Fixed points and disjoint cycles in Boolean networks

Adrien Richard

Laboratoire I3S, CNRS & Université de Nice-Sophia Antipolis

Workshop

"Desafíos matemáticos e informáticos para la construcción y análisis de redes de regulación biológica"

Universidad de Concepción, 22-23 de abril de 2016

A boolean network is a function

$$f: \{0,1\}^n \to \{0,1\}^n$$
$$x = (x_1, \dots, x_n) \mapsto f(x) = (f_1(x), \dots, f_n(x))$$

The **interaction graph** of f is the digraph G defined by

- the vertex set is $\{1,\ldots,n\}$
- there is an arc $j \rightarrow i$ if f_i depends on x_j

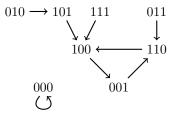
Example with n = 3

$$\begin{cases} f_1(x) &= x_2 \lor x_3 \\ f_2(x) &= \overline{x_1} \land \overline{x_3} \\ f_3(x) &= \overline{x_3} \land (x_1 \oplus x_2) \end{cases}$$

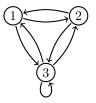
Table of f

x	$\int f(x)$
000	000
001	110
010	101
011	110
100	001
101	100
110	100
111	100

Dynamics of f



Interaction graph of f



Many applications

- Neural networks [McCulloch & Pitts 1943]
- Gene networks [Kauffman 1969, Tomas 1973]
- Epidemic diffusion, social network, etc

Very often

- reliable information concern the interaction graph
- fixed points have strong meaning

Natural question

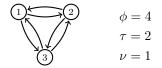
What can be said on the **dynamics** of a boolean network according to its **interaction graph** only ?

Graph parameters

- $\phi(G) :=$ maximum number of fixed points in a boolean network with G as interaction graph
- $au(G) \ := \ {f transversal number}$ minimum Feedback Vertex Set (FVS)

$u(G) := \mathsf{packing number}$

maximum number of vertex-disjoint cycles

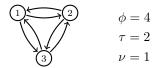


Graph parameters

- $\phi(G) :=$ maximum number of fixed points in a boolean network with G as interaction graph
- $au(G) \ := \ {f transversal number}$ minimum Feedback Vertex Set (FVS)

u(G) := packing number

maximum number of vertex-disjoint cycles



Remark We always have $\nu \leq \tau$

$$\nu + 1 \le \phi \le 2^{\tau}$$

 $\nu+1\,\leq\,\phi\,\leq\,2^\tau$

Problem Characterize the digraphs G such that $\phi = 2^{\tau}$

 $\nu+1\,\leq\,\phi\,\leq\,2^\tau$

Problem Characterize the digraphs G such that $\phi = 2^{\tau}$

Remarks The binary *network coding problem* from Info Theory asks: Do there exist $H \subseteq G$ such that $\phi(H) = 2^{\tau(G)}$?

 $\nu+1\,\leq\,\phi\,\leq\,2^\tau$

Problem Characterize the digraphs G such that $\phi = 2^{\tau}$

Remarks The binary *network coding problem* from Info Theory asks: Do there exist $H \subseteq G$ such that $\phi(H) = 2^{\tau(G)}$?

Problem Show that the lower bound $\nu + 1$ is tight

 $\nu+1\,\leq\,\phi\,\leq\,2^\tau$

Problem Characterize the digraphs G such that $\phi = 2^{\tau}$

Remarks The binary *network coding problem* from Info Theory asks: Do there exist $H \subseteq G$ such that $\phi(H) = 2^{\tau(G)}$?

