
Visuele Talen {
Visual Languages

Jan Rekers

Najaar 1995

Vakgroep Informatica

Universiteit van Leiden

Club

c_name

Person

residency

age

Student

enrollment_year

string

integer

integer

Employee

status string

salary integer

*member

name string
Address

country

city

num

street

string

string

integer

string

relatives *
volgtDocent Student

naam

collkrt

vaknaam

Vakgeeft

Persoon

o

email

(0,3) (1,1) (1,n) (0,n)

sexe

if .. then .. else .. fi

a series series

stat-;-list stat-;-list

.. := := := ..

tmp a a b b tmp

produce ship receive consume

buffer

Circle

State

Circle

Transition

covers covers

from tos1

c1

s2

c2

::=

State

Circle

State

Circle

covers covers

starts ends

s1

c1

s2

c2
Arrow

String
labels

State
N > 1 ?F T

nfact := 2nfact := 1

DO i := 3 to n

nfact :=
 nfact * i

return nfact

L R
1 2 3 4 5/ * * /

rest rest restrest
01

2 3

4

56

a
b

c

a
b

a

b
c

b
c

a
c

1

Organisatie VL

� College: Geen boek, ik behandel aantal

artikelen, er komen twee gast docenten

� Praktikum: In C++ editor voor visuele

taal bouwen.

Regelmatig inleveren, bepaalt eindcijfer voor

25%.

� Tentamen: Over behandelde artikelen, moet

voldoende zijn, bepaalt eindcijfer voor 75%

Voorstel voor de datum: vrijdag 22 decem-

ber, 9.00 { 12.00

� Stof: Kopie�en sheets en papers. Totaal

ongeveer 300 kopie�en, nu graag . 15

2

Overzicht van de colleges

� Introduction to VL & examples

{ 1: Introduction

{ 2: Examples of visual programming lan-

guages

{ 3: Dataow languages

� Syntax directed graphical editing

{ 4: Fresco basics for the \praktikum"

{ 5: Syntax de�nition of MSC diagrams

{ 6: Generating visual editors

3

� 7 & 8: Constraints

Constraint logic programming, constraint

solving, constraint based graphical editing.

� De�nition of visual syntax, visual parsing

{ 9: Picture layout grammars

{ 10: Attribute multiset grammars

{ 11: Graph grammar approach

� 12: Visual reasoning

� 13: Overview

4

Overzicht Praktikum

U bouwt een syntax gestuurde editor voor de

visuele taal MSC.

msc example
i1 i2 i3 i4

m0
m1

m2
m3

m4
a

Programmeren in C++, op de silicon graphics,

met behulp van user interface builder Fresco en

constraint solver DeltaBlue.

Inlevertijd per opdracht 1 �a 2 weken, cijfer per

opdracht, harde deadlines.

Begeleiding: Ed van der Winden, kamer 206,

email: winden@wi

5

Algemeen idee: start met editor die niets van

MSC weet en voeg daar allerlei MSC speci�eke

commando's aan toe.

De opdrachten hebben een sterk stapel karak-

ter; zorg dat U van begin af aan hard mee-

werkt.

� 1, 2: Fresco installeren en leren gebruiken

(hello, button, rgb)

� 3, 4: DeltaBlue leren gebruiken en vanuit

Fresco gebruiken

� 5, 6: Aan Figgy MSC �guren toevoegen

(white box, black box, arrow, line, text)

6

� 7, 8: Poly-�gures toevoegen (hele process

instance in �e�en keer neerzetten) en de on-

derdelen koppelen via constraints

� 9, 10: MSC �guren van stekkers voorzien

en stekkers laten koppelen via constraints

i1

m1

i1

m1

� 11, 12: De stekkers verbeteren (typering,

dynamisch toevoegen, ontkoppelen, ...)

� 13: MSC constructies als tekst uitprinten

en demo geven

7

Introduction to

Visual Languages,

Visual Programming, &

Program Visualization

Material:

� Brad Myers, Taxonomies of visual program-

ming and programming visualization, JVLC,

vol. 1, pages 97-123, 1990.

(only scan the sections 5, 6, 7)

� Bottoni, Costabile, Levialdi & Mussio, For-

malising Visual Languages, IEEE VL'95,

pages 45-52, 1995.

8

Motivation

� Graphics can be easier to understand

The human visual system and visual in-

formation processing is optimized to process

more-dimensional data.

Textual representations make only little use

of this fact.

Certain complex problems are simply easier

to express in more than one dimension

{ visualization of the current state of a

program

{ data structure de�nition

{ complex data re-organization

{ design of concurrent programs

9

� Helpful for non-programmers and novice

programmers

Conventional programming is hard to learn

and use.

For many problems end-users would be helped

if they could program

(this explains the success of spreadsheets)

Providing options and menu's in software

packages is not enough.

Direct manipulation interfaces enlarge the

user / programmer gap

A solution might be to use graphics as the

programming language.

10

� Higher level descriptions

Graphical descriptions tend to be less pre-

cise and give a more high level description

of the desired actions.

This can also be very helpful for experi-

enced programmers.

Design languages often apply graphical

formalisms

11

Textual { Visual

� Textual Languages (or linear languages)

The sentences are one-dimensional

Building blocks are usually (a large collec-

tion of) characters or tokens

The only meaningful relation between build-

ing blocks is follows

while ((e = I++))

if (e->source()->UserData.WhoAmI ==

e->target()->UserData.WhoAmI)

return false;

while ((e = I ++

)) if (. . .

12

� Visual Languages (or non-linear languages)

The two-dimensional aspect of the sen-

tence matters.

Building blocks are usually (a few) graphi-

cal objects

Relations depend on the language; for ex-

ample: contains, above, touches, close-by.

1 2

a
b

13

A gross classi�cation can be made among vi-

sual languages by the visual forms they use

� Diagram: The objects are basic graphi-

cal objects; Wiring is the most important

relation.

� Iconic: Objects are small drawings; Over-

lapping is the most important relation.

kdfjl

k kdk

erq k

� Formula: Objects are mathematical sym-

bols; Relative position and size is the most

important relation.

nX
i=1

xi =

Z
1

0

1

2n� 1

14

Not (per s�e) visual languages:

� languages that manipulate visual objects

� languages which build visual user interfaces

� languages that support visual interaction

or visualization of data

For reasons of simplicity, we will (for now) not

consider the following as visual languages:

� 3-D: virtual reality

� 2-D + time: animations, iconic user inter-

face

15

Equivalence of notions

Notion Textual

Pascal, C, Prolog,
Lisp

Sentence

Underlying
structure

Syntax
Rule

if a > b then
 x := 7;

ancestor(X, Z) :−
 parent(X, Y),
 ancestor(Y, Z).

N

1

Person

Department

works

if

larger assign

...

State State

Transition

State

consumes consumes

produces

1

0

3

S ::= if E then S
line

line

aboveparallel

Transition ::=

EER, Petri Nets, class
diagrams, PROGRES, FSA

Language

Visual

16

What to choose?

Text is better in some cases

main

f = 1
n = <?>

call fact()

call fact()

f = f * n
n = n − 1

n != 1 ?

n == 1?

fact

void main() {

f = 1;

n = <?>; /* assign n */

fact();

}

void fact() {

if (n == 1) return

else {

f = f * n;

n = n - 1;

fact();

}}

17

Pictures are better in other cases:

msc example
i1 i2 i3 i4

m0
m1

m2
m3

m4
a

msc example; instance i3;

instance i1; in m2 from i1;

out m0 to env; out m3 to i4;

out m1 to i1; endinstance;

in m4 from i2;

endinstance; instance i4;

instance i2; in m3 from i3;

in m1 from i1; endinstance;

out m2 to i3;

action a;

out m4 to i1;

endinstance;

(variable names serve as edges)

18

Both have their advantages:

while

repeat

for

B−expr do Statement

Statement

;

until B−expr

Id := Expr
to

downto

Expr do Statement

Statement

Id (Expr)

,

Statement ::=

"while" B-expr "do" Statement |

"repeat" Statement (";" Statement)* B-expr |

"for" Id ":=" Expr ("to" | "downto")

Expr "do" Statement |

Id Parameters ;

Parameters ::=

<empty> |

"(" Expr ("," Expr)* ")" ;

19

De�nition VP, PV, VL

� Program: A set of statements that can

be submitted as a unit to some computer

system and used to direct the behavior of

that system

� Language: the words and the methods of

combining them used and understood by a

considerable community (Webster)

� Visual Programming Language: Allows

the user to specify a program in a two (or

more) dimensional fashion.

not VPL:

{ linear programming to de�ne pictures

(Postscript, X-11 toolkit, ...)

{ drawing packages which do not interpret

the drawing (MacDraw, Idraw, ...)

20

� Program Visualization: Graphics are used

to illustrate some aspect of a program or

its run-time behavior

Classi�cation along two axis:

{ whether they illustrate the code, the

data or the algorithm

{ whether they are static or dynamic

Every environment for a visual programming

language applies graphical techniques to visu-

alize the program.

We only use the term Program Visualization

for textual programs.

21

A mapping between a visual
sentence and its meaning

� Any picture can be represented by a digital

image.

A digital image i is a bi-dimensional string

i : f1; : : : ; rg � f1; : : : ; cg ! P

with P the pixel alphabet.

� A pictorial language PL is a subset of the

set I of possible digital images:

PL � I

� A description d is a string of facts (at-

tributed atoms) from some Description

Language DL.

22

� An interpretation int of an image i is a

function that gives its description:

int : PL! DL:

An interpretation is speci�ed by an observer

of a picture, and is based on the meaning

of a picture.

� The materialisation mat of a description

d is a function that gives its visualization:

mat : DL! PL:

A materialisation is the pictorial represen-

tation of a description.

� A visual sentence is a triple

< i; d; < int;mat >> :

23

< i; d;< int;mat >> :

int

mat

i d

A visual sentence is called

� faithful i� i= mat(d).

� non-faithful if mat falls short: mat(d) 6= i

� full i� d= int(i)

� non-full if int falls short: int(i) 6= d

� complete i� it is faithful and full

A visual language is a set of visual sentences.

24

� Full but non-faithful

{ trivial: if the mat function pretty-prints

the description d di�erent from the orig-

inal i

{ less trivial:

int(

a
b

a

b

cc
1 2

3) = (ajb)�c

but mat((ajb)�c) =

a

b

c
1 3

� Faithful but non-full: If the int function

does not know the visual language,

mat(state(1); state(2); trans(1;2; a)) =
a1 2

but int(
a1 2) = circle(: : :); text(: : :); : : :

25

We usually limit ourselves to complete visual

languages.

Still:

� Di�erent interpretations might exist for

a single picture i:

vs1 =< i; d1; < int1;mat1 >>

vs2 =< i; d2; < int2;mat2 >>

For example, interpretation of a map de-

pends on your intentions.

� Di�erent visualizations might be used for

a single description d:

vs1 =< i1; d; < int1;mat1 >>

vs2 =< i2; d; < int2;mat2 >>

For example, to emphasize di�erent as-

pects of d.

26

These were all non-constructive de�nitions.

� Parsing of visual sentences (necessary for

visual programming) deals with de�ning an

int function for a given visual language

� Visualization of data deals with de�ning

an appropriate mat function for a given

problem domain

A syntax directed graphical editor will have to

keep i and d up-to-date with each other.

It will do so with help of int and mat.

27

Programming Paradigms

Visual implementations exists for many of the

programming paradigms

� Imperative programming

control-ow diagrams, Nassi-Shneiderman

diagrams, VIPR, ...

� Data-ow programming

LabView, Prograph, Show & Tell, ...

� Constraint based programming

Sketchpad, Thinglab, ...

� Rule-oriented programming

Vampire, many syntax de�nition formalisms,

...

28

� Data structure de�nition

EER, class diagrams, ...

� Event-based programming

Petri Nets, SDL, State Charts

� Programming by Example

Pygmalion, Play, HI-visual

Many languages support more than one of the

above paradigms.

29

Evaluation of the merits

There is excitement as well as skepticism

about the prospects of VP and PV.

