



## Non Primitive Update Digraph problem

#### Julio Aracena<sup>1</sup> Luis Gómez Lilian Salinas<sup>2</sup>

<sup>1</sup>Cl<sup>2</sup>MA and Departamento de Ingeniería Matemática, Universidad de Concepción.

<sup>2</sup>Cl<sup>2</sup>MA and Departamento de Ingeniería Informática y Ciencias de la Computación, Universidad de Concepción.

#### April 2016

Workshop?

NPUD





### 2 LCE







・ロ・ ・ 日・ ・ 日・ ・ 日・

## **Boolean Networks**

 $N = (G^F, F, s)$ , Boolean Network.

 $G^F = (V, A)$  a digraph.

V a set of n elements.

 $F \colon \{0,1\}^n \to \{0,1\}^n$ , global activation function, with interaction digraph  $G^F$ .

 $f_{v}(x):=F(x)_{v},\,orall v\in V,$  local activation functions.

イロト イヨト イヨト イヨト

### **Boolean Networks**

 $N = (G^F, F, s)$ , Boolean Network.

$$G^F = (V, A)$$
 a digraph.

V a set of n elements.

 $F: \{0,1\}^n \to \{0,1\}^n$ , global activation function, with interaction digraph  $G^F$ .

 $f_{v}(x):=F(x)_{v},\,orall v\in V,$  local activation functions.

・ロト ・回ト ・ヨト ・ヨト

### **Boolean Networks**

 $N = (G^F, F, s)$ , Boolean Network.

$$G^F = (V, A)$$
 a digraph.

V a set of n elements.

 $F \colon \{0,1\}^n \to \{0,1\}^n,$  global activation function, with interaction digraph  $G^F.$ 

 $f_{\nu}(x) := F(x)_{\nu}, \forall \nu \in V$ , local activation functions.

### **Boolean Networks**

 $N = (G^F, F, s)$ , Boolean Network.

$$G^F = (V, A)$$
 a digraph.

#### V a set of n elements.

 $F \colon \{0,1\}^n \to \{0,1\}^n,$  global activation function, with interaction digraph  $G^F.$ 

 $f_v(x) := F(x)_v, \, \forall v \in V$ , local activation functions.

### **Boolean Networks**

 $N = (G^F, F, s)$ , Boolean Network.

 $G^F = (V, A)$  a digraph.

V a set of n elements.

 $F\colon \{0,1\}^n \to \{0,1\}^n,$  global activation function, with interaction digraph  $G^F.$ 

 $f_{v}(x) := F(x)_{v}, \, \forall v \in V$ , local activation functions.

(日) (四) (王) (王) (王)

## **Boolean Networks**

 $N = (G^F, F, s)$ , Boolean Network.

 $G^F = (V, A)$  a digraph.

V a set of n elements.

 $F\colon \{0,1\}^n \to \{0,1\}^n,$  global activation function, with interaction digraph  $G^F.$ 

 $f_{\nu}(x) := F(x)_{\nu}, \forall \nu \in V$ , local activation functions.

◆□→ ◆□→ ◆注→ ◆注→ □ 注

### Update Schedule

$$s \colon V \to \{1, \ldots, n\}$$
, function.



#### Update Schedule

 $s \colon V \to \{1, \ldots, n\}$ , function.

 $s(V) = \{1\}$ , parallel.



< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

#### Update Schedule

 $s \colon V \to \{1, \ldots, n\}$ , function.

 $s(V) = \{1\}$ , parallel.

 $s(V) = \{1, \ldots, n\}$ , sequential.



◆□> ◆□> ◆目> ◆目> ◆目> 目 のへの

#### Update Schedule

 $s: V \to \{1, \ldots, n\}$ , function.

 $s(V) = \{1\}$ , parallel.