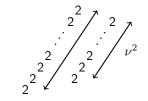
Problem Show that the lower bound $\nu + 1$ is tight

Problem Find a (reasonable) up. bound on ϕ that depends on ν only

Theorem [Reed-Robertson-Seymour-Thomas 95]There exists $h : \mathbb{N} \to \mathbb{N}$ such that, for every digraph G, $\tau \leq h(\nu)$ Corollary $\phi \leq 2^{\tau} \leq 2^{h(\nu)}$

Theorem [Reed-Robertson-Seymour-Thomas 95]There exists $h : \mathbb{N} \to \mathbb{N}$ such that, for every digraph G, $\tau \le h(\nu)$ Corollary $\phi \le 2^{\tau} \le 2^{h(\nu)}$

Remarks 1. The upper-bound on $h(\nu)$ is astronomic



Theorem [Reed-Robertson-Seymour-Thomas 95]

There exists $h : \mathbb{N} \to \mathbb{N}$ such that, for every digraph G,

 $\tau \leq h(\nu)$

Corollary	$\phi \le 2^\tau \le 2^{h(\nu)}$	
-----------	----------------------------------	--

Remarks 1. The upper-bound on $h(\nu)$ is astronomic

2. The only exact value is h(1) = 3 [McCullaig 93]

Theorem [Reed-Robertson-Seymour-Thomas 95] There exists $h : \mathbb{N} \to \mathbb{N}$ such that, for every digraph G ,		
	$\tau \leq h(\nu)$	
Corollary	$\phi \leq 2^\tau \leq 2^{h(\nu)}$	

Remarks 1. The upper-bound on $h(\nu)$ is astronomic

2. The only exact value is h(1) = 3 [McCullaig 93]

Conjecture $\tau \leq c\nu \log \nu$ for some constant c

Theorem [Reed-Robertson-Seymour-Thomas 95] There exists $h : \mathbb{N} \to \mathbb{N}$ such that, for every digraph G ,		
	$ au \leq h(u)$	
Corollary	$\phi \le 2^\tau \le 2^{h(\nu)}$	
Remarks 1. The	e upper-bound on $h(u)$ is astronomic	

2. The only exact value is h(1) = 3 [McCullaig 93]

Conjecture $\tau \leq c\nu \log \nu$ for some constant c

Remarks 1. True for undirected cycles [Erdös-Pósa 65] 2. We may have $\tau \ge \frac{1}{30}\nu \log \nu$ [Seymour 93]

Theorem [Reed-Robertson-Seymour-Thomas 95] There exists $h : \mathbb{N} \to \mathbb{N}$ such that, for every digraph G ,		
	$ au \leq h(u)$	
Corollary	$\phi \leq 2^\tau \leq 2^{h(\nu)}$	
	The upper-bound on $h(\nu)$ is astronomic The only exact value is $h(1) = 3$ [McCullaig 93]	

Conjecture $\tau \leq c\nu \log \nu$ for some constant c

Remarks 1. True for undirected cycles [Erdös-Pósa 65] 2. We may have $\tau \ge \frac{1}{30}\nu \log \nu$ [Seymour 93]

Problem Bound ϕ according to ν without use $\tau \leq h(\nu)$

Theorem [Reed-Robertson-Seymour-Thomas 95] There exists $h : \mathbb{N} \to \mathbb{N}$ such that, for every digraph G ,		
	$ au \leq h(u)$	
Corollary	$\phi \le 2^\tau \le 2^{h(\nu)}$	
Remarks	1. The upper-bound on $h(\nu)$ is astronomic 2. The only exact value is $h(1) = 3$ [McCullaig 93]	

Conjecture $\tau \leq c\nu \log \nu$ for some constant c

Remarks 1. True for undirected cycles [Erdös-Pósa 65] 2. We may have $\tau \ge \frac{1}{30}\nu \log \nu$ [Seymour 93]

Problem Bound ϕ according to ν without use $\tau \leq h(\nu)$

Conjecture $\phi \leq 2^{c\nu \log \nu}$ for some constant c

Natural approach: try with particular classes of networks

 $\phi_{ne}(G) :=$ maximum number of fixed points in a boolean network f with G as interaction graph and Non-Expansive:

 $d(f(x), f(y)) \le d(x, y)$

 $\phi_{m}(G) :=$ maximum number of fixed points in a boolean network f with G as interaction graph and Monotone:

$$x \le y \ \Rightarrow \ f(x) \le f(y)$$

$$\phi_{\mathsf{ne}} \leq 2^{\nu}$$

For every digraph G,

$$\phi_{\mathsf{ne}} \leq 2^{\nu}$$

Theorem [Aracena-R-Salinas 16+]