Textual programming seems to be more ap-

propriate for general-purpose programming.

The key to success for a VL seems to be to

�nd a good application domain.

30

Successes of VL

� helping to teach programming

� programming for non-programmers

� construction of user-interfaces by direct

manipulation

� de�nition of concurrent programs

� visual query systems

� high level design of data structures

31

Problematic in VL

� Scalability and abstraction

� Lack of formal speci�cations

� Lack of tools to build environments

� Poor design of a VL

{ Visual 6= better

{ Visual 6= intuitive

{ A picture might be expressive, but is not

precise

� Portability of programs

� Integration with textual programs

32

Examples of

Visual

(Programming)

Languages

Material:

� Show and Tell: A visual programming

language, Kimura, Choi & Mack, in VPE:

Paradigms and Systems, edited by Glinert.

� The programming language aspects of

ThingLab, Borning, ACM TOPLAS, vol

3, no 4, 1981.

� Lesson learned in the Trenches, Graf,

VL'90

33

Programming Paradigms

Visual implementations exists for many of the

programming paradigms

� Imperative programming +

control-ow diagrams, Nassi-Shneiderman

diagrams, VIPR, ...

� Data-ow programming +

LabView, Prograph, Show & Tell, ...

� Constraint based programming +

Sketchpad, ThingLab, ...

� Rule-oriented programming �

Vampire, many syntax de�nition formalisms,

...

34

� Data structure de�nition �

EER, class diagrams, ...

� State-Transition based programming +

Petri Nets, SDL, State Charts

� Programming by Example �

Pygmalion, Play, HI-visual

Many languages support more than one of the

above paradigms.

35

Imperative Visual languages or
Control-Flow languages

Explicitly depicts the ow of control of an

imperative program.

� terminals: instructions

� connections: ow of control

Mainly used to visualize programs, but also as

visual programming language.

Problematic

� supports unstructured programming

� neglects the data structures

� textual forms turns out to be superior

36

Examples

� basic control ow diagrams

top := a.max

bot := a.min

top := mid bot := mid

a[mid] = val ? a[mid] > val ?

top = bot ?

t

f

t

f

t

f

result := mid

result := 0return result

mid := (top−bot) div 2

37

� Nassi-Shneiderman diagrams

Only allows well-structured programs by re-

placing the arrows (goto's) by containment re-

lations.

F T

DO i := 3 to n

fact := 1 fact := 2

fact :=
 fact * i

return fact

n > 1 ?

38

� VIPR (Citrin, VL'94)

main

f = 1
n = <?>

call fact()

call fact()

f = f * n
n = n − 1

n != 1 ?

n == 1?

fact

void main() {

f = 1;

n = <?>; /* assign n */

fact();

}

void fact() {

if (n == 1) return

else {

f = f * n;

n = n - 1;

fact();

}}

39

� Lingua Graphica (Styles&Pontecorvo, VL'92)

Developed at Lockheed.

40

double example(double num, char *str) {

sprintf(str, "%f", (num * num));

return(num);

}

Looks fancy, but the textual form is easier to

comprehend.

The example contains mistakes (input for the

multiply; direction of data ow arrow for str;

constant value "%f" is not visible)

41

Data-Flow programming

Program is represented by a directed graph.

The nodes are functions. The data ows in

and out of the functions through the edges.

Flow of control depends on the availability of

data (this gives intrinsic concurrency).

Well �t for data transformations problems.

To make it a more general programming lan-

guage, you need to add constructs for condi-

tionals, iteration, data structures, ...

Large library of pre-de�ned functions is a ne-

cessity.

The visual representation is very appropriate.

42

VPF (Miyao et al., VL'89)

Visualized Programming Environment for Form

Manipulation Language

Special purpose programming environment for

o�ce information processing via forms based

on dataow.

� 8 di�erent node kinds:

Start, End, Message, Get, Sort, Form-�ll-

in (to consult the user), Query (to consult

the database), Display-form (to inform the

user)

Details of the node actions are de�ned in a

Form De�nition Language (user interface

de�nition & database query language).

� 2 kind of edges: normal edges (black) and

error edges (white)

43

� Each node has

{ single outgoing normal edge (but End)

{ possibly outgoing error edge (default to

End)

{ one or more incoming edges (but Start)

� If the operation succeeds then the execu-

tion proceeds along normal edge, otherwise

along the error edge

44

45

� Programming environment of VPF

{ Specialized editors for the di�erent as-

pects

{ Mode-less operation: editing of program

during execution

{ Debugging: execution possible from ar-

bitrary icon

{ Automatic re-execution on modi�cation

of the input

� Evaluation of VPF

{ quite restricted application area

{ conditionals and iteration are handled

via underlying actions

{ dataow with the two kind of edges is

very clear

46

Show and Tell Kimura et al, '90

Visual programming language based on dataow,

intended to teach programming to children

Basis construct is an (acyclic) box-graph.

Boxes:

� may contain a value (integer, string, bitmap)

� may contain a pre-de�ned or user-de�ned

function

� may be empty (data value has to be �lled

in by transfer of data values from neigh-

boring boxes)

� may be complex and contain a box graph

47

� The notion of consistency gives switch-

ing capability:

{ A box graph is inconsistent if two di-

rectly connected boxes contain di�erent

values.

{ Complex boxes may be open or closed:

open: inconsistency spreads through the

border to the context

closed: inconsistency is kept within.

{ An inconsistent box is considered to be

non-existent

2 3

1

2 3

1
2 3

1

2 3

1

2 3

1 1 1

48

De�nition of the AND function:

1

0

1

0

1 0

0

1

0

1 1

1

� Procedural Abstraction

A box graph may be identi�ed with an icon

Binding of the parameters is done via or-

dering of the (x; y) positions of their boxes

+

x

1

2

3

4

5

1

2

3

1 2

Name definition Name use

Input parameters: 1, 2, 4
Output parameters: 3, 5

Binding:
in 1 to parameter 1
in 2 to parameter 2
in 3 to parameter 4
out 1 to parameter 3
out 2 to parameter 5

49

� Recursion Factorial:

0

1 X

>0dec

� Iteration

α

β

α

β

α α. . .

expands to

until one of the expansions leads to an in-

consistent box

50

Example: Newton approximation for the square

root

newton(a):

x := a;

repeat

y := x;

x := (a/y + y) / 2;

until y - x <= 0.001;

return x;

/ /+

−

> 0.001

2

51

� Show and Tell is intended for teaching:

{ visual syntax shows concepts like sub-

routine, dataow, iteration, ...

{ value oriented programming

{ it has no variables

{ inherent concurrency

{ notion of consistency instead of Booleans

{ visualized execution in terms of the pro-

gram

But, will it allow children to program?

� Show and Tell o�ers enough constructs to

be a general purpose programming language

It does not have constructs to de�ne data-

structures, though.

52

Constraint-based programming

Generalization of data-ow languages: undi-

rected dataow, declarative.

� Program is a bi-partite graph:

{ constant and variable nodes for values

{ connected via undirected edges to

{ function nodes which represent constraints

5

9
/

x
F

C
32

−

Constraint solving must assign values to the

variable nodes such that all constraints are

satis�ed.

53

Typical problem setting:

� I have a variable x and a screen on which

the value of x is displayed

� Programmer must remember that the screen

must be updated if x changes, and that x

must be updated if screen representation

is edited

One can specify this in a constraint-oriented

system.

The system then ensures that the constraint

is maintained.

54

ThingLab (Borning81)

Environment for constructing dynamic models

of experiments in geometry, electric circuits,

mechanical linkages, ...

Build on top of Smalltalk, object oriented, con-

straint based.

� object: de�nes constraints between its parts;

may consist of other objects; di�erent ob-

jects may share parts.

� A constraint consists of

{ rule: test whether the constraint holds

{ methods: ways to satisfy the constraint

User provides the methods, the system chooses

a way to apply them.

55

Primitive objects are pre-de�ned in Smalltalk.

class MidPointLine

Superclasses

GeometricObject

Part Descriptions

line: a line

midpoint: a point

Constraints

midpoint = (line point1 + line point2)/2

midpoint <- (line point1 + line point2)/2

line point1 <- midpoint * 2 - line point2

line point2 <- midpoint *2 - line point1

� Points which react to other points by merg-

ing

� Operations which can be attached to value

and variable holders

� Electrical objects (wire, resistor) which can

be attached and obey Ohm's law

Complex objects and their constraints are edited

visually by combining primitive objects.

56

Experiments with geometric laws:

57

Fahrenheit-Celsius converter

58

Quadratic Equation network for ax2+bx+c = 0

Needs relaxation to approximate the solution;

Extension with a Quadratic solver:

59

A voltage divider

60

How does the constraint solver work?

� Certain values are \anchored" (constants)

� Last changed variable is also anchored

� All n-variable constraints for which n � 1

values are known are solved by computing

the n-th value

� All remaining variables are approximated

through relaxation by minimizing the error

function.

Constraint solver might pre-compute a plan.

Constraints may be unsolvable.

Constraint solving is ine�cient as soon as re-

laxation must be applied.

61

State-Transition networks

Program is a directed graph of states which

are connected by transitions.

This represents a process.

The transition to another state is triggered by

an input signal.

Each process has a current state.

The current state of the process determines

which input signals are acceptable and where

to go on it.

62

Finite State Automata

Very useful to de�ne regular expressions.

� (ajb)�c:

a

b

c
1 3

� (abcjacbjbcajbacjcabjcba)�:

01

2 3

4

56

a
b

c

a
b

a

b
c

b
c

a
c

� Interface of a simple calculator:

I(digit)
I(digit)

I(digit)
I(digit)

I(=) I(=)
O(result)

I(oper)

I(oper)

63

SDL

SDL is intended to specify the behavior and

internal structure of real-time, interactive,

concurrent and distributed systems.

SDL has been developed to specify telecom-

munication system.

A system is described as a number of extended

�nite state machines: process instances.

These communicate with each other and with

the environment of the system by exchanging

messages.

Each process instance is in a certain state. On

accepting a message it makes a transition to

another state.

During the transition it can perform computa-

tions, update variables, make decisions, create

new processes, send signals, ...

64

States and transitions:

State

Signal

State

Transition Area

The basic constructs of SDL:

start state / nextstate input

output task

S1 A

B
counter :=
counter + 1

val

(< 3) else

decision

a, b, c

save signals

user

creation

65

An example of a simple process

S2

A

C

S1

B

E

S2

S1

A

C

S2

B

D

S1

PROCESS Example

Reacts on A with C.

Reacts on B with D or E, depending on the

number of input messages received.

66

A speci�cation of a central heather

Informs the environment of the water temper-

ature.

Uses an external process to perform the actual

measurement

The de�nition of the process block:

[water−too−cold,
 water−ok,
 water−too−hot]

BLOCK waterthermostat

SIGNAL
 request−water−temp, water−temp(Integer),
 water−too−cold, water−ok, water−too−hot;

waterthermostat (1,1)

[request−water−temp]

[water−temp(val)]

67

wait−temp

water−temp(wt)

< 5 > 90 else

water−
too−cold

water−
too−hot

water−
ok

wait−time

Timer T;

DCL wt: Integer;

wt

PROCESS WaterThermostat;

wait−time

T

request−water−temp

wait−temp

set(now + 60, T)

set(now + 60, T)

Informs the environment every 60 seconds of

the water temperature.

68

SDL is quite expressive and reasonably easy to

read.

SDL is quite low-level; it somehow resembles

\control-ow diagrams".

SDL is a language of engineers.

Whether the graphical representation is ap-

propriate for the de�nition of large systems is

questionable.

Implementations can be generated automati-

cally from an SDL de�nition.

69

Overview and Conclusions

I have presented a load of visual languages and

environments.

Some of these are successful, others only in-

teresting, some downright bad.

What makes a Visual Language a Good Lan-

guage?