 $s(V) = \{1, \ldots, n\}$ , sequential.

$$s(V) = \{1, \ldots, m\}, \ 1 < m < n,$$
  
block-sequential.

s(1) = 1 s(2) = 1 (1) = 1 (2) (3) = 2 (5) = 3s(3) = 2 (4) = 3

◆□> ◆□> ◆目> ◆目> ◆目> 目 のへの

## Iteration

$$x_v^{k+1} = f_v(x_u^{l_u} \colon u \in V)$$

• Where:

$$l_u = \begin{cases} k & \text{if } s(v) \leq s(u) \\ k+1 & \text{if } s(v) > s(u) \end{cases}$$

▲口 → ▲圖 → ▲ 国 → ▲ 国 → □

2

## Iteration

$$x_v^{k+1} = f_v(x_u^{l_u} \colon u \in V)$$

• Where:

$$l_u = \begin{cases} k & \text{if } s(v) \leq s(u) \\ k+1 & \text{if } s(v) > s(u) \end{cases}$$

▲口 → ▲圖 → ▲ 国 → ▲ 国 → □

2

#### **Dynamical Behavior**

• We can define 
$$f_v^s(x) = f_v(g_{v,u}^s(x) \colon u \in V)$$

• Where:

$$g_{v,u}^{s}(x) = \begin{cases} x_{u} & \text{if } s(v) \leq s(u) \\ f_{u}^{s}(x) & \text{if } s(v) > s(u) \end{cases}$$

•  $F^s$  is the dynamical behavior of N = (F, s).

<ロ> <部> < 語 > < 語 > < 語 > <</p>

### **Dynamical Behavior**

• We can define 
$$f_v^s(x) = f_v(g_{v,u}^s(x) \colon u \in V)$$

• Where:

$$g_{v,u}^{s}(x) = \begin{cases} x_{u} & \text{if } s(v) \leq s(u) \\ f_{u}^{s}(x) & \text{if } s(v) > s(u) \end{cases}$$

•  $F^s$  is the dynamical behavior of N = (F, s).

<ロ> <部> < 語 > < 語 > < 語 > <</p>

### **Dynamical Behavior**

- We can define  $f_v^s(x) = f_v(g_{v,u}^s(x) \colon u \in V)$
- Where:

$$g_{v,u}^{s}(x) = \begin{cases} x_u & \text{if } s(v) \leq s(u) \\ f_u^{s}(x) & \text{if } s(v) > s(u) \end{cases}$$

•  $F^s$  is the dynamical behavior of N = (F, s).

イロン イヨン イヨン イヨン

## Limit Behavior

Fixed point: 
$$x \in \{0,1\}^n$$
:  $F^s(x) = x$ 

Limit Cycles: 
$$C = \left[x^k\right]_{k=0}^p, \ x^k \in \{0,1\}^n, \ p > 1$$
:  
 $x^{k+1} = F^s(x^k) \quad \land \quad x^p \equiv x^0$ 

LC(N): set of limit cycles of N.

▲口 → ▲圖 → ▲ 国 → ▲ 国 → □

## Limit Behavior

Fixed point: 
$$x \in \{0,1\}^n$$
:  $F^s(x) = x$ 

Limit Cycles: 
$$C = \left[x^k\right]_{k=0}^p, \ x^k \in \{0,1\}^n, \ p > 1$$
:  
 $x^{k+1} = F^s(x^k) \quad \land \quad x^p \equiv x^0$ 

LC(N): set of limit cycles of N.

イロト イヨト イヨト イヨト

## Update Digraph

Given a Boolean network (F, s), we define the associated labeled digraph  $G_s^F = (G^F, lab_s)$ , called *update digraph*, where  $lab_s : A(G^F) \to \{\ominus, \oplus\}$  is defined as:

$$\mathsf{lab}_s(u, v) = \begin{cases} \oplus & \text{if } s(u) \ge s(v) \\ \oplus & \text{if } s(u) < s(v) \end{cases}$$



### Update Digraph

Given a Boolean network (F, s), we define the associated labeled digraph  $G_s^F = (G^F, lab_s)$ , called *update digraph*, where  $lab_s : A(G^F) \to \{\ominus, \oplus\}$  is defined as:

$$\mathsf{lab}_s(u, v) = \begin{cases} \oplus & \text{if } s(u) \ge s(v) \\ \oplus & \text{if } s(u) < s(v) \end{cases}$$



イロト イヨト イヨト イヨト

### Update Digraph

#### Remark

It was proven in (Salinas, L., 2008. Estudio de modelos discretos: estructura y dinámica, PhD thesis. Universidad de Chile, Santiago, Chile), that if two different updates schedules have the same update digraph, then they also have the same dynamical behavior.

