
Boris Koldehofe
Computer Science Department

Saarlandes Un., 66123 Saarbrticken, Germany

& Chalmers Un., 412 96 Goteborg, Sweden

Email: khofer@cs.chalmers.se

Distributed Algorithms Visualisation for Educational Purposes

Marina Papatriantafilou Philippas Tsigas”
Computing Science Department

Chalmers Un. of Technology and Goteborg Un.

S-412 96 Goteborg, Sweden

Email: (ptrianta,tsigas)@cs.chalmers.se

Abstract

We present our work on building interactive continuous
visualisations of distributed algorithms for educational pur-
poses. The animations are comprised by a set of visuahsa-
tion windows. The visualisation windows are designed so
that they demonstrate i) the dtferent behaviours of the al-
gorithms while running in dtrerent systems, ii) the dtyerent
behaviours that the algorithms exhibit under different tim-
ing and workload of the system iii) the time and space com-
plexities of the algorithms and iv) the “key ideas” of the
functionality of the algorithms, Visualisations have been
written for a set of 10 algorithms that are tought in a Dis-
tributed Algorithms advanced undergraduate course.

1. Introduction

Distributed algorithms are by nature complicated to un-
derstand and to teach. Threads of control compete for re-
sources, try to synchronise and dynamically change execu-
tion behaviour. Each execution involves many processes, a
large amount of data of processes’ local state to describe the
system state and an even larger amount of date to describe
complex interactions between the processes. Moreover, dif-
ferent executions of the same algorithm, even if they start
from the same initial system configuration, may not result
in the same output, due to asynchrony.

Animation of distributed algorithms graphically- shows
an execution of the distributed algorithm given. It can assist
the teacher to illuminate the description of a distributed al-
gorithm (including its time and communication complexity
analysis) and to graphically show material that she/he has
explained on the board.

This paper is on our work in building animations of dis-
tributed algorithms to demonstrate (i) the “key ideas” of

*Contact author, phone: +46 31 7725409, fax: +46 31 16 56 55

Permission to make digital or hard copies of all or part of this work for To copy otherwise, to republish, to post on sewers or to
personal 01 classroom use IS granted without fee provided that redistribute to lists, requires prior specific permission and/or a fee.

copies are not made or distributed for profit or commercial advan- ITiCSE ‘99 6/99 Cracow, Poland

tage and that copies bear this notice and the full citation on the fat page 0 1999 ACM 1.59113.087.2/99/0005...$5.00

the functionality of the algorithms, (ii) their behaviour un-
der different timing and workload of the system, (iii) their
communication and time complexities. Each visualisation
is comprised by a set of visualisation windows, each one of
them demonstrating a specific aspect of the execution of the
algorithm; we call these visualisation windows views. The
visualisation takes as input any possible execution trace of
the respective algorithm, so that students (users) can view
it in any possible execution that they can select. We pro-
pose the use of a set of views, which also take into account
two inherent difficulties in understanding distributed algo-
rithms executions. These difficulties stem from the absence
of global time in the system, which implies:

l that processes need to rely on their knowledge of
causal relations among events in the system,

l and that in order to measure the length of an execution
in time, we need to employ some mechanism related
to the dependencies induced by each algorithm.

In the next section we describe the set of views that we
provide for each animation and also motivate our decisions,
by explaining the role each one plays in assisting the un-
derstanding of the algorithms. The code for all but one
(“special”) view is modularly used by all algorithms, as they
are to assist in understanding issues which are common in
all distributed algorithms. The idea behind the “special”
view is to illustrate the special concepts for each algorithm
(therefore the view needs to be different for each algorithm).

For our animation programs we use the Polka library [9].
which is highly portable, friendly to use and has very good
features for visualisation, including possibility for’multiple
views, speed tuning, step-by-step execution and callback
events to assist interactive animation.

This effort is within our project Lydian, which involves
the development and optimisation of an integrated envi-
ronment to enable (i) development and maintainance of an
archive of distributed algorithms and protocols (together
with their animation programs), (ii) development and main-

103

tenance of an archive of system specification/configuration
files, to specify different types of systems to be used for the
simulation and animation of the algorithms, and (iii) simu-
lation of the algorithms in appropriate systems, in order to
produce traces of a variety of executions, which can be used
for the animation and for the evaluation of the algorithms.

2 Related Work

To the best of our knowledge, there has been only one
attempt towards a a set of animations of distributed pro-
tocols for educational purposes, ZADA [8], on the anima-
tion package Zeus, a Modula-3 based system for specialised
platforms, -not as highly portable. The effort resulted in a
small archive of protocols, for each of which the set of views
is fixed and the implementation is the same program as the
animation (this implies essentially fixed timing, workload,
etc). Of relevance is also a nice work described by Ben-
Ari in [l], where the focus is on the choice of a language
to be used for implementations of distributed algorithms for
demonstration and laboratory exploration.