Mike Graf presents 6 lessons learned in the

trenches of VL design

� 1 - Have one unifying principle

Sound & extendible

A good example is Show and Tell's consis-

tency

70

� 2 - Keep it simple

don't use tons of di�erent looking icons

and connections

� 3 - Use animation to visualize the execution

� 4 - Design the human interface very well

target the system to the intended users,

involve them

� 5 - Quit while winning

don't try to extend a good special purpose

language into a lousy general purpose lan-

guage

� 6 - First make it useful, then worry about

the formal grammar

The semantics matter, not the syntax

71

Design Issues in

Data Flow Languages

Material:

� Visual Languages and Computing Survey:

Data Flow Visual Programming Lan-

guages, D.D. Hils, JVLC 3, 1992.

� Psh { The next generation of command

line interfaces, Glaser & Smedley, VL'95

72

Data Flow

A view of computation which shows the data

owing from one �lter to another, being trans-

formed as it goes.

Data ow languages are naturally visual.

The paradigm easily accommodates insertion

of viewers at all point in the data ow.

The program is represented by a directed graph

in which

� Nodes represent functions

� Arcs represent ow of data between func-

tions

{ Arcs in to a node: input for the function

{ Arcs out of a node: output of the func-

tion

73

Data ow implementations

Hils describes 15 data ow languages. These

are the most interesting ones:

� Show and Tell (see sheets last week)

� VIVA

� Cantata

� LabView

� ProGraph

74

VIVA

Language for image processing.

Three kind of boxes: sources, operators, mon-

itors.

Liveness is a goal for VIVA: it recomputes on

edits, but also if new streams of input become

available.

Image sequence
 source Histogrammer

Bar Graph
 Display

 Valley
Selector

Thresholder

 Image
summation

Virtual
Monitor

Numerical
Readout 45

75

Cantata

Originally intended for image processing, but

also applied for signal processing, query lan-

guages, matrix algorithms, ...

Provides library of some 240 algorithms for sig-

nal and image processing.

Iteration via control-ow constructs: a special

icon in a cyclic data ow that directs the ow

according to some condition.

Has procedural abstraction, but lowest level is

written in C and Fortran.

Uses a hybrid data-driven and demand driven

execution model.

76

LabView

Intended for the collection and analysis of data

from laboratory instruments.

Allows non-programmers to build virtual in-

struments: design of the front panel de�ni-

tion and the data ow diagram that underlies

it.

Commercially very successful.

77

ProGraph

Intended as general purpose programming lan-

guage.

Support basic object orientation.

Extended with many control-ow constructs to

facilitate the programming.

78

Extensions to pure data ow

A data ow language is called powerful if a

user can tackle large and complex problems

with it (within its application domain).

Necessary (and su�cient?) extensions for a

data ow language to become powerful:

� A large (and extendible) collection of pre-

de�ned functions

� Procedural abstraction

� Conditional choice

� Iteration

79

Procedural Abstraction

Fits easily in data ow model:

De�ne a procedure by providing a subgraph

with a name (or an icon).

Use a procedure by applying a node with the

same name.

Parameter binding is quite complicated in Show

and Tell.

+

x

1

2

3

4

5

1

2

3

1 2

Name definition Name use

Input parameters: 1, 2, 4
Output parameters: 3, 5

Binding:
in 1 to parameter 1
in 2 to parameter 2
in 3 to parameter 4
out 1 to parameter 3
out 2 to parameter 5

80

ProGraph uses input and output lines which

make parameter binding much more straight-

forward.

81

Conditional choice

� Normal and error edges in VPL

� The notion of consistency in Show&Tell

� Distributor and Selector concept

{ Selector:

Has input streams i1, i2 and c, and an

output stream o.

If c contains true, then a token from i1
is propagated to o, otherwise from i2.

{ Distributor:

Has input streams i and c, and output

streams o1 and o2.

On the value on c, i is propagated to o1
or o2.

82

� Case concept in ProGraph and LabView

{ X: Next case on failure

{ V: Next case on success

83

Iteration / Single Assignment

Declarative visual languages, such as data ow,

functional and logic, have single assignment

semantics as a basic rule: once a variable is

set, it keeps that value.

This makes programs easier to understand, to

visualize, to implement.

Iteration: repeat the execution of a body of

code, usually for repeated modi�cation of the

same variable.

So the two notions potentially clash.

84

Horizontally Parallel
Iteration

If the outcome of one cycle does not a�ect

the outcome of the next cycle, then we speak

of horizontally parallel iteration.

The computations are then independent, and

there is no conict with the single assignment

rule.

ProGraph o�ers a special construct for this

kind of iteration.

power

(. . .)

(. . .)

(1 2 3 5 4)

1:1 PowerList

*

1:1 Power

PowerList produces
 (1 4 9 25 16)

85

Temporally Dependent
Iteration

If the outcome of one cycle depends on out-

come of earlier cycles, then we speak of tem-

porally dependent iteration.

This is the most common use of iteration.

Compute nth Fibonacci number:

fib := 1;

pred := 0;

for count := n downto 0 do

begin

pred := fib;

fib := fib+pred

end

The variables count, fib and pred violate the

single assignment rule.

There are many di�erent ways to o�er this kind

of iteration within the data ow framework.

86

Some solutions

� O�er iteration by means of recursion

Does not violate the single assignment rule

as every call creates new versions of the

variables.

{ Recursion: For the ith recursion, the

output of the body outi is used to com-

pute outi�1.

out0 is mapped to the �nal out.

{ Iteration: outn is directly mapped to

out, without additional computations.

Some algorithms are most naturally expressed

iteratively.

87

Factorial recursively in Show and Tell:

0

1 X

>0dec

1 X

>0dec

1 X

>0dec

3

0

0

0

1

1 X

>0dec

2

0

2

6

. . .
. . .

88

� Bending the single assignment rule for loop

variables by introducing special control-

ow constructs

Factorial in ProGraph:

fac

1 6

compute−6!

0

*
−1

fac

Special Loop nodes in LabView:

i Q

While Loop

i

N

For Loop

 i = loop counter
Q = recirculation
 condition
N = total loop count

89

� Temporal assignment

A variable is attached to a stream of values

generated over time.

The name then refers to the most recent

value in this stream.

Access to previous values by constructs such

as: thirdvalue := n attime 3

This stream of values approach �ts well in

the data ow paradigm.

Show and Tell: only loop variables of the

previous cycle are available in current cycle.

90

Computing the Fibonacci numbers in Show and

Tell:

10

1

0

− 1

>= 0

+

10

1

0

−1

+

>=0

−1

+

>=0

9

0

1

8

1

1

−1

+

>=0

1

55

34

. . .

. . .

. . .

0

55

89

91

Execution model

A function may be executed as soon as all its

input is available.

� Data driven execution:

it will do so

� Demand driven execution:

it will do so when its output is requested.

Is more e�cient.

The user must indicate which output is in-

teresting

Only Cantata o�ers demand-driven execu-

tion as an option

If more than one function is to be executed,

one is selected to run, or all can be run in

parallel.

92

Level of Liveness

Tanimoto distinguishes four levels of liveness

for visual languages:

� 1: Informative: Visual representation is

not used as instruction for a computer.

� 2: 1 + Signi�cant: Visual representation

is executable. User gives command to ex-

ecute it. (most VPL)

� 3: 2 + Responsive: Executes automat-

ically whenever input data or program is

edited by the user. (some VPL)

� 4: 3 + Live: Updates display continu-

ously. For example: live video processing.

(VIVA)

93

Progressive operations

A VL at level 4 o�ers real-time display of par-

tially computed output values.

For example, partial executions of operations

on images or sound.

Progressive operator: produces successive

approximations to the correct output.

Ordinary operation: f(x)! y

Progressive version: �(x) ! y1; y2; : : :, which

converges to y:

lim
t!1

�t(x) = f(x)

94

Criteria in the design of progressive operators:

� Visual quality of the yt

The approximation should be smoothly, not:

0;0; : : : ;0; f(x); f(x); : : :

� Convergence time

What fraction of the time taken by f does

it take � to reach 90% quality?

� Introduced overhead

How much more time does it take � than

f to reach 100% quality?

95

Example: progressive edge �nding by apply-

ing operation on 8 � 8;16 � 16; : : : versions of

n� n bitmap:

Quality improvement: use info of level i to

determine which square at level i+1 to handle

�rst.

96

Conclusions

� The data ow paradigm is a very simple

and powerful concept, with an intuitive vi-

sual representation.

� Data ow VPL's have been most success-

ful for novice programmers and for special-

ized application domains.

� The data ow paradigm is very appropriate

if application domain centers on data ma-

nipulation and data transformation (partic-

ularly image processing).

� The introduction of progressive operators

is an interesting extension to the basic data

ow paradigm.

97

� To make a data ow language really useful

one needs to extend it with conditionals,

iteration, abstraction, ...

The commercially successful languages (Pro-

Graph, LabView, Cantata) have been ex-

tended with all kind of control-ow con-

structs.

Show and Tell tried harder to stay within

the data ow realm.

Show and Tell thus has fewer constructs,

but whether this makes programs easier to

write or inspect...?

98

Syntax Directed Editing

of Visual Programs

Material:

� A De�nition of the Graphical Syntax of Ba-

sic Message Sequence Charts, by J. Rekers.

99

Syntax Directed Editing

� What is Syntax Directed Editing?

� Syntax de�nition of MSC

{ What is MSC?

{ Three representations for a diagram

{ Grammar formalism

{ High level grammar

{ Low level grammar

{ Constraint de�nition

� Generating a syntax directed editor

� Overview

100

What is a
Syntax Directed Graphical

Editor?

Provides a language speci�c environment to

create, to edit, and to evaluate a graphical

program.

� For most textual languages, the editing

environment is a simple general text edi-

tor.

The user sends the program �le to the

compiler or interpreter in order to be eval-

uated.

This provides little language speci�c sup-

port, much editing freedom, and a uniform

interface among many languages.

Syntax-directed editors have been a failure

for textual languages.

101

� The visual counterpart of this situation would

be to draw a diagram in a general graphical

editor such as Idraw.

The user sends the diagram on �le to an

appropriate interpreter, which reads and ex-

ecutes it.

Little support, much freedom, uniform in-

terface.

� However, for visual programming a closer

integration between the editing and exe-

cution environment seems to be desirable.

It then becomes possible to provide lan-

guage speci�c editing commands, and to

check and execute the program during edit-

ing.

) environment of liveness level 3 or 4 be-

comes possible.

102

Classes of editing commands

We zoom in to the commands to build and edit

a diagram:

We distinguish three kinds of edit commands:

1. syntax directed editing

commands to insert, delete or change en-

tire language constructs in a syntax di-

rected fashion

2. layout editing

commands to change the layout of a di-

agram

3. free editing

commands to edit the underlying graphi-

cal objects directly

103

1: Syntax Directed Editing

� Syntax directed insertion of entire language

constructs

Examples for an editor of EER diagrams:

{ Insert a binary relationship between these

two entities

{ Add an attribute to this entity

This requires two pieces of information

{ which construct should be inserted?

{ where should it be attached to the rest?

(in your MSC editor, these two issues have

been separated by the notion sockets)

104

� Syntax directed deletion of entire language

constructs

Examples for an editor of EER diagrams:

{ Delete this attribute

{ Remove this entity

Only requires that the user selects the con-

struct

The main question is: what to do with

connected constructs?

EMPLOYEE PROJECTWORKS
 ON

name
hours

105

� Syntax directed changing of language con-

structs

Examples for an editor of EER diagrams:

{ Make this attribute a key

{ Assemble these attributes in a compos-

ite attribute

{ Make this a weak entity

It is very hard to predict which change

commands users will �nd useful.

These change commands are not strictly

necessary: every change can be achieved

by a sequence of delete and insert com-

mands.

A common property of all syntax directed edit-

ing commands is that the diagram is kept syn-

tactically correct at all times.

106

2: Layout Editing

The syntax directed editing commands choose

some default layout for the construct they

insert.

The user might prefer a di�erent layout which

is semantically equivalent.

) the user should be able to change a diagram

through direct manipulation such that its inter-

pretation remains the same.

EMPLOYEE PROJECTWORKS
 ON

name
hours

EMPLOYEE PROJECTWORKS
 ON

name hours

The use of constraints will be very helpful to

implement such behavior.