#### Equivalence classes

## $s_1 \sim_{G^F} s_2 \Longleftrightarrow [s_1]_{G^F} = [s_2]_{G^F} \Longleftrightarrow G^F_{s_1} = G^F_{s_2}$

イロン イ部ン イヨン イヨン 三日

### Update Digraph

#### Remark

It was proven in (Salinas, L., 2008. Estudio de modelos discretos: estructura y dinámica, PhD thesis. Universidad de Chile, Santiago, Chile), that if two different updates schedules have the same update digraph, then they also have the same dynamical behavior.

#### Equivalence classes

$$s_1 \sim_{G^F} s_2 \Longleftrightarrow [s_1]_{G^F} = [s_2]_{G^F} \Longleftrightarrow G^F_{s_1} = G^F_{s_2}$$

## Parallel Operator

Given an update digraph  $G_{lab} = (G, lab)$ , with G = (V, A), we define the operator  $\mathcal{P}$  as  $\mathcal{P}(G_{lab}) = (V', A')$ , where V' = V and  $(u, v) \in A'$  if and only if: I.-  $(u, v) \in A$  and  $lab(u, v) = \oplus$  or,

II.- there exists  $w \in V$  such that  $(w, v) \in A$ ,  $lab(w, v) = \ominus$  and  $(u, w) \in A'$ .

Remark:  $G^{F^s}$  is a sub-digraph of  $\mathcal{P}(G_s^F)$ , and in the case of OR functions they are equal.

イロン イヨン イヨン イヨン

## Parallel Operator

Given an update digraph  $G_{lab} = (G, lab)$ , with G = (V, A), we define the operator  $\mathcal{P}$  as  $\mathcal{P}(G_{lab}) = (V', A')$ , where V' = V and  $(u, v) \in A'$  if and only if: I.-  $(u, v) \in A$  and  $lab(u, v) = \oplus$  or, II.- there exists  $w \in V$  such that  $(w, v) \in A$ ,  $lab(w, v) = \ominus$  and  $(u, w) \in A'$ .

Remark:  $G^{F^s}$  is a sub-digraph of  $\mathcal{P}(G_s^F)$ , and in the case of OR functions they are equal.

・ロト ・回ト ・ヨト ・ヨト

LCE OR LCE NPUD Bibliography

## Example



・ロト ・四ト ・ヨト ・ヨトー

LCE OR LCE NPUD Bibliography

#### Example



< □ > < □ > < □ > < □ > < □ > < Ξ > = Ξ

LCE OR LCE NPUD Bibliography

## Example



・ロン ・雪 ・ ・ ヨ ・ ・ ヨ ・ ・



#### Non-Primitive Update Digraph problem (NPUD)

Given G a digraph. Does there exists an integer  $2 \le k \le g(G)$  and lab:  $A(G) \rightarrow \{\oplus, \ominus\}$  such that  $G_{lab}$  is an update digraph and each cycle in  $G_{lab}$  has a multiple of  $k \oplus$ -labeled arcs?

イロン イ部ン イヨン イヨン 三日

LCE OR LCE NPUD Bibliography

## Example



< □ > < □ > < □ > < □ > < □ > < Ξ > < Ξ > □ Ξ













・ロ・ ・ 日・ ・ 日・ ・ 日・

LCE

#### LIMIT CYCLE EXISTENCE PROBLEM (LCE)

Given  $F : \{0,1\}^n \to \{0,1\}^n$ . Does there exist an update schedule s such that  $LC(F,s) \neq \emptyset$ ?

#### OR LCE

Given  $F : \{0,1\}^n \to \{0,1\}^n$  an OR function. Does there exist an update schedule *s* such that  $LC(F,s) \neq \emptyset$ ?

イロン イボン イヨン イヨン 三日

LCE

#### LIMIT CYCLE EXISTENCE PROBLEM (LCE)

Given  $F : \{0,1\}^n \to \{0,1\}^n$ . Does there exist an update schedule s such that  $LC(F,s) \neq \emptyset$ ?

