 7 < cvlogv for some constant c

Remarks 1. True for undirected cycles [Erdds-Pdsa 65]

2. We may have 7 > z5vlog v [Seymour 93]
Problem Bound ¢ according to v without use T < h(v)

Conjecture ¢ < 2°V1°8% for some constant c
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Natural approach: try with particular classes of networks

¢ne(G) := maximum number of fixed points in a boolean network
f with G as interaction graph and Non-Expansive:

d(f(x), f(y)) < d(x,y)

¢m(G) = maximum number of fixed points in a boolean network
f with G as interaction graph and Monotone:

r<y = f(z)<f(y)
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Theorem [Formenti-R-Scribot 16+]

For every digraph G,
¢ne < 2V
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Theorem [Formenti-R-Scribot 16+]

For every digraph G,
¢ne S 2V

Theorem [Aracena-R-Salinas 16+]
For every digraph G,

¢m < 2+ sum of the v — 1 largest coefficients (Z)

Corollary ¢m=2" = v=7 and v=1 = ¢, <2

Remark v =1 = 7<3 tight and very hard [McCullaig 93]
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Theorem [Formenti-R-Scribot 16+]

For every digraph G,
¢ne S 2V

Theorem [Aracena-R-Salinas 16+]
For every digraph G,

®m < 2+ sum of the v — 1 largest coefficients <;>

Corollary ¢m=2" = v=7 and v=1 = ¢y <2 J

Remark v =1 = 7<3 tight and very hard [McCullaig 93]
=1 = ¢n <2 tight and easy
v=2 = ¢n <4 tight and easy

Problem v =3 = ¢, <77
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iMuchas gracias!
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