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Levels of regulation in bacterial gene expression
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FIGURE 17.1 Gene Exp ion in B: ia Can Be d at Three Levels.

 EXERCISE Label the mode of regulation that is the slowest in response time, and that which is fastest. Label the
most efficient and least efficient in resource use.
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Overview of transcriptional regulation
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Positive and negative regulation
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Input Data

Let G be the set of genes in the studied organism. The method requires

graph G.

@ Affinity pairs: A set A C G x G of gene pairs obtained by TF/BS
sequence affinity and the p-values associated. This forms a directed
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Input Data

Let G be the set of genes in the studied organism. The method requires:

@ Affinity pairs: A set A C G x G of gene pairs obtained by TF/BS
sequence affinity and the p-values associated. This forms a directed
graph G.

@ Co-expressed pairs: A set C C G x G of pairs of co-expressed genes.
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Input Data

Let G be the set of genes in the studied organism. The method requires:

@ Affinity pairs: A set A C G x G of gene pairs obtained by TF/BS
sequence affinity and the p-values associated. This forms a directed
graph G.

@ Co-expressed pairs: A set C C G x G of pairs of co-expressed genes.

@ Validated pairs: Optionally, G can also include a set ¥V C G x G of
gene pairs corresponding to independent experimentally validated
regulations, if available.
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Definition
Given a pair (A, B) € C of co-expressed genes, an explanation for (A, B)
in G is a set of arcs £ that satisfy any of the following conditions:

@ £ is a directed path from A to B;
@ £ is a directed path from B to A;

@ & is the union of two divergent directed paths starting from some
gene C and arriving respectively at A and B, having only vertex C in
common.
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@ But indeed, we don't want to recover any explanation for each pair,
but just to foster simple (short) and confident explanations.

@ For each TF/BS affinity, we define a cost on each arc depending on
the p-value associated to the affinity.

@ The cost of an explanation is the sum of the cost of its arcs.
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We say that a subgraph G’ C G explains C if for every pair (A, B) € C the
subgraph G’ contains an explanation for (A, B).

N A N
A T N A T N

Nt ONAS N

In the figure: three subgraphs explaining C = {{A, B},{F,/},{G, H}}.
Only the first and the last are minimal ones.
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Modelling objective: to define a good subgraph explaining all
co-regulations in C.

Algorithmic objective: to enumerate all those subgraphs.
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How difficult is enumerate all minimal subgraphs (without considering
costs)?

Problem

ENUMCOHE(G,C): Given an oriented graph G and a set of pairs of
vertices C, enumerate all minimal subgraphs of G that explain C.

] [ =
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How difficult is enumerate all minimal subgraphs (without considering
costs)?

Problem

ENUMCOHE(G,C): Given an oriented graph G and a set of pairs of
vertices C, enumerate all minimal subgraphs of G that explain C.

@ ENUMCOHE is hard: enumerate all minimal subgraphs that explain C
cannot be done in polynomial total time unless P = NP (we reduce
from path conjunction problem).

@ We can still try to develop some heuristics. . .

@ but indeed this model is not very interesting: it generates too many
solutions.
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More interesting:

Problem
ENUMMINCOHE(G, C): Given an oriented graph G and a set of pairs of
vertices C, enumerate all subgraph explaining C of minimum total cost.
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More interesting:

Problem

ENUMMINCOHE(G, C): Given an oriented graph G and a set of pairs of
vertices C, enumerate all subgraph explaining C of minimum total cost.

@ Unfortunately, even finding one subgraph of minimum cost is
NP-hard (reduction from Steiner Weighted Directed Tree problem).

@ Again, we can use some heuristics. . .

@ but indeed this model is not very robust: adding a new pair in C can
(in theory) change dramatically the set of solutions.
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Maybe the cell (or evolution) uses a “local parsimony”:
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Maybe the cell (or evolution) uses a “local parsimony”:

Definition
We say that an explanation £ for the pair (A, B) in C is optimal if it is of
minimum cost among all the explanations for the pair.
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Maybe the cell (or evolution) uses a “local parsimony”:

Definition
We say that an explanation £ for the pair (A, B) in C is optimal if it is of
minimum cost among all the explanations for the pair.

Now, we can define the solutions that contain an optimal explanation for
every pair in C.
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Definition
We say that a subgraph is an optimal subgraph explaining C if it is the
union of |C| optimal explanations, one for each pair (A, B) € C.
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Definition
We say that a subgraph is an optimal subgraph explaining C if it is the
union of |C| optimal explanations, one for each pair (A, B) € C.

@ Instead of enumerating all optimal subgraphs, we define G; the union
of all optimal subgraph explaining C.

@ To compute G;, we need simply to compute all optimal explanations
for each pair in C.

@ The software LOMBARDE uses an algorithm of minimum paths in
modified graph to compute G; .
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Table 1 Characteristics of the a priori graphs and LOMBARDE
output networks

Network Explained No.of No.of  No.of

co-expressions vertices arcs arcsinV
TRN Gy, built 3,990 6.5%) 823 1652 1,652
from V

E.coliabinitio G 4 56,044 (91.1%) 2390 25604 444

LOMBARDE output 56,044 (91.1%) 2336 4922 295

forGa

E. coli extended 56,789 (923%) 2434 26812 1,652
Gay

LOMBARDE output 56,789 (923%) 2370 4374 1,520
for G ay

The a priori graphs explained most of the co-expressions. The LOMBARDE results
kept most of the vertices, significantly reduced the number of arcs, and kept most of
the validated arcs
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