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Input Data

Let G be the set of genes in the studied organism. The method requires:

Affinity pairs: A set A ⊆ G×G of gene pairs obtained by TF/BS
sequence affinity and the p-values associated. This forms a directed
graph G.

Co-expressed pairs: A set C ⊆ G×G of pairs of co-expressed genes.

Validated pairs: Optionally, G can also include a set V ⊆ G×G of
gene pairs corresponding to independent experimentally validated
regulations, if available.
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Definition
Given a pair (A,B) ∈ C of co-expressed genes, an explanation for (A,B)
in G is a set of arcs E that satisfy any of the following conditions:

E is a directed path from A to B;

E is a directed path from B to A;

E is the union of two divergent directed paths starting from some
gene C and arriving respectively at A and B, having only vertex C in
common.
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But indeed, we don’t want to recover any explanation for each pair,
but just to foster simple (short) and confident explanations.

For each TF/BS affinity, we define a cost on each arc depending on
the p-value associated to the affinity.

The cost of an explanation is the sum of the cost of its arcs.
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All explanations for the co-expression {F , I} ∈ C and the cost associated.
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We say that a subgraph G′ ⊆ G explains C if for every pair (A,B) ∈ C the
subgraph G′ contains an explanation for (A,B).
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In the figure: three subgraphs explaining C = {{A,B}, {F , I}, {G ,H}}.
Only the first and the last are minimal ones.
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Modelling objective: to define a good subgraph explaining all
co-regulations in C.

Algorithmic objective: to enumerate all those subgraphs.
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How difficult is enumerate all minimal subgraphs (without considering
costs)?

Problem
EnumCohe(G, C): Given an oriented graph G and a set of pairs of
vertices C, enumerate all minimal subgraphs of G that explain C.

EnumCohe is hard: enumerate all minimal subgraphs that explain C
cannot be done in polynomial total time unless P = NP (we reduce
from path conjunction problem).

We can still try to develop some heuristics. . .

but indeed this model is not very interesting: it generates too many
solutions.
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More interesting:

Problem
EnumMinCohe(G, C): Given an oriented graph G and a set of pairs of
vertices C, enumerate all subgraph explaining C of minimum total cost.

Unfortunately, even finding one subgraph of minimum cost is
NP-hard (reduction from Steiner Weighted Directed Tree problem).

Again, we can use some heuristics. . .

but indeed this model is not very robust: adding a new pair in C can
(in theory) change dramatically the set of solutions.
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Maybe the cell (or evolution) uses a “local parsimony”:

Definition
We say that an explanation E for the pair (A,B) in C is optimal if it is of
minimum cost among all the explanations for the pair.

Now, we can define the solutions that contain an optimal explanation for
every pair in C.
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Definition
We say that a subgraph is an optimal subgraph explaining C if it is the
union of |C| optimal explanations, one for each pair (A,B) ∈ C.

Instead of enumerating all optimal subgraphs, we define GL the union
of all optimal subgraph explaining C.

To compute GL, we need simply to compute all optimal explanations
for each pair in C.

The software Lombarde uses an algorithm of minimum paths in
modified graph to compute GL.
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a priori graph GA explained 56,044 of the pairs of co-
expressed operons (i.e. 91.1 % of C). This number rose to
56,789 (92.3 % of C) in the extended case when validated
arcs were included in the a priori graph GAV . This result
reveals the explanatory potential of the a priori graphs GA
and GAV .
Nevertheless, the huge number of affinities (more than

15 times the number of known regulations) is consis-
tent with the evidence that many of the predicted TF/BS
affinities are spurious and they are not part of the real reg-
ulatory processes that coordinate the gene co-expressions
given as input, which is obtained from a particular set
of experiments. The modeling principle of LOMBARDE is
that we can choose the most confident subnetwork which
explains the studied data.