#### OR LCE

Given  $F : \{0,1\}^n \to \{0,1\}^n$  an OR function. Does there exist an update schedule *s* such that  $LC(F,s) \neq \emptyset$ ?

イロン イ部ン イヨン イヨン 三日

# LCE

#### Theorem

AND-OR LCE is NP-hard.

Theorem

SYMMETRIC LCE is NP-Hard.

Proposition

SYMMETRIC AND-OR LCE is polynomial.



< □ > < □ > < □ > < □ > < □ > < Ξ > < Ξ > □ Ξ

# LCE

#### Theorem

AND-OR LCE is NP-hard.

Theorem

SYMMETRIC LCE is NP-Hard.

Proposition

SYMMETRIC AND-OR LCE is polynomial.



イロト イヨト イヨト イヨト

# LCE

#### Theorem

AND-OR LCE is NP-hard.

Theorem

SYMMETRIC LCE is NP-Hard.

#### Proposition

SYMMETRIC AND-OR LCE is polynomial.



・ロト ・回ト ・ヨト ・ヨト












・ロ・ ・ 日・ ・ 日・ ・ 日・

### Known

### Theorem (Jarrah et al. (2010))

Let F be an OR function and let us consider  $N = (F, s^p)$ , where  $s^p$  is the parallel update schedule.

 $LC(N) = \emptyset$  if and only if  $G^F$  is primitive.

If G<sup>F</sup> is not strongly connected then:

 $LC(N) = \emptyset$  if and only if  $G^F$  is primitive or it does not have cycles.

・ロン ・回 と ・ ヨ と ・ ヨ と

Definition:  $G^F$  is primitive if and only if  $\rho(G^F) = 1$ , where  $\rho(G^F)$  is defined as the greatest common divisor of the lengths of the cycles of G.

### Known

### Theorem (Jarrah et al. (2010))

Let F be an OR function and let us consider  $N = (F, s^p)$ , where  $s^p$  is the parallel update schedule.

**)** If 
$$G^F$$
 is strongly connected then:

 $LC(N) = \emptyset$  if and only if  $G^F$  is primitive.

If G<sup>F</sup> is not strongly connected then:
LC(N) = Ø if and only if G<sup>F</sup> is primitive or it does not have cycles.

Definition:  $G^F$  is primitive if and only if  $\rho(G^F) = 1$ , where  $\rho(G^F)$  is defined as the greatest common divisor of the lengths of the cycles of G.

イロン イヨン イヨン イヨン



#### Lemma

Given an update digraph  $G_{lab}$ . Then, every circuit in  $G_{lab}$  produce a circuit in  $\mathcal{P}(G_{lab})$  with length the number of the  $\oplus$ -labeled arcs of it. Conversely, every circuit in  $\mathcal{P}(G_{lab})$  comes from a circuit in  $G_{lab}$  with a number of  $\oplus$ -labeled arcs equal to the length of the cycle.

イロン イヨン イヨン イヨン

# OR LCE



・ロン ・雪 ・ ・ ヨ ・ ・ ヨ ・ ・

# OR LCE

### Proposition

Let N = (F, s) be an OR network with strongly connected  $G^F$ . Then,  $LC(N) \neq \emptyset$  if and only if there exists a number  $2 \le k \le g(G^F)$ , such that each cycle in  $G_s^F$  has a multiple of k $\oplus$ -labeled arcs.

Remark: the condition each cycle in  $G_s^F$  has a multiple of k $\oplus$ -labeled arcs is equivalent to  $\rho(\mathcal{P}(G_s^F)) = k$ 

イロン イ団 とくほと くほとう

# OR LCE

### Proposition

Let N = (F, s) be an OR network with strongly connected  $G^F$ . Then,  $LC(N) \neq \emptyset$  if and only if there exists a number  $2 \le k \le g(G^F)$ , such that each cycle in  $G_s^F$  has a multiple of k $\oplus$ -labeled arcs.