3 T’he Animation Views

We have decided to offer the same views to the user, we
think that this not only helps the user to get familiarity with
the tool but the views that are offered are essential for almost
all distributed algorithms that we know. All views evolve
continuously as the execution of the algorithm evolves (con-
tinuous motion). The user can decide on-line which views
he/she would like to see at any time. The views can be se-
lected by a menu window. Also a further control window
enables. the user to change the speed or even pause anima-
tions in order to watch interesting parts or skip uninteresting
parts of the algorithm’s execution. Moreover the user has
the possibility to zoom into interesting parts of the anima-
tions as he/she can move to any area of a view. This is im-
portant since by nature some animations will not be able to
take place in a bounded window frame because the animator
does not have any previous knowledge of further executions
of the algorithm. With exception of the basic view, in which
an individual animation for each algorithm was developed,
the offered views were designed such that they are trans-
ferable for any distributed algorithm for a message passing
system although they allow some specifications. Thus fur-
ther development will have to concentrate only on the main
ideas of algorithms. Below we describe in detail the views
that we have decided to offer.

The accompanying figures illustrate a snapshot of the
animation of an execution of the ECHO algorithm (broad-
cast with acknowledgements) [111. The problem and the

algorithm are as follows: One process(or) needs to broad-
cast a message to all the others and to also know when all
have received it. It can only communicate with its neigh-
bours in the network, so it sends the message to them. Each
process, upon receiving the broadcast message for the first
time, it propagates it to its other neighbours and it waits
to receive acknowledgements from all of them before send-
ing its own acknowledgement to the one where it got the
message from for the first time. Any process receiving the
broadcast message again acknowledges immediately to that
sender and does not propagate it again.

Figure 1. Basic view of the broadcast-with-
acknowledgements algorithm animation

Basic View (cf. Fig 1) It illustrates the basic idea of the al-
gorithm, hence it can look quite different for different algo-
rithms. However, for many algorithms it is of interest to see
the state of processes and messages which are sent along
links. This can be achieved by showing the communica-
tion network and coloring its nodes (processes) according to
their state and showing resizing arrows which are coloured
according the kind of message sent along an edge (link).
In the particular algorithm it shows the communication net-
work,-the propagation of the broadcast and the acknowl-
edgement messages (arrows in green and blue respectively)
and colors (green or blue) the nodes (processes) that have
received the broadcast message and/or the acknowledge-
ments, accordingly. Initially all nodes are yellow, except
from the one that initiates the broadcast, which is always
shown in red. As the algorithm execution evolves, wuit-
ing chains are formed among processes (each process in the
chain waits for an acknowledgement from its next one in
the chain); these chains also determine the time complexity
of the algorithm. The edges that involved processes in the
chains are marked in red (in this particular algorithm they
also form a spanning tree of the network at the end).

104

Figure 2. View showing the communication in-
duced by each process(or) and the average figure

Communication View (cf. Fig. 2) This view assists in mea-
suring the communication complexity of the algorithm and
is often helpful in finding relationships between commu-
nication complexity and the structure of the communica-
tion graph. It shows the contribution of each process(or)
in the traffic (messages) induced by the algorithm’s execu-
tion and it also shows the average number of messages per
process(or) during the execution. The number of messages
are displayed in a bar chart where bars grow online with the
number of messages sent by a process(or). In this example
it is easy to observe that the amount of traffic that each pro-
cess(or) is responsible for is proportional to its degree in the
communication graph (shown in figure 1).

For some algorithms it is also of interest to have a mea-
sure of the bit complexity of messages. The actual known
maximum size of a message (represented in bits) is dis-
played below every processes bar. The size of a message
is represented by a circle whose area content is proportional
to its message size. As the message size increases online,
the user is able to observe how fast message sizes are in-
creasing. In our example algorithm the bit complexity of a
message was constant so that the bit complexity is not of
any interest.

Causality View (cf. Fig 3) It illustrates the causal relation
between events in the system execution (arrows represent
message transmission). It also shows how the processes
logical clocks are incremented during the execution. Even
though logical clocks are not used in all algorithms, the
view is always available; its purpose is to show how would
a monitoring process view the execution, based on traces as
would be given by each process separately. This is impor-
tant, as the processes in a distributed system do not have
global knowledge of time. Besides, as consecutive causally
related events change color, overlapping arrows with differ-
ent colors visualise the degree of asynchrony in the execu-
tion. It should be noted that showing the maximum directed

Figure 3. View showing the causality and logical
times (e.g. as would be seen by a monitoring process)

path in the resulting graph shows the length of the execution
in units of message transmission times.