107

3: Free Editing

The previous two kinds of editing commands

keep the diagram syntactically correct at all

times.

This can be very restrictive and might easily

force the user to construct a certain diagram

in a roundabout way.

b c da

a b c

d d

d

a

a

b

b

c

c

108

Possible ways to alleviate this problem:

1. Anticipate the desired kind of modi�ca-

tions and introduce a syntax directed change

command for every one of them.

This solution is used in DiaGen. Easily

makes a speci�cation 5 times as large.

2. Temporarily allow invalid diagrams by al-

lowing the user to edit the underlying graph-

ical objects directly.

Rediscover the structure at a certain mo-

ment

The latter is called graphical parsing.

I prefer the second way.

109

Speci�c vs. Common behavior

There are many more standard editor com-

mands which I did not discuss.

All commands are partly language speci�c, and

partly common among di�erent visual languages.

Users do not use a single language only: it

would be very desirable if common behavior

would be provided in a uniform way.

110

A syntax directed editor for a visual language

could be:

� programmed by hand

+ can be very speci�c for the language,

� little uniformity,

� much low-level implementation work.

� generated from a speci�cation

� less speci�c,

+ more uniformity among di�erent languages,

+ re-uses software,

� generator must be implemented

My preference: generation

111

Speci�cation of Visual Syntax

The visual syntax speci�cation de�nes the lan-

guage dependend part of the di�erent editor

commands.

It de�nes:

� the constructs used in the syntax directed

editing commands

� the constraints which must be maintained

during layout editing

� the structure which has to be discovered

by the graphical parser

How to specify this syntax?

Here we use graph grammars as speci�cation

formalism.

112

The running example: MSC

Message Sequence Chart (MSC) is a graphi-

cal language for the description of interaction

between entities.

A diagram in MSC consists of process in-

stances which exchange messages and per-

form internal actions.

An MSC depicts an execution trace of a sys-

tem.

Having a number of such traces helps in the

construction of an SDL de�nition of the sys-

tem.

MSC has been standardized by the ITU-T (for-

mer CCITT).

113

An example of an MSC:

msc example
i1 i2 i3 i4

m0
m1

m2
m3

m4
a

Messages are send asynchronously.

Time proceeds downwards within a process in-

stance.

Timing relation between instances: a message

has to be send before it can be received.

114

Representations

In my approach, there are three representa-

tions for MSC diagrams

� Graphical Objects (lowest level)

� Spatial Relations

� Abstract Relations (highest level)

This distinction will be useful for any graphi-

cal language for which you want to de�ne the

graphical syntax.

115

The graphical object representation of

i1 i2

m0

m1

a

msc simple

object(kind='Line', start=(245, 455), end=(245, 379))

object(kind='Text', ul=(197, 472), textitems=['i1'])

object(kind='Text', ul=(242, 472), textitems=['i2'])

object(kind='Rect', ll=(188, 455), ur=(213, 462))

object(kind='Rect', ll=(188, 372), ur=(213, 379))

object(kind='Rect', ll=(232, 455), ur=(258, 462))

object(kind='Rect', ll=(232, 372), ur=(258, 379))

object(kind='Line', arrowatend=1, start=(200, 436),

end=(168, 436))

. . .

116

The spatial relation representation of

i1 i2

m0

m1

a

msc simple

Pos

Pos
above

has

has

labels

Pos

labels

has
Arrow

Arrow

labels

labels

from
to

from

black

white

white

black

whitei1
m0

m1

a

i2

contains

Text

Box

Box

Text

Text

Text

Box

Box

Box

Text

Box

Text

contains

simple

to

Pos
has

Pos

has

above

above

in

Pos
above

above

Pos
above

Pos

has

has

has
on

in

Line Line

vertical vertical

top
touch

bot
touch bot

touch

top
touch

117

The abstract relation representation of

i1 i2

m0

m1

a

msc simple

Start Out Out End

Start In Action End

Message

Message

n n n

n n n

from

from

to

to

i1

i2

m0

m1

a

EnvMSC
env

simple

instance

instance

118

� All semantical processing of MSC dia-

grams will be performed at the level of ab-

stract relations.

This is how a user thinks about a MSC

diagram.

� The display machinery works at the level

of the graphical objects.

This is what the user sees.

� The spatial relations serve as intermedi-

ate level, to facilitate the necessary map-

ping between the two extremes.

The spatial relations abstract from the

actual positions by only coding the con-

straints which should hold between the

graphical objects

119

The MSC syntax de�nition

The abstract relations representation and the

spatial relations representation are graphs.

Only certain graphs represent MSC diagrams.

I will use a graph grammar to de�ne the lan-

guage of correct graphs at both levels.

120

The graph grammar formalism

A graph grammar consists of a number of pro-

ductions.

Each production is of the form L ::= R

A B A C

D

::=

e1

e2

e1

e1e1

If the host graph G contains a subgraph which

matches L, then the production is applicable.

A production is applied by replacing the sub-

graph matched by L by a copy of R.

The application of a production may not cause

dangling edges.

121

Applying

A B A C

D

::=

e1

e2

e1

e1e1

to the graph

A B
e1

e2

E E E
t s

r r

would make edges labeled by s and t dangling,
and the production is not applicable.

This production is applicable:

A B
e1

e2

E
t s

A C

D

::=
e1

e1e1

E

t

It uses grey context elements which have to

be present, but are not a�ected by the appli-

cation.

122

The Abstract Relations Grammar

De�nes the rules by which correct abstract

relations graphs may be constructed.

� p1: The Axiom production

MSC Env::=
env

name

λ

� p2: Extending a MSC with a process in-

stance

MSC ::= MSC Start End
ninstance

name

� We need the following generalization:

Event > fStart; In; Out;Action; Endg

123

� p3: Insertion of an internal action in a

process instance

Event Event Event Event::= Action
n n n

1 2 1 2

name

� p4: Insertion of a message between two

process instances

Event Event
Event Event

::=

n
n n

Event Event
n

Event Event
n n

Out

In

Message

from

to

1 2

3 4

1 2

3 4

name

� p5: A message to the environment

Event Event Event Event

::=

n n n
Out

Message

from

to

1 2 1 2

Env

Env

name

124

Example

Start with: EnvMSC
env

Apply p2: MSC ::= MSC Start End
ninstance

name

) Start End
n

EnvMSC
env

instance

Apply p2: MSC ::= MSC Start End
ninstance

name

)

Start End

Start End

n

n

EnvMSC
env

instance

instance

125

Apply p5:

Event Event Event Event

::=

n n n
Out

Message

from

to

1 2 1 2

Env

Env

name

)

Start Out End

Start End

Message

n n

n

from

to
EnvMSC

env

instance

instance

Apply p4 and p3 to arrive at:

Start Out Out End

Start In Action End

Message

Message

n n n

n n n

from

from

to

to

i1

i2

m0

m1

a

EnvMSC
env

simple

instance

instance

(other sequences of production applications are

also possible to construct the same result graph)

126

The spatial relations graph

We now have a way to obtain correct MSC

abstract relations graphs.

However, these graphs do not resemble MSC

diagrams at all.

We need a second (low level) representation

which states what the di�erent constructs look

like.

This is done by creating a spatial relations

graph which represents a MSC in terms of

graphical objects and the relations which should

hold between these objects.

The spatial relations graph is not intended for

human inspection, only as intermediate repre-

sentation.

127

The Spatial Relations Grammar

Idea: attach to each abstract relation pro-

duction a corresponding spatial relation pro-

duction.

� p1: The axiom production

::=λ Box Text
contains

string val

� p2: Extending a MSC with a process in-

stance

::=Box Box

Posin has

Line
orientation

vertical

above

Poshas

color
Box

Text
labels

white

string
val

bot
touch

color
Box blacktop

touch

128

� p3: An internal action in a process instance

::=

has

above

Pos

has

Pos

Line Pos
above

color
Box

Text

white

string
val

contains

onhas

2

1

has

above

Poshas

Pos

Line
1

2

� p4: A message between two process in-

stances

::=

has

above

Poshas

Pos

Line

has

above

Pos

has

Pos

Line Pos
above

has

1

2

2

1

has

above

Pos has

Pos

Line
3

4

above

Pos

Pos

Pos
above

Line

has

has

has

3

4

Arrow

Text
labels

from to

string val

129

� p5, p6: More of the same.

I still need a formal de�nition of the coupling

of productions, and the coupling of the gener-

ated graphs.

This might be pretty straightforward for the

MSC case.

130

Application of [p1, p2, p2, p5, p4, p3] of the

SR grammar leads to the desired spatial rela-

tions graph:

Pos

Pos
above

has

has

labels

Pos

labels

has
Arrow

Arrow

labels

labels

from
to

from

black

white

white

black

whitei1
m0

m1

a

i2

contains

Text

Box

Box

Text

Text

Text

Box

Box

Box

Text

Box

Text

contains

simple

to

Pos
has

Pos

has

above

above

in

Pos
above

above

Pos
above

Pos

has

has

has
on

in

Line Line

vertical vertical

top
touch

bot
touch bot

touch

top
touch

131

Generation of the diagram

The nodes in the SR graph are graphical ob-

jects.

These objects have yet unspeci�ed attributes,

such as their actual position in the plane.

The spatial relations between the nodes of the

SR graph de�ne constraints on these attribute

values.

We need a constraint solver to derive exact

values for all these attributes, on basis of the

constraints.

This generates the third representation: a

collection of graphical objects which can be

displayed directly.

132

What do our spatial relations mean in terms

of constraints on positions?

above
Pos Pos

P1 P2) P1:y > P2:y (1)

Line vertical
orientation
L) L:start:x= L:end:x ^

L:start:y < L:end:y (2)

Line
L

has
Pos

P

vertical
orientation

) P:x = L:start:x ^

P:y � L:start:y ^

P:y � L:end:y (3)

Pos
P

Arrow to
A) A:end = P (4)

Pos
P

Arrow from
A) A:start= P (5)

...

133

The constraint solver should then produce a

diagram like one of the following:

i1 i2

m0

m1

a

msc simple
i1

i2

m0

m1

a

msc simple

i1i2

m0

m1

a

msc simple

Constraint hierarchies could be used to di�er-

entiate between required and prefered con-

straints.

134

Speci�cation of the Editor

This completes the de�nition of the visual syn-

tax of MSC diagrams.

How can such a syntax de�nition be used to

implement a syntax directed editor for the de-

�ned visual language?

The syntax de�nition should specify the lan-

guage dependent parts of the editing opera-

tions.

The editor maintains the three diagram repre-

sentations and the mapping between them.

135

These are the operations which relate the

three representations to each other:

D SR AR

tel boot

req

ack

msc caller

graphical
scanning

constraint
solving

Sequence of
SR productions

Sequence of
AR productions

graph
parsing

production
application

graph
parsing

production
application

correspondence
 relation

This de�nes the following mappings:

D SR AR

D−SR SR−AR

SR−D AR−SR

136

1: Syntax Directed Editing

� Syntax directed insertion:

{ The user selects an AR production L ::=

R from a menu

The user selects a region s in D

SR-AR(D-SR(s)) gives a region sAR in

AR

The editor �nds a match for L in sAR

It applies (L;R) to AR

It applies the corresponding SR produc-

tion to SR

The constraint solver updates D

� Syntax directed deletion: put R ::= L in

the production menu also.

� Syntax directed change: not supported

137

Syntax directed editing commands use the fol-

lowing part of the available operations on the

three representations:

D SR AR

tel boot

req

ack

msc caller

constraint
solving

Sequence of
SR productions

Sequence of
AR productions

production
application

production
application

correspondence
 relation

CMD

138

2: Layout Editing

If the user drags a graphical object then the

editor might implement this in two ways

1. Ask the constraint solver for the area within

which the object may safely move

Restrict the movements to that area only

2. Translate each drag-event into a high-priority

additional constraint for the moved object

Call the constraint solver to compute a new

layout

The 2nd way requires e�cient, incremental con-

straint solving

The constraints are maintained) the SR graph

remains the same) the AR graph remains the

same.