Remark: the condition each cycle in  $G_s^F$  has a multiple of k $\oplus$ -labeled arcs is equivalent to  $\rho(\mathcal{P}(G_s^F)) = k$ 





## 2 LCE







・ロ・ ・ 日・ ・ 日・ ・ 日・



### Non-Primitive Update Digraph problem (NPUD)

Given G a digraph. Does there exists an integer  $2 \le k \le g(G)$  and lab:  $A(G) \rightarrow \{\oplus, \ominus\}$  such that  $G_{lab}$  is an update digraph and each cycle in  $G_{lab}$  has a multiple of  $k \oplus$ -labeled arcs?

イロン イ部ン イヨン イヨン 三日



#### Theorem

OR LCE and NPUD are equivalent problems in strongly connected digraphs.

Remark: In non strongly connected digraphs, it is sufficient to solve NPUD in a sole strongly connected component to have a solution for OR LCE.

æ

- ∢ ≣ ▶



#### Theorem

OR LCE and NPUD are equivalent problems in strongly connected digraphs.

Remark: In non strongly connected digraphs, it is sufficient to solve NPUD in a sole strongly connected component to have a solution for OR LCE.

< 17 >

< ≣ >



### Remark

Each condition of the problem:

- G<sub>lab</sub> is an update digraph,
- each cycle in  $G_{lab}$  has a multiple of  $k \oplus$ -labeled arcs,

can be solved independently in polynomial time.

æ

- ∢ ≣ ▶



### Lemma

If G is a non strongly connected digraph, then NPUD has a solution in G if and only if it has a solution in every strongly connected component of G.



<ロ> (日) (日) (日) (日) (日)

## NPUD

### Proposition

Let  $G_{lab}$  be an update digraph with G strongly connected. Then,  $\rho(\mathcal{P}(G_{lab})) = k > 1$  if and only if there exists a partition of V,  $\{V_1, \ldots, V_k\}$ , such that:

I) For each

 $(u, v) \in A(G), u \in V_i, v \in V_j$ :  $lab(u, v) = \ominus \Longrightarrow i = j$ .

II) For each  $(u, v) \in A(G)$  such that  $lab(u, v) = \oplus$ , then there exists  $i \in \{1, ..., k\}$  such that  $u \in V_i$  and  $v \in V_{i+1}$ .

イロン イ部ン イヨン イヨン 三日

### Example



< □ > < □ > < □ > < □ > < □ > < Ξ > = Ξ

### Example



## NPUD

### Corollary

Let be *G* an strongly connected digraph. Then, NPUD has a solution in *G* if and only if there exist a partition  $V_1$ ,  $V_2$  of *V* such that  $G_{lab}$  is an update digraph, where the label function lab is defined as:

$$\forall (u, v) \in A(G) \colon \mathsf{lab}(u, v) = \begin{cases} \ominus & \text{if } u, v \in V_i, i \in \{1, 2\} \\ \oplus & \text{if } u \in V_i, v \in V \setminus V_i, i \in \{1, 2\} \end{cases}$$

Remark: If such a partition exists, then  $G[V_1]$  and  $G[V_2]$  are acyclic. Therefore,  $V_1$  and  $V_2$  form an acyclic 2-partitioning of V (Nobibon et al., (2010)).

イロト イヨト イヨト イヨト

2

## NPUD

### Corollary

Let be *G* an strongly connected digraph. Then, NPUD has a solution in *G* if and only if there exist a partition  $V_1$ ,  $V_2$  of *V* such that  $G_{lab}$  is an update digraph, where the label function lab is defined as:

$$\forall (u,v) \in A(G) \colon \mathsf{lab}(u,v) = \begin{cases} \ominus & \text{ if } u,v \in V_i, i \in \{1,2\} \\ \oplus & \text{ if } u \in V_i, v \in V \setminus V_i, i \in \{1,2\} \end{cases}$$

Remark: If such a partition exists, then  $G[V_1]$  and  $G[V_2]$  are acyclic. Therefore,  $V_1$  and  $V_2$  form an acyclic 2-partitioning of V (Nobibon et al., (2010)).

・ロト ・回ト ・ヨト ・ヨト

### Example 5









Workshop?

NPUD



- Algorithm that solves NPUD (2-partition version, non polynomial).
- Forbidden configuration approach.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □



- Algorithm that solves NPUD (2-partition version, non polynomial).
- Forbidden configuration approach.