Naturally, only part of the whole view can be shown in
the window, but the user is able to go back and return (as
well as to zoom in and out), like with all other views.

Process Step View (cf. Fig. 4) This gives the user the pos-
sibility to click on any node in the basic view window, to
get information about its status (state, last event processed,
last message received/sent, ...) at any point during the ani-
mation (or even after it has completed). It is also possible to
view interactively the whole execution of the selected pro-
cess. This can be done for any process in the system.
Process Occupation View (cf. Fig. 5) It shows in actual
times (i.e. as given by the simulation trace) the period that
each process is kept busy by the algorithm during the ani-
mated execution. If it is required by the algorithm it is also
possible to distinguish how long a process was kept busy in
a certain state. Therefore a user may come to a better un-
derstanding of the algorithm’s time complexity by retracing

105

Figure 5. Process(or) occupation view

e.g. with the Process Step View why a specific process was
kept busy for a long time. In this example, it can be eas-
ily observed that the initiator of the broadcast is the first to
start and the last to finish; by getting the acknowledgements
from it:; neighbours -i.e. its children in the induced span-
ning tree- it knows that the broadcast message reached ev-
erybody, hence it terminates.

4 The Implemented Visualisations

Visualisation programs (each one comprised of the
above mentioned views) have been written for ten dis-
tributed algorithms:

Broadcast algorithm [11,7]

Broadcast ECHO algorithm [111

Ricard-Agrawala’s mutual exclusion [lo]

Chandy-Misra’s dinning and drinking philoso-
pbers [2]

Luby’s maximal independent set [6]

Choy-Singh’s three resource allocation algorithms [3]

Gallager-Humblet-Spira’s minimum weight spanning
trees [5]

A periodic counting network isomorphic to the Dowd-
Perl-Rudolph-Saks’ network [4]

The above mentioned algorithms cover one big part of
what it is taught in a distributed algorithm course. We ex-
pect to (double the number of algorithms that are being vi-
sualized in the near future. The resource allocation algo-
rithms are taught in operating systems courses as well as in
distributed systems courses.

Concl.usion

In this paper we provide an overview of progress that has
been made in designing homogeneously interactive visuali-

sations of distributed algorithms that will help the students
to visualize the time and space complexities of the algo-
rithms and at the same time will show the “key ideas” of
the functionality of each algorithm. In section 2 we sum-
marised the approach that we followed. We will use the
animations this year in class together with the lab assign-
ments. Furthermore, we expect that the feedback from the
students will help us improve the visualiztions at the basic
view parts of the algorithms.

References

111

VI

r31

[41

bl

161

[71

PI

PI

UOI

[Ill

M. Ben-Ari “Distributed Algorithms in Java” ACM
Conference on Integrating Technology into Computer
Science Education - ITiCSE ‘97, p. 62-64, 1997.

K.M. Chandy and J. Misra. “The Drinking Philoso-
phers Problem” ACM TOPLAS, Vol. 6, No. 4, pp. 632-
646, Oct. 1984.

M. Choy and A. Singh. “Efficient Fault Tolerant
Algorithms for Resource Allocation in Distributed
Systems.” ACM TOPUS, Vol. 17, No. 3, pp. 535-
559, May 1995. (Also in Proc. of ACM STOC 1992,
pp. 593-602).

M. Dowd, Y. Perl, M. Saks and L. Rudolph “The bal-
anced sorting network” JACM, 199 1.

R.G. Gallager, P.A. Humblet and PM. Spira “‘A Dis-
tributed Algorithm for Minimum Weight Spanning
Trees” in ACM TOPLAS, Vol.5, No.1, January 1983,
pp. 67-77.

M. Luby “A simple parallel algorithm for for maximal
idependent set problem” SIAM Journal of Computing,
15(4):1036-1053, November 1986.

N. Lynch “Distributed Algorithms” Morgan Kauf-
mann, 1996.

A. Mester, P Herrmann, D. Jager, V. Mattick, M.
Sensken, R. Kukasch, A. Ritter, S. Bunemann, P Un-
flath, M. Bernhard, F. Austel, T. Alders, A. Rohrbach
“ZADA: Zeus-based animations of distributed algo-
rithms and communication protocols” T.R. Universitiit
Dortmund, 1995.

John Stasko “POLKA Animation Designer’s Pack-
age” Technical Report, Georgia Institute of Technol-
ogy, 1995.

G. Ricart, A. K. Agrawala “An Optimal Algorithm for
Mutual Exclusion in Computer Networks” Communi-
cations of the ACM, January 1981, Volume 24, Num-
ber 1, pp. 9-17.

G. Tel “Introduction to Distributed Algorithms” Cam-
bridge University Press, 1994.

106