139

Layout editing commands use the following

part of the available operations on the three

representations:

D SR AR

tel boot

req

ack

msc caller

constraint
solving

Sequence of
SR productions

Sequence of
AR productions

CMD

140

3: Free Editing

� The user enters a free-editing mode

� All modi�cations are in terms of graphical

objects and directly update D

� The user indicates that he is done

{ graphical scanning creates a new SR

graph

graph parsing creates a new sequence

of SR productions

the correspondence relation gives a

sequence of AR productions

application of these gives a new AR

graph

� If all this succeeds, then the user may in-

deed leave the free-editing mode

141

Free editing commands use the following part

of the available operations on the three rep-

resentations:

D SR AR

tel boot

req

ack

msc caller

graphical
scanning

Sequence of
SR productions

Sequence of
AR productions

graph
parsing

production
application

correspondence
 relation

CMD

142

Semantic oriented commands operate on

the Abstract Relations Graph directly.

These commands use the following part of the

available operations on the three representa-

tions:

D SR AR

tel boot

req

ack

msc caller

constraint
solving

Sequence of
SR productions

Sequence of
AR productions

production
application

graph
parsing

correspondence
 relation

CMD

143

Overview

� Syntax directed editing is desirable for vi-

sual languages

� Three kinds of commands to build and edit

a diagram

� A de�nition of the visual syntax speci�es

the behavior of such an editor

� Three internal representations: graphical

objects, Spatial Relations graph, Abstract

Relations graph

� The allowed AR and SR graphs are de�ned

by graph grammars

� Here applied on the language of MSC dia-

grams, but widely applicable

144

Constraints

Material:

� Algorithms for Constraint Satisfaction Prob-

lems - a Survey, Vipin Kumar, AI maga-

zine, 1992.

� An Incremental Constraint Solver, Freeman-

Benson, Maloney, Borning, Comm. ACM,

vol. 33, no. 1, 1990.

145

Motivation

Constraints provide a very expressive way to

formulate complex dependency relations be-

tween objects.

Closely related to visual languages:

� There are various visual languages to pro-

gram in terms of constraints (Thinglab for

example)

� All VL environments have to print visual

sentences, but generating a good layout is

hard

Constraints are a convenient way to ex-

press layout preferences; the constraint solver

then performs the layout. (MSC, VODL)

� You use the constraint solver DeltaBlue

and need some background information.

146

Overview

Constraint systems are a very convenient mech-

anism to specify relations among objects, but

their power lead to a weakness:

One can specify problems that are very di�cult

to solve.

This requires very general, powerful constraint

solvers.

The generality increases the run-time, how-

ever.

) You need a spectrum of constraint solvers,

each trading generality versus e�ciency di�er-

ently.

147

The spectrum

� Red

Most general and slowest, based on graph

rewriting.

� Orange

Based on Simplex method.

Good at solving linear programming prob-

lems, allows for hierarchies of equality and

inequality constraints

� Yellow

Bases on relaxation, an iterative hill-climbing

technique.

Slower than Orange, but can handle non-

linear equations

148

� Green

Solves constraints over �nite domains with

combination of local propagation and back-

tracking.

Paper by Kumar

� Blue

Based on local propagation, fast, equality

constraints only, cannot handle cycles in

constraint hierarchies.

Paper by Freeman-Benson,Maloney, and

Borning on DeltaBlue

149

Algorithms for CSP { Kumar

Constraint Satisfaction Problem (CSP):

� Given:

{ a set of variables with

� a �nite, discrete domain per variable

{ a set of constraints:

� de�ned over a subset of the variables

� limits the combinations of values the

variables may take

� Goal:

{ �nd an assignment of values to the

variables that satis�es all constraints

150

For simplicity of the presentation, we restrict

ourselves to binary CSP's, in which every con-

straint is either unary or binary.

A binary CSP can be represented by a con-

straint graph:

� variables are represented by nodes

� binary constraints are represented by arcs

between variables

� unary constraints are represented by cyclic

arcs

151

Any CSP with n-ary constraints can be con-

verted to an equivalent binary CSP:

� Create a new variable whose domain is the

set of n-tuples which satisfy the constraint.

� And connect the old variables to it with

constraints which project a value out of

the tuples.

A constraint X + Y = Z with DX = f1;2;3g

and DY = f4;5;6g:

Create a new variable W with domain:

{ <1,4,5> , <1,5,6> , <1,6,7> ,

<2,4,6> , <2,5,7> , <2,6,8> ,

<3,4,7> , <3,5,8> , <3,6,9> }

Constraint XW projects the �rst value out of

W , YW the second, ZW the third.

152

Example

The map coloring problem for these regions:

R1 R4

R3R2

is expressed by the constraint graph:

C1 C4

C2 C3

with every node the domain fred; blue; greeng,

and every arc the constraint source 6= dest.

153

Generate and Test { GT

Every CSP can be solved by the following (too

simple) method:

Systematically generate each combination of

values for the variables, and test whether all

constraints are met.

Complexity of the order of the Cartesian prod-

uct of all domain sizes.

Better is: check each constraint at the mo-

ment all of its variables have been assigned a

value.

154

Backtracking { BT

Performs a depth-�rst search in the space of

potential CSP solutions.

� Instantiate the variables one by one by choos-

ing a value from their domain.

� As soon as all variables of a constraint are

instantiated:

{ check the constraint

{ if violated, backtrack over the last in-

stantiated variable

� if all variables have been instantiated: a

solution has been found.

155

Is more e�cient than generate-and-test method,

but its complexity still is exponential.

Su�ers from trashing: search in di�erent parts

of the space fail for the same reason.

The two main causes for trashing:

� Node inconsistency:

domain Di of variable Vi contains value a,

but a does not satisfy a unary constraint

on Vi:

assignment of a to Vi will repeatedly fail.

Can be avoided by making domain Di smaller.

This leads to node consistency.

156

� Arc inconsistency:

Suppose variables are instantiated in the

order

V1; V2; : : : ; Vi; : : : ; Vj; : : : ; Vn

Suppose that assignment of a to Vi dis-

allows any value to Vj according to some

constraint between Vi and Vj.

This failure will be repeated for each com-

bination of values that the variables Vk (i <

k < j) may take.

Can be avoided by constraint propagation.

157

Propagating constraints

Avoid trashing by making sure that each arc

(Vi; Vj) of the constraint graph is consistent

before the search starts.

De�nition: Arc (Vi; Vj) for constraint C is

consistent i� for every value x in the current

domain of Vi some value y in the domain of Vj
exists such that C is met.

Example:

green

red
green
blue

blue
green

V3

V2
V1

Arc (V3; V2) is consistent, arc (V2; V3) is not

consistent.

158

Arc (Vi; Vj) can be made consistent by delet-

ing those values from Di for which the above

condition does not hold.

procedure REVISE (Vi; Vj):

delete := false

for each x 2 Di do

if :9vj 2 Dj such that (x; vj) consistent

then

delete x from Di

delete := true

endif

endfor

return delete

REVISE(V2; V3) removes blue from the domain

of V2.

Two loops, so complexity O(d2) with d the av-

erage domain size.

Once domain Di is reduced, every arc (Vk; Vi)

needs to be REVISE'd once more.

159

Algorithm to make a constraint graph arc-

consistent:

procedure AC-3

Q := f(Vi; Vj) 2 arcs(G); i 6= jg

while Q 6= ; do

select and delete some arc (Vi; Vj) from Q

if REVISE(Vi; Vj) then

Q := Q [f(Vk; Vi) 2 arcs(G); k 6= i; k 6= jg

endif

endwhile

You do not need to reconsider (Vj; Vi) as ele-

ments deleted from Vi would never have given

support for elements in Vj anyway.

The best arc-consistency algorithm has a worst

case complexity of O(ed2), with e the number

of binary constraints.

160

Applying AC-3 to the following constraint graph

green

red
green
blue

blue
green

V3

V2
V1

transforms it in the graph

green
V3

V2V1
red blue

which has a single solution that is found with-

out backtracking.

161

Making the graph node-consistent and arc-

consistent reduces the search space, but back-

tracking might remain necessary.

Various techniques exist to take constraint prop-

agation further (path consistency), but these

often are more expensive than the backtrack-

ing.

Which arc-consistent constraint graphs can be

solved without backtracking?

That partly depends on the order in which the

variables are visited:

V1

V2 V3

V1

V2

V3

1

V1

V2

V3

1

V1

V2

V3

1

V1

V2

V3

2

V1

V2

V3

1

V1

V2

V3

2

1

2

3

width:

162

There are n! di�erent orders in which the con-

straint solver may visit the variables.

Each of these linear orderings constitutes a or-

dered constraint graph.

width of a constraint graph:

� The width of a node in a ordered con-

straint graph:

the number of arcs that lead from previous

nodes to this node.

� The width of a ordered constraint graph:

the maximum width of its nodes

� The width of a constraint graph:

theminimum width of its ordered constraint

graphs

163

If you achieve node- and arc-consistency and

the width of the constraint graph is 1, then no

searching is necessary:

� You instantiate the variables according to

a ordering with width 1

� For every variable you add there exists a

value that satis�es all constraints

(as you have node- and edge-consistency)

� This implies that you never have to back-

track to �nd an instantiation for all vari-

ables.

(tree structured constraints always have an or-

dering of width 1)

164

Suppose you have an arc-consistent constraint

graph with width 2, then backtracking might

still be necessary:

{ 3 }

{ 4 }

{ 3, 4 }

=

=

A

B

C

The arcs (A;C) and (B;C) are consistent, but

the two constraints are incompatible with each

other.

The instantiation of C fails, and backtracking

is still necessary.

165

Till now: constraint propagation is performed

before the actual constraint solving.

It can be advantageous to do it during con-

straint solving also.:

� As soon as a variable has been instanti-

ated: perform constraint propagation on

the remaining variables.

� Care must be taken that these additional

domain restrictions are undone again at an

eventual backtrack

This is done in the Really Full Lookahead

(RFL) constraint solving method.

As constraint propagation is an expensive tech-

nique, various algorithms only partly perform

it. (GT, BT, FC, PL, FL, RFL)

166

Reason maintenance

Ordinary backtracking not only su�ers from

trashing, but also easily performs double work.

Say we have the following partial assignment:

V1 V2 V3 V4
a1 b3 c1

For the cases V2 = b1 and V2 = b2 we could

not �nd a value for V3.

Now we discover that no value for V4 can be

found that does not conict with V1 = a1.

Ordinary backtracking will backtrack over V2
and V3 �rst.

After assigning a new value to V1, it will have

to rediscover the problem with b1 and b2.

167

Dependence directed backtracking (or in-

telligent backtracking) avoids this double work.

It stores a justi�cation for choosing a certain

pair of values, and re-uses this reasoning at a

new backtrack branch.

This mechanism avoids the redundant work,

but requires complex administration and rea-

soning.

Simple backtracking often turns out to be more

e�cient.

168

Heuristic methods

In the backtracking method, the algorithm can

choose

� the order in which the variables are in-

stantiated, and

� the order in which the values are tried.

Considerable e�ciency improvements can be

achieved by making sensible choices here.

These methods are all based on heuristics.

169

1. Select the variable with the fewest re-

maining alternatives �rst.

This reduces the bushiness of the search

tree by moving failures up in the tree.

Prunes unsuccessful branches as soon as

possible.

2. Select the variable which participates in the

highest number of constraints �rst.

Same reasoning as above.

3. Transform the constraint graph into a tree

by removing some variables from it.

This cutset has to be chosen as small as

possible.

First assign values to the variables in the

cutset, next solve the constraint tree with-

out backtracking.

170

4. Transform the constraint graph into a tree

by removing some arcs from it.

Solve the constraint tree �rst, without back-

tracking.

This provides a �rst approximation of the

values.

Next repair the chosen values incrementally

such that they also satisfy the remaining

constraints.

5. In instantiating a variable, select those val-

ues �rst that maximize the number of

options for the next assignments.

This enlarges the change that the left-most

search path is successful.

171

Conclusions

CSP's can be solved by backtracking, but at

considerable costs.