LOMBARDE results are biased towards validated interactions
Considering the ab initio scenario, LOMBARDE was first
applied to GA and the set C of observed co-expressions
for E. coli. After setting the cost parameters k = 9 and
r = 10 (an analysis of this choice is presented below),
LOMBARDE produced a subnetwork with only 19.2 % of
the initial arcs (4922 of 25,604), which still explained
91.1 % of the co-expressions. Interestingly, LOMBARDE
showed a strong bias towards preserving independent
experimentally validated regulations in V (see Table 1).
Indeed, LOMBARDE preserved 66.4 % of the validated arcs
in GA and kept only 18.4 % of the non-validated interac-
tions. A hypergeometric test confirmed this bias, with an
enrichment p-value under 10−105. For the extended sce-
nario, this bias was even stronger when LOMBARDE was
applied to the extended graph GAV (i.e., adding all vali-
dated regulations). The resulting subnetwork kept 92 %
of the validated arcs (1520 of 1652) and included only
11.3 % of the non-validated putative regulations (2854
of 25,604). For a future work, it would be interesting to

Table 1 Characteristics of the a priori graphs and LOMBARDE

output networks

Network Explained No . of No. of No. of
co-expressions vertices arcs arcs in V

TRN GV built
from V

3,990 (6.5 %) 823 1,652 1,652

E. coli ab initio GA 56,044 (91.1 %) 2,390 25,604 444

LOMBARDE output
for GA

56,044 (91.1 %) 2,336 4,922 295

E. coli extended
GAV

56,789 (92.3 %) 2,434 26,812 1,652

LOMBARDE output
for GAV

56,789 (92.3 %) 2,370 4,374 1,520

The a priori graphs explained most of the co-expressions. The LOMBARDE results
kept most of the vertices, significantly reduced the number of arcs, and kept most of
the validated arcs

explore whether the 2,854 putative regulations contain
real regulatory relations in E. coli which have not been
experimentally validated yet.
It should be noted that while LOMBARDE preferen-

tially chooses arcs with low p-values, it also includes arcs
with high p-values when they are required to explain a
co-expression (see Fig. 4). Validated arcs are also biased
towards lower p-values, although some do have high val-
ues. Thus methods based on only a p-value threshold will
not recover all validated arcs and may not produce the
largest networks.
We expected that LOMBARDE would recover many non-

validated arcs because sets of validated regulations repre-
sent only the current knowledge, which may correspond
to a very small portion of all the transcriptional regula-
tions in an organism.

Degree distribution of LOMBARDE output are similar to
observed TRNs
Some characteristics that were measured in the
LOMBARDE results suggested that the networks were
topologically closer to other observed TRNs than the a
priori graphs GA and GAV . Indeed, the original average
degree (number of interactions per operon) of GA was
10.7, which is much higher than the values of 1.5�2.0
suggested in the literature [18] for a TRN. The resulting
average degree of LOMBARDE outputs was 2.1, which
is much closer to the expected value. This value is also
close to the average degree value of 2.0 for the existing
network GV of validated regulations for E. coli. Further-
more, the degree distribution (proportion of operons for
each degree) in LOMBARDE outputs was highly correlated
with the degree distribution in the existing network of
validated regulations, which indicates that they shared
some structural properties, as shown in Fig. 5. In contrast,
the degree distributions in GA and GAV were signifi-
cantly different; therefore, their structures were different
from the structure of the observed network of validated
regulations.

Ranking of global regulators
The networks produced by LOMBARDE contained most
of the global regulators that have been described for
E. coli [19]. Starting from GA, the output of LOMBARDE
included 16 of the 19 known global regulators for this
bacteria.
To determine the vertices that correspond to global reg-

ulators in the LOMBARDE output, we ranked them based
on the connection structure of the network. In particular,
we considered the vertex radiality to be a centrality index
that measured the capability of each vertex to reach other
ones in the graph [20]. If d(u, v) represents the distance
from u to v (unweighted length of the shortest path from u
to v) andD is the diameter of the graph (D = max{d(ū, v̄) :
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