For every digraph G,

 $\phi_{\rm m} \leq 2 + sum \text{ of the } \nu - 1 \text{ largest coefficients } \begin{pmatrix} \tau \\ k \end{pmatrix}$

For every digraph G,

$$\phi_{\mathsf{ne}} \leq 2^{\nu}$$

Theorem [Aracena-R-Salinas 16+]

For every digraph G,

 $\phi_{\mathsf{m}} \leq 2 + sum \text{ of the } \nu - 1 \text{ largest coefficients } \begin{pmatrix} \tau \\ k \end{pmatrix}$

borollary
$$\phi_{\mathsf{m}} = 2^{\tau} \Rightarrow \nu = \tau$$
 and $\nu = 1 \Rightarrow \phi_{\mathsf{m}} \leq 2$

$$\phi_{\mathsf{ne}} \leq 2^{\nu}$$

Theorem [Aracena-R-Salinas 16+] For every digraph G,		
$\phi_{\sf m} \leq 2 + \textit{sum of the } \nu - 1 \textit{ largest coefficients } \begin{pmatrix} au \\ k \end{pmatrix}$		
Corollary $\phi_{m} = 2^{\tau} \Rightarrow \nu = \tau$ and $\nu = 1 \Rightarrow \phi_{m} \leq 2$)	
Remark $\nu = 1 \Rightarrow \tau \leq 3$ tight and very hard [McCullaig 93]		

$$\phi_{\mathsf{ne}} \leq 2^{\nu}$$

Theorem [Aracena-R-Salinas 16+] For every digraph G, $\phi_{m} \leq 2 + sum \text{ of the } \nu - 1 \text{ largest coefficients } \begin{pmatrix} \tau \\ k \end{pmatrix}$			
Corollary	$\phi_{m} = 2^{\tau} \; \Rightarrow \; \nu = \tau \text{and} \nu = 1 \; \Rightarrow \; \phi_{m} \leq 2$	J	
Remark	$ u = 1 \Rightarrow \tau \leq 3 $ tight and very hard [McCullaig 93] $ u = 1 \Rightarrow \phi_m \leq 2 $ tight and easy		

$$\phi_{\mathsf{ne}} \leq 2^{\nu}$$

Theorem [Aracena-R-Salinas 16+] For every digraph G, $\phi_{m} \leq 2 + sum of the \nu - 1$ largest coefficients $\binom{\tau}{k}$		
Corollary	$\phi_{m} = 2^{\tau} \Rightarrow \nu = \tau \text{and} \nu = 1 \Rightarrow \phi_{m} \le 2$	J
Remark	$\nu = 1 \Rightarrow \tau \le 3$ tight and very hard [McCullaig 93] $\nu = 1 \Rightarrow \phi_{m} \le 2$ tight and easy $\nu = 2 \Rightarrow \phi_{m} \le 4$ tight and easy	

For every digraph G,

$$\phi_{\mathsf{ne}} \leq 2^{\nu}$$

	Theorem [Aracena-R-Salinas 16+] For every digraph G,			
$\phi_{\sf m} \leq 2 + {\it sum} \ {\it of} \ the \ u - 1 \ largest \ coefficients egin{pmatrix} au \ k \end{pmatrix}$				
Corollary	$\phi_{\rm m} = 2^{\tau} \Rightarrow \nu =$	$ au$ and $ u = 1 \Rightarrow \phi_{m} \leq 2$		
Remark	$\begin{array}{l} \nu = 1 \ \Rightarrow \ \tau \leq 3 \\ \nu = 1 \ \Rightarrow \ \phi_{m} \leq 2 \\ \nu = 2 \ \Rightarrow \ \phi_{m} \leq 4 \end{array}$	o ,		
Duchlass				

Problem $\nu = 3 \Rightarrow \phi_{m} \leq ??$

¡Muchas gracias!