Various ways to improve the e�ciency:

� Constraint propagation makes the search

space smaller and avoids trashing

� Reason maintenance remembers why cer-

tain combinations of values failed

� Heuristic methods direct the search such

that a solution is found earlier

All these techniques complicate the basic steps.

Too many of these optimizations might turn

out worse than simple backtracking.

172

DeltaBlue
an incremental constraint solver

The group of Alan Borning is active to apply

constraint solving in user interfaces, to support

direct manipulation.

They have developed a collection of constraint

solvers: Blue, DeltaBlue, SkyBlue, UltraViolet,

...

These are all very e�cient, but only allow for

a quite restricted class of constraint systems.

Their constraint solver allows for priorities among

the constraints, only allows for equality con-

straints, and cannot solve cyclic constraints.

That is, once a value has been chosen for a

variable, it should not be revised anymore.

173

Constraints, variables, methods

A constraint system consists of a set of con-

straints C, and a set of variables V .

A constraint is a n-ary relation among a subset

of V .

Each constraints has a set of methods M ,

any of which may be executed to cause the

constraint to be satis�ed.

Each method uses some of the constraint's

variables as input and computes the remain-

der as output.

A method may only be executed when all of

its inputs, and none of its outputs have been

determined by other constraints.

174

For example, the constraint a+ b = c has the

following associated methods:

c := a+ b b := c� a a := c� b

Execution of each of these will satisfy the con-

straint.

It is the task of the constraint solving tech-

nique to decide

� which constraints to satisfy,

� which method will be used to satisfy the

constraint, and

� in what order these methods will be ap-

plied.

175

Constraint hierarchies

Each constraint is labeled with a strength.

There is an ordering between strengths.

required > strong > medium > weak

The constraints with strength required are spe-

cial, as they must be satis�ed.

For the other strengths, it is only prefered that

they be satis�ed.

176

Why are constraint hierarchies useful?

Say we have A+ B = C as constraint and we

edit the value of A.

What should the constraint solver do to re-

satisfy the constraint?

Update B, update C, refuse the edit of A, or

some combination?

Constraint hierarchies allow us to specify our

preferences declaratively.

B

A

C
req

weak weak

weak

D

req

medium

strong Edit

+

=

177

Types of constraints

� Ordinary constraint

Relates set of variables, methods to com-

pute value for each variable

� Stay constraint

On one variable; prevents weaker constraints

to change the value

� Input constraint

On one variable, method puts external data

in the data ow graph

� Edit constraint

On one variable, method sets variable to a

constant value

178

Solutions

A solution to a given constraint system is a

mapping from variables to values.

An admissible solution is a solution that sat-

is�es all required constraints.

The collection of admissible solutions:

S0 = fx j 8c 2 C0 : x satis�es cg

with C0 the set of required constraints.

Some comparator better compares admissible

solutions:

The collection of best solutions:

S = fx j x 2 S0 ^ 8y 2 S0 : :better(y; x; C)g

179

DeltaBlue uses the comparator \locally-predicate-

better":

Admissible solution A is better than B if

� For each level 0 : : : k � 1, A and B satisfy

exactly the same constraints, and

� A satis�es the same constraints as B on

level k, and at least one more.

This comparator only checks whether a con-

straint is satis�ed or not.

Another comparator could be one that mea-

sures the error of every constraint, and com-

putes some weighted average of these errors.

180

Plans

Give the constraints and their strengths, a plan

is constructed.

A plan consists of a linear list of methods.

Execution of a plan: sequentially execute the

methods.

Eachmethod execution satis�es one constraint

and assigns one variable with its value.

The entire execution results in a solution for

the constraint system.

If some variables are determined by input con-

straints, then a plan can be executed repeat-

edly, to update all related variables accordingly

! fast, interactive feedback.

181

Di�erence Blue and DeltaBlue

In Blue, the plan for a constraint system is

computed from scratch.

In DeltaBlue, the plan is incrementally com-

puter from a previous plan.

DeltaBlue requires more administration, but

will be faster on small updates to the con-

straint hierarchy.

Both methods: the plan remains valid as long

as constraints do not change, and a plan can

be re-executed when an input value changes.

E�ciency measure: a plan does not need to

update variables which are determined by a

stay constraints.

182

How to construct a plan?

A plan represents the choice

� which constraints should be satis�ed

� which methods are used to do so

� in what order are these methods applied

How to make these choices?

We associate a walkabout strength with each

variable.

The walkabout strength is the strength of

the weakest constraint that could be revoked

to satisfy another constraint.

The walkabout strength is based on the cur-

rent plan for the constraint system.

183

In a plan, variable v is determined by method

m of constraint c.

The walkabout strength of v is the minimum

of the strength of c and the walkabout strengths

of the inputs of m.

strong

required

required
strong

weak
weak

A

B

C D

c1 c2

D is weak, as c1 is weak; C is strong as A is

strong.

Weaker walkabout strengths propagate through

stronger constraints, but not vice versa.

184

Adding a variable

A variable must be created explicitly before any

constraint can be de�ned on it.

On creating a variable, the programmer must

provide it with an initial value.

The variable automatically obtains an invisible,

very weak stay constraint.

This provides the new variable with its initial

walkabout strength.

(DeltaBlue cannot handle under-constrained sys-

tems where it has freedom in assigning values

to variables)

185

Adding a constraint

Say, we add constraint c with strength s on

variable v.

In the current plan, v is determined by method

m0 of constraint c0.

This gives v a walkabout strength s0.

If s � s0 nothing needs to be done.

If s > s0, then c0 has to be revoked and c is

invoked.

The new walkabout strength of v then also

has to be propagated through the rest of the

network.

186

Example

Initially we have the following plan:

strong
strong

weak
weak

required
weak

required
weak

A B C D

Now we add a strong constraint on D.

strong
strong

weak
weak

required
weak

required
weak

A B C D
strong

strong > weak, so the new constraint is in-

voked:

strong
strong

weak
weak

required
weak

required
A B C D

strong
strong

Do note that the walkabout strength of D has

changed.

187

Now we have to propagate the new situation

further.

We had:

strong
strong

weak
weak

required
weak

required
A B C D

strong
strong

On C: required > weak, so we get:

strong
strong

weak
weak

required required
A B C D

strong
strong strong

On further propagation:

strong
strong

weak required required
A B C D

strong
strong strongstrong

Here propagation stops, as weak < strong.

188

Removing a constraint

Initially we have:

required weak
strong

required
strong

medium required
req. req.

A B D C
strong

We remove the strong constraint on D.

The default very weak stay constraints tem-

porarily come into action.

required weak required medium required
req. req.

A B D C
very
weak

very
weak

But now the inactive constraints are stronger:

required weak required medium required
req. req.

A B D C

mediummedium

(removing a constraint which currently is not

active has no inuence on the plan)

189

Complexity

Updating a plan is of worst case complexity

O(M), with M the number of constraints.

Creating a plan incrementally forM constraints

takes O(M2) steps.

Executing a plan takes O(M) steps.

This is very e�cient and can indeed be applied

in interactive environments.

The price paid is that Blue is restricted to non-

cyclic constraint systems.

190

Comparison

� Green (Kumar)

Finite, discrete domains.

All constraint systems allowed

Solving via backtracking and constraint prop-

agation

Exponential behavior

� Blue (Borning)

No domain limitation

Each constraint provides methods which

satisfy it.

Constraint hierarchies to express preferences

Linear behavior

Every step taken by the solver leads to the

solution

191

Extensions to DeltaBlue

SkyBlue extends DeltaBlue by allowing con-

straints to have methods that have multiple

outputs.

Very convenient to model transformations like

between cartesian and polar coordinates:

(x; y), (�; r)

Makes it possible to take a subgraph of a con-

straint graph together into a single node.

The \method" could then be another kind of

constraint solver.

192

UltraViolet allows for a larger class of con-

straints than DeltaBlue does:

� It uses local propagation where possible

� It resorts to a cycle solver when necessary

The cycle solver can solve linear equations;

similar to Simplex method (orange)

193

Parsing

Visual Languages

with

Picture Layout

Grammars

Material:

� Parsing Visual Languages with Picture Lay-

out Grammars, Golin, JVLC, 1991.

194

Overview

I will treat three parsing algorithms for visual

languages

� Golin - Picture Layout Grammars

� Marriott - Constraint Multiset Grammars

� Rekers & Sch�urr - Graph Grammar based

approach

Golin and Marriott's approaches are based on

Attribute Multiset Grammars.

195

This week:

� Explain what parsing for visual languages is

about and show some picture layout gram-

mars

� De�ne attribute multiset grammars

� Explain Golin's parsing method for picture

layout grammars

196

Visual Languages

A visual program is a picture with a well-

de�ned structure and meaning.

The picture itself

� is a at collection of graphical symbols

� which have attributes that tell how they

are arranged in a two-dimensional fashion.

A visual language is a set of pictures.

The structure of a picture is de�ned by the

syntax of its visual language.

This syntax de�nition: (1) serves as basis for

assigning meaning to the picture, (2) can be

used to control a parsing algorithm, and (3)

generates the visual language.

197

Syntax de�nition and parsing for textual lan-

guages is well developed; for visual languages

much need to be done still.

Much of the theory can be re-used, but the

multi-dimensional nature of pictures poses

the following additional problems:

� No natural linear ordering between the

symbols

� A wide variety of relations instead of the

simple concatenation of textual languages.

� The underlying structure is a directed graph,

rather than a tree.

S1

S2

S3

0

0

1

1

198

Picture representation

We represent a visual program as an attributed

multiset: an unordered collection of attributed

visual symbols.

� The class of a symbol corresponds to its

type (arrow, circle, ...)

� The attributes of a symbol specify its fea-

tures (location, color, text value, ...)

Visual languages are then sets of attributed

multisets.

Assumption (visibility): everything needed to

understand the picture is available in its at-

tributed multiset representation.

199

Syntax de�nition

The attributed multiset representation of a pic-

ture is a at structure.

If we view the picture as an element of a vi-

sual language, then it has a complex struc-

ture.

This structure corresponds to the signi�cant

relationships between the symbols.

This language dependent structure is de�ned

by productions.

State ! contains(circle, text)

The operator \contains" speci�es the kind of

composition of its constituents.

For VL the composition has to be explicit.

200

An example grammar

A picture layout grammar of (a simple ver-

sion of) State Transition Diagrams:

1: STD ! StateList

2: StateList ! State

3: StateList ! (State, StateList)

4: State ! contains(circle, text)

5: State ! leaves(State, Transition)

6: Transition ! labels(arrow, text)

201

According to this grammar, the diagram

S1

S2

S3

0

0

1

1

might have the following parse tree as struc-

ture:

StateList

State StateList

State StateList

State

Transition State

Transition
State

Transition State

Transition State

0

0

1

1

STD

S1

S2

S3

202

Context symbols

A tree is not really �t to describe the two-

dimensional adjacency relationships.

The same tree would describe this, incorrect,

STD:

S1 S2 S3
0 0 1 1

A transition clearly belongs to two states. This

is impossible in a tree.

The grammar formalism is extended with con-

text symbols.

These are terminal symbols which must be

present to apply the production, but are not

consumed by the application.

203

1: STD ! StateList

2: StateList ! State

3: StateList ! (State, StateList)

4: State ! contains(circle, text)

5: State ! leaves(State, Transition)

6: Transition ! labels(Arc, text)

7: Arc ! enters(arrow, circle)

With these context symbols, the \parse tree"

becomes a \parse tree-DAG":

StateList

State StateList

State

StateList

State

Transition StateTransition
State

Transition State

Transition State

0

0

1

1

STD

S1

S2

S3

Arc

Arc

Arc

Arc

204

Exercise

1. In State Transition Diagrams one distin-

guishes ordinary states (single circle) from

�nal states (double circle).

Extend the grammar such that �nal states

are allowed also.

2. Treat grey circles di�erently as being a start

state of the DFA.

My solution

DoubleCircle ! contains(circle, circle)

FinalState ! contains(DoubleCircle, text)

State ! FinalState

GreyCircle ! isgrey(circle)

StartState ! contains(GreyCircle, text)

State ! StartState

205

Ambiguous derivations

The grammar allows the states to be com-

posed in any order.