・ロン ・回と ・ヨン ・ヨン



- Algorithm that solves NPUD (2-partition version, non polynomial).
- Forbidden configuration approach.

イロン イヨン イヨン イヨン



### Open problem

Complexity.



2

# Bibliography I

- S.A. Kauffman, *Metabolic stability and epigenesis in randomly connected nets.* Journal of Theoretical Biology, Volume 22, Pages 437-467, 1969.
- J. Aracena, E. Goles, A. Moreira, L. Salinas, *On the robustness of update schedules in Boolean networks.* Biosystems, Volume 97, Pages 1-8, 2009.
- J. Aracena, L. Gómez, L. Salinas, *Limit cycles and update digraphs in Boolean networks*. Discrete Applied Mathematics, Volume 161, Issues 1-2, Pages 1-12, 2013.
- A. Jarrah, R. Laubenbacher, A. Veliz-Cuba, *The dynamics of conjunctive and disjunctive Boolean networks*. Bulletin of Mathematical Biology, Volume 72, Pages 1425-1447, 2010.

- 《圖》 《문》 《문》 - 문

# **Bibliography II**

- E. Goles, M. Noual, *Disjunctive networks and update schedules*. Advances in Applied Mathematics, Volume 48, Pages 646-662, 2012.
- J. Bang-Jensen, G. Gutin, *Digraphs Theory, Algorithms and Applications.* Springer-Verlag, Berlin, 2007.
- F. Nobibon, C. Hurkens, R. Leus, F, Spieksma, *Exact algorithms for coloring graphs while avoiding monochromatic cycles.* Proceeding 6th Internat. Conference on Algorithmic Aspects in Information and Management, Pages 229-242.

イロト イヨト イヨト イヨト





### Thanks

Thanks

### Thanks

▲口 → ▲圖 → ▲ 国 → ▲ 国 → □

2

Workshop? NPUD





### Thanks

2

<ロ> <同> <同> < 同> < 同> < 同> :

Workshop? NPUD



### Thanks

#### Thanks

т

Thanks

2

◆□ → ◆□ → ◆ □ → ◆ □ → ·







Thanks

Thanks

2

<ロ> <同> <同> < 同> < 同> < 同> :







Thanks

Thanks

2

◆□ → ◆□ → ◆ □ → ◆ □ → ·







Thanks

Thanks

2

▲口 → ▲圖 → ▲ 国 → ▲ 国 → □







▲口 → ▲圖 → ▲ 国 → ▲ 国 → □







▲口 → ▲圖 → ▲ 国 → ▲ 国 → □







Thanks

Thanks

Thanks

<ロ> <同> <同> < 同> < 同> < 同> :

2









▲口 → ▲圖 → ▲ 国 → ▲ 国 → □






<ロ> <部> <部> <き> <き> <





▲口 → ▲圖 → ▲ 国 → ▲ 国 → □

æ





▲口 → ▲圖 → ▲ 国 → ▲ 国 → □







<ロ> <部> <部> <き> <き> <





<ロ> <部> <部> <き> <き> <





<ロ> <部> <部> <き> <き> <

2





<ロ> <部> <部> <き> <き> <

2





Workshop? NPUD

<ロ> <部> <部> <き> <き> <





<ロ> <部> <部> <き> <き> <







<ロ> <部> <部> <き> <き> <

2





Workshop? NPUD

<ロ> <部> <部> <き> <き> <





Workshop? NPUD

<ロ> <部> <部> <き> <き> <





#### Thanks

▲口 → ▲圖 → ▲ 国 → ▲ 国 → □

2

### Thanks

## Thanks





### Thanks

▲口 → ▲圖 → ▲ 国 → ▲ 国 → □

2

Thanks

Thanks









<ロ> <部> <部> <き> <き> <





<ロ> <部> <部> <き> <き> <







▲口 → ▲圖 → ▲ 国 → ▲ 国 → □







▲口 → ▲圖 → ▲ 国 → ▲ 国 → □





▲口 → ▲圖 → ▲ 国 → ▲ 国 → □







▲口 → ▲圖 → ▲ 国 → ▲ 国 → □

æ

### Thanks

Thanks

# Thanks