The parse tree-DAG gives the states a speci�c

order

) There will be many ambiguous deriva-

tions, each choosing a di�erent order.

This will make parsing much more expensive.

Note that the ambiguity is due to the grammar,

the picture itself is not ambiguous.

Hard problem: write a grammar which gener-

ates as little ambiguities as possible.

206

Attributed Multiset Grammars

The formal model underlying PLG are Attributed

Multiset Grammars (AMG's).

AMG is quite similar to attribute grammars,

but the implicit notion of sequence is replaced

by explicit constraints on the attribute values.

An AMG is a six-tuple (N;�; s; I; D; P) with:

N : �nite set of non-terminal symbols

�: �nite set of terminal symbols

s 2 N : startsymbol

I: attribute names

D: attribute domains

P : set of productions

207

A production is a triple (R; SF;C) with:

R: rewrite rule of the form A!M1=�:

A 2 N : left hand side (LHS)

M1=�: right hand side (RHS)

M1 � (N [�): multiset of ordinary symbols

� � �: multiset of context symbols

SF : semantic function

C: constraint on the application of R

M is analyzable: M has a derivation tree T :

leaf nodes of T : M

root node of T labeled by s

each interior node n is labeled by

p = (R;SF;C):

labels(RHS(R)) = labels(children n)

C(children n) = true

attributes n = SF(children n)

The language recognized by G:

S(G) = fM jM 2 ��
^M analyzable over Gg

208

PLG are based on AMG, but put some restric-

tions on the allowed grammars

� The attributes may only take a �nite num-

ber of di�erent values

(otherwise the parser might not terminate)

� No two terminal symbols may have the same

class and location

This is implied by visibility property

� The RHS of a production may at maximum

consist of two symbols.

(only s, ss and sc, with s an ordinary symbol

and c a context symbol)

This is easily solved by replacing each n-ary

production by a sequence of binary produc-

tions.

209

The PLG rule Arc ! enters(arrow, circle)

corresponds to the AMG rule

Arc ! f arrow g / f circle g

Arc.lx = arrow.lx

Arc.ly = arrow.ly

Arc.rx = arrow.rx

Arc.ry = arrow.ry

where

(arrow.rx, arrow.ry) on border of circle

This shows that the de�nition of the compo-

sition operators is pretty important.

A library is provided, users may extend them.

210

The PLG Parsing Algorithm

The PLG parser:

General
Graphical
Editor

Parser

attributed
symbols tree

DAG

Picture
Layout
Grammar

It works in three phases:

1. Create a Factored Multiple Derivation

(FMD) structure which represent all possi-

ble analysises of the input

2. Filter all faulty parts out of FMD and ex-

tract a single derivation

3. Attribute evaluation to implement seman-

tics (not discussed)

211

The FMD structure

The FMD stores all possible derivations in a

single structure by taking all \parsing frag-

ments" together.

� Nodes are labeled by their symbol

{ The leaf nodes are terminal nodes

{ The interior nodes are non-terminal nodes

� Each node has a vector of attribute values;

at least lx, by, rx, ty

� Non-terminal nodes which are labeled by

the same production and have the same

attribute values are grouped into a single

node

212

Each non-terminal node

� has an associated production

� has one or more childlists:

{ Each childlist is a list of sub-nodes, cor-

responding to the RHS

{ More than one childlist: several possible

derivations

d

alternatives

subnode

TermNode NonTermNode

NodeAttr

ChildList

symbol

name

val
boundingbox

production

has

1

N

1

N

1N

nr

213

Example

Grammar:

TwoBoxes ! leftof(Box, Box)

Box ! rectangle

Box ! leaves(rectangle, arrow)

TwoBoxes −> leftof(...)

Box −> rectangle Box −> rectangle Box −> leaves(...)

Input:

FMD:

Based on assumption that the composition op-

erator leaves gives Box same bounding-box as

rectangle.

214

Phase 1 of PLG parsing

Builds the FMD.

Takes attributed multiset M as input, and con-

structs FMD structure according to produc-

tions in G.

Algorithm works bottom-up, resembles CYK

parsing.

Builds FMD structure and keeps two queues of

pointers to nodes in this FMD structure: to-do

and done:

� Newly created nodes are added to to-do

and are later moved to done.

� The queue to-do is initialized to the input

nodes in M .

� Algorithm terminates when to-do is empty.

215

Build(M, P):

for each b 2M do

Add a terminal node for b to todo and FMD

while todo 6= ; do

next := some element of todo

X := symbol(next)

for each p 2 P such that X 2 RHS(p) do

if p= A! fXg then

if constraints satis�ed then

Add(p; fnextg)

else

for each occurrence of X in RHS(p) do

let Y be the other symbol in RHS(p)

for each old 2 done such that symbol(old) = Y do

if constraints satis�ed then

Add(p; fnext; oldg)

move next from todo to done

return FMD

Add(p; subnodes)

new := create a node for p

childlist(new) := subnodes

attr(new) := SF (subnodes)

for each node n 2 (todo [done) do

if symbol(n) = LHS(p) ^ attr(n) = attr(new) then

childlist(n) := childlist(n) [subnodes

discard new

return

add new to FMD

add new to todo

216

Remarks

� The building phase terminates as the at-

tributes may only take �nitely many dis-

tinct values.

(I would rather see a restriction on teh kind

of grammars)

� The todo queue has no prefered order

(Isn't necessary here)

� There is no structure to help searching in

todo [done

(A hashing structure would help)

217

Example of Build

Box ! rectangle

Box ! contains(rectangle, circle)

TwoBoxes ! leftof(Box, Box)

Input:

2
4
6
8

2 4 6 8 10 12 14 16 18

r1

c1

r2

FMD:

c1
[3,3,7,7]

r1
[2,2,8,8]

r3
[10,2,16,8]

Box −> contains(...)
[2,2,8,8]

Box −> rect
[2,2,8,8]

Box −> rect
[10,2,16,8]

TwoBoxes −> ...
[2,2,16,8]

218

Phase 2 of PLG parsing

Extracts single derivation out of the FMD

Works top-down

Intuitively:

� Start at root node and walk down

� If a node has several childlists: select one

� If the result is a valid tree-DAG: return it.

Else: backtrack over the most recent se-

lect choice.

219

What is a valid tree-DAG?

1. all constraints are satis�ed

(automatically met by the way in which the

FMD is constructed)

2. the root is labeled by the start symbol

(automatically met by the way in which the

FMD is walked)

3. the input M is the yield of the tree-DAG

(the \yield" is the part of the input it cov-

ers)

4. no node appears more than once in the

tree-DAG

220

� Violation of condition 3:

TwoBoxes −> leftof(...)

Box −> rectangle Box −> rectangle Box −> leaves(...)

� Violation of condition 4:

PICTURE ! leftof(LEFT, RIGHT)

LEFT ! leaves(arrow, rectangle)

RIGHT ! enters(arrow, rectangle)

r1 a r2

LEFT RIGHT

PICTURE

r1 a r2

221

The actual implementation of phase 2 does

not backtrack:

Instead,

� it walks the FMD three times:

{ to compute for each node which termi-

nal nodes it covers

{ to remove childlists that cover less ter-

minals then their parent node does

(I have my doubt about the correctness

of this step)

{ to remove childlists of which the sub-

nodes cover overlapping parts of the in-

put

� it walks the remaining FMD a �nal time

and the �rst tree-DAG it encounters is valid

222

Golin does not give a proof of correctness of

the parsing algorithm, but it all looks �ne.

Theoretical complexity: O(n9)

Complexitiy in practical cases: O(n2) to O(n3)

The parsing algorithm has been implemented

and has been used to de�ne the syntax of a

variety of visual languages.

The restriction to 2 symbols and the hidden

power of the combinator operations makes PLG

grammars very hard to read.

223

Parsing Visual Languages

with

Constraint Multiset

Grammars

Material:

� Parsing Visual Languages, Chok & Mar-

riott, Australasian Computer Science Con-

ference, 1995.

224

Overview

� Introduction and example grammar

� Semantics of the productions

� The CMG parsing algorithm

� Comparison with Picture Layout Grammars

225

Constraint Multiset Grammars

Constraint Multiset Grammars (CMG's) are

a variation on Attribute Multiset Grammars

(AMG's):

� Conditions may test on the existence or

non-existence of remote symbols

This extends the context mechanism of AMG's

� The RHS of a production may use a collec-

tion primitive which assembles all symbols

which match a condition

Alleviates the \ordering" problem which causes

ambiguities

� The associated parsing algorithm only works

for cycle free and deterministic CMG's,

and only needs one phase.

226

Example grammar

Example CMG for State Transition Diagrams

S1

S2

S3

0

0

1

1

Three kinds of states: normal, �nal and start.

A CMG production that describes a �nal state:

State(point mid, integer radius,

string name, string kind) ::=

C1: circle, C2: circle, T: text

where (

C1.mid == C2.mid &&

C1.radius != C2.radius &&

close(T.mid, C1.mid)

) {

mid = C1.mid;

radius = max(C1.radius, C2.radius);

name = T.text;

kind = "final"

}

227

To describe what a start state looks like we

�rst describe an unlabeled arrow:

start_arc(point end) ::=

A: arrow

where (

not exists R:text where (

close(R.mid, A.mid)

)

) {

end = A.end;

}

(note the use of a negative constraint)

First attempt for start state:

State(point mid, integer radius,

string name, string kind) ::=

A: start_arc, C: circle, T: text

where (

on_circle(A.end, C.mid, C.radius) &&

close(T.mid, C.mid)

) {

mid = C.mid;

radius = C.radius

name = T.text;

kind = "start"

}

228

First attempt for normal state:

State(point mid, integer radius,

string name, string kind) ::=

C: circle, T: text

where (

close(T.mid, C.mid)

) {

mid = C.mid;

radius = C.radius

name = T.text;

kind = "normal"

}

However, the pattern for a normal state over-

laps with the patterns for �nal state and start

state.

This makes the grammar non-deterministic.

229

Overlapping of productions:

State(string kind) ::=

C: circle, T: text

where (. . .) {

kind = "normal"

}

State(string kind) ::=

C1: circle, C2: circle, T: text

where (. . .) {

kind = "final"

}

circle((2,2), 4)
text((2,2), "jan")
circle((5,5), 4)
text((5,5), "kees")
circle((5,5), 5)

state(normal)

state(normal)
state(normal) state(final)

Golin needs the second phase to determine

which production applications can form part

of a correct reduction.

Marriott avoids this by the deterministic re-

quirement. This is more restrictive than non-

ambiguous.

230

We need additional negative constraints:

1. not exists M: circle where (

M.mid == C.mid

)

2. not exists A: start_arc where (

on_circle(A.end, C.mid, C.radius)

)

� To make the grammar deterministic:

{ add constraints 1 and 2 to the produc-

tion for normal state

� To disallow states which are both of kind

�nal and start:

{ add 1 to the production for start state

{ add 2 to the production for �nal state

231

A labeled arrow:

arc(point start, point end, string text) ::=

A: arrow, T: text

where (

close(A.mid, T.mid)

) {

start = A.start;

end = A.end;

text = T.text;

}

A transition:

transition(string start, string label, string end) ::=

A: arc

where (

exists S1: state, S2:state

where (

on_circle(A.start, S1.mid, S1.radius) &&

on_circle(A.end, S2.mid, S2.radius)

)

) {

start = S1.name;

label = A.text;

end = S2.name;

}

232

We �nally need to take the recognized state

and transition symbols together in a single

symbol.

The order in which these symbols are collected

does not matter: we use the collection prim-

itive \all".

states(string states) ::=

all S: state

where (true) {

states = "[" << "(" << S.name <<

"," << S.kind << ")" << "]";

}

transitions(string transitions) ::=

all T: transition

where (true) {

transitions = "[" << "(" << T.start <<

"," << T.label <<

"," << T.end <<

")" << "]";

}

fsa(string states, string transitions) ::=

S: states, T: transitions

where (true) {

states = S.states;

transitions = T.transitions

}

233

A derivation

arrow circle arrow circle circlestring
 1

string
 a

string
 2

transition

start−arc arc

fsa

state
2, final

state
1, start

transitions
(1, a, 2)

1 2a

states
(1, start)
(2, final)

234

Remarks

� The CMG version of the syntax of STD's

is much easier to read and write than the

picture layout grammar version

� Grammars should be as declarative as pos-

sible.

This aspect is compromised by the deter-

ministic requirement.

One needs negative constraints in one pro-

duction to prevent it to be applied on parts

that should be matched by other produc-

tions.

This is more like programming the parser

than like specifying a graphical syntax.

Still, this restriction makes parsing e�-

cient and allows for incremental parsing.

235

Semantics

� The simplest kind of productions are local:

T(~A) ::= V1 : T1; : : : ; Vn : Tn

where (C)

~A= ~E

with C a conjunction of primitive con-

straints over the attributes of V1; : : : ; Vn.

� Productions may use existentially quan-

ti�ed (or context or remote) variables.

The constraint C then is of the form:

exists V 01 : T
0
1; : : : ; V

0
m : T 0m where (C0)

� Productions may use negative constraints.

The constraint C then is of the form:

not exists V 0
1
: T 0

1
; : : : ; V 0m : T 0m where (C0)

236

The application of a local production:

Find a match for the RHS of P in S such that

C holds, and replace the matched tokens by an

instance of the LHS.

Or, more formally:

Let P be a production

T (~A) ::= V1 : T1; : : : ; Vn : Tn where (C) ~A= ~E

then S
P
) S0 if there is an assignment � from

the variables V1; : : : ; Vn to tokens in S such

that:

� f�(V1); : : : ; �(Vn)g � S,

� � satis�es C, and

� S0 = S [T(~A) n f�(V1); : : : ; �(Vn)g

237

Constraint multiset grammars deal in a quite

simple way with existentially quanti�ed vari-

ables.

The above semantics of reduction are extended

to existentially quanti�ed variables in the fol-

lowing way:

Next to the current sentence S, we also keep

a collection of previously reduced tokens R.

Existentially quanti�ed variables may match to-

kens in R as well.

For example, this means that the production

for transition is applicable regardless whether

the associated states are still in the current

sentence or not.

This works well in 90% of the cases.

238

Grammar:

AA() ::= a: A where exists b: B

BB() ::= b: B

X() ::= a: AA, b: BB

Fine derivation: A B

AA

X

BB

Grammar:

AA() ::= a: A where exists b: B

BB() ::= b: B where exists a: A

X() ::= a: AA, b: BB

Questionable derivation: A B

AA

X

BB

Grammar:

AA() ::= a: A, b: B

X() ::= a: AA where exists b: B

Incorrect derivation: A B

AA

X

239

Reduction with existentially quanti�ed variables:

Production P :

T(~A) ::= V1 : T1; : : : ; Vn : Tn

where exists V 0
1
: T 0

1
; : : : ; V 0m : T 0m

where (C)
~A= ~E

Reduction hS; Ri
P
) hS0; R0i if there is an as-

signment � such that:

� f�(V1); : : : ; �(Vn)g � S,

� f�(V 0
1
); : : : ; �(V 0m)g � S [R,

� � satis�es C,

� S0 = S [T (~A) n f�(V1); : : : ; �(Vn)g, and

� R0 = R [f�(V1); : : : ; �(Vn)g

240

Productions with negative constraints check

for the non-existence of tokens in S [R.

However, what should happen if the applica-

tion of the production (indirectly) generates

these tokens itself?

BB() ::= a:A where not exists b:BB

or

AA() ::= a: A where not exists b: BB

BB() ::= b: B where not exists a: AA

X() ::= a: AA, b: BB

The application of these productions invali-

dates itself.

Constraint multiset grammars are restricted to

be strati�ed:

Types may only depend negatively on types

which are strictly lower in the dependency graph.

241

A strati�cation assigns an integer to each

type such that for each production

T(~A) ::= V1 : T1; : : : ; Vn : Tn

where exists V 01 : T
0
1; : : : ; V

0
m : T 0m

where (C)

~A= ~E

the following conditions hold:

� (T) � (Ti) for i= 1; : : : ; n,

� (T) � (T 0
i
) for i= 1; : : : ;m, and

� for each variable V 0 : T 0 appearing in a neg-

ative constraint in C, or in an all primi-

tive:

 (T) > (T 0).

A CMG is strati�able if it has a strati�cation.

242

A reduction sequence for a strati�able gram-

mar G and a sentence S:

hS; ;i
P0
) hS1; R1i

P1
) : : :

Pn
) hSn; Rni

Here Pi is a production in G.

Productions should be applied such that the

strati�cation number of their LHS never de-

creases: Given that each Pi has a symbol

of type Ti as LHS, it must be the case that

 (Ti) � (Ti+1):

If Sn = fsg (with s the start symbol) then the

reduction sequence is successful.

The language of strati�able CMG is the col-

lection of sentences which have a successful

reduction sequence.

243

According to this de�nition of successful re-

duction sequence, there is nothing wrong with

this derivation:

circle circle

2
statestate state

states

string

Neither with this one:

S1 S20

arrow

transition

arc

arrow

arc

transition

string

transitions

244

Overlapping derivations

To disallow such overlapping derivations, we

need a general rule:

We add an attribute coverset to each token

which contains the terminals which it gener-

ates:

� Each terminal token t gets the singleton

set ftg as coverset;

� each non-terminal token gets the union of

the coversets of its input tokens as cover-

set.

Rule: Productions may only apply if the input

tokens have disjoint coversets.

245

Then we get, with P a local production

T(~A) ::= V1 : T1; : : : ; Vn : Tn where (C) ~A= ~E :

S
P
) S0 if there is an assignment � from the

variables V1; : : : ; Vn to tokens in S such that:

� f�(V1); : : : ; �(Vn)g � S,

� for all i; j 2 1; : : : ; n; i 6= j : coverset(�(Vi)) \

coverset(�(Vj)) = ;,

� � satis�es C,

� cvs= coverset(�(V1))[: : :[coverset(�(Vn)),

� S0 = S [T (~A; cvs) n f�(V1); : : : ; �(Vn)g

Existentially quanti�ed variables do not parti-

cipate in the coverset check.

246

Additional restrictions

� The grammar should be cycle-free

Derivation sequences of the form

: : :) hS;Ri) : : :) hS;R0i) : : :

are not permitted.

Can simply be checked on the grammar.

� The grammar should be deterministic:

A strati�able CMG G is deterministic if

every terminal sentence has a single, maxi-

mal reduction sequence for G, without check-

ing the coverset condition.

This means that every step taken by the

parser should be a step in the direction of

the result.

Unfortunately, this restriction cannot be

checked on the grammar.

247

The parsing algorithm

Productions are classi�ed in groups which have

the same strati�cation number.

Productions are applied as long as possible per

increasing strati�cation level.

The algorithm uses a token database D.

routine Parser(M)

D := ;

for all t 2M do

add t to D

for S := 1 to maxstrata do

repeat

changed := false

for each P 2 stratum(S) do

if EvaluateRule(P;D) then

changed := true

until changed = false

return D

248

Routine EvaluateRule applies P as many times

as it can in D.

routine EvaluateRule(P;D)

T := the variables in production P

C := the constraints of production P

changed := false

repeat

A := FindNextCombination(T;D)

if Satis�esConstraints(C;A) then

InsertToken(P;D)

DeleteTokenList(A;D)

changed := true

until A is empty

return changed

Routine DeleteTokenList does not actually delete

its tokens, but only marks them as deleted.

This allows FindNextCombination to match both

current and already deleted tokens.

249

The above only gives an impression of what

the parser has to do.

It should have been more precise on:

� The check on overlapping coversets, and

the creation of the new coverset.

� How to deal with the di�erent kind of

variables (normal, exists, not exists, all)

� How to deal with re-application of the same

production on the same tokens

250

Recent work on CMG's

At VL'95, Sitt Sen Chok described a syntax

directed graphical editor, based on CMG and

constraint solving:

� User draws diagram freely

� Incremental parse of the diagram with sloppy

checking of constraints

� Constraint solver prints beauti�ed ver-

sion of the diagram according to parse tree

1 1

251

Comparison Golin - Marriott

� Both have Attribute Multiset Grammars as

basis

� Both have a parsing algorithm that only

works for certain classes of grammars.

{ Golin: �nitely many di�erent attribute

values

{ Marriott: deterministic grammars

� Neither can check these conditions on a

given grammar

� Marriott's dealing with context symbols is

too simple.

252

� Marriott ismore restrictive and thus avoids

the second phase of the parsing algorithm.

Marriott's parsing algorithm is e�cient and

is geared towards incremental parsing

� Golin's grammar formalism PLG results in

hard-to-read grammars

� Both use constraints to check the applica-

bility of a production on matched tokens,

but do not use them to direct the search

for matching tokens.

These are e�cient parsing algorithms for re-

stricted grammars; we also need an (e�cient)

parsing algorithm for full Attribute / Constraint

Multiset Grammars.

253

Parsing Visual Languages

with

Graph Grammars

Material:

� A graph grammar approach to graphical

parsing, Rekers & Sch�urr, VL'95

254

Overview

� Implicit versus explicit relations

� Highlights of the parsing algorithm

� Comparison with CMG approach

255

Constraints test for Relations

The general form of a CMG production (with-

out existentially quanti�ed symbols) is:

T (~A) ::= V1 : T1; : : : ; Vn : Tn

where (C)

~A= ~E

The constraint C puts conditions on the al-

lowed attribute values.

These conditions are mostly used to relate the

objects which are bound to V1; : : : ; Vn.

Typical examples of constraints are:

C1.mid == C2.mid

close(T.mid, C1.mid)

on_circle(A.end, C.mid, C.radius)

256

The relations which are checked by the con-

straints are implicit consequences of the at-

tribute values.

This has as consequence that:

� If the parser tries to apply a production, it

{ �nds all combinations of tokens which

match V1; : : : ; Vn

{ checks C for each of the matches.

� If the production is applied, the parser cre-

ates a new token with type T .

This means that all previously checked pro-

ductions which have a token of type T in

their RHS may �nd new matches.

257

State(point mid, integer radius,

string name, string kind) ::=

C1: circle, C2: circle, T: text

where (

C1.mid == C2.mid &&

C1.radius != C2.radius &&

close(T.mid, C1.mid)

) {

mid = C1.mid;

radius = max(C1.radius, C2.radius);

name = T.text;

kind = "final"

}

S1

S2

S3

0

0

1

1

This simple diagram contains 7 strings and 4

circles.

That means that the CMG parser has 7�4�4 =

112 combinations to consider.

258

The Graph Grammar approach

In the graph grammar approach one makes

these relations explicit by representing them

as actual edges between objects.

� These edges are initially created by a graph-

ical scanner

� The parser can follow these edges to �nd

matches

� The application of a production not only

creates a new object, but also creates edges

with other objects.

This tells the parser which matches to re-

consider.

259

The spatial relations graph

1 a 2

b

contains

contains

starts ends
Circle

String

Arrow

String

Circle

Circle

String

contains labelsends

DoubleArrow

Arrow
starts

ends
String

labels

b

1 a
2

The graphical scanner receives a collection

of attributed graphical object and creates a

spatial relations graph:

� Nodes: the graphical objects

� Edges: the spatial relations of interest

which hold between the objects

260

Graph Grammar Productions

A production is a tuple (L;R) of graphs.

The intersection L \ R is the preserved con-

text.

Circle

State

Circle

Transition

covers covers

from tos1

c1

s2

c2

::=

State

Circle

State

Circle

covers covers

starts ends

s1

c1

s2

c2
Arrow

String
labels

State

� Graph parsing: search graph for match of

R, replace by copy of L

� Graph generation: search graph for match

of L, replace by copy of R

Recorded in a production instance

261

In graph grammar productions

� Edges have to be created explicitly

The new symbols in the LHS are connected

to context symbols with edges.

� Edges have to be deleted explicitly

A production is applicable only if it men-

tions all edges the ordinary symbols in the

RHS have.

(this is due to the dangling-edge rule)

This symmetry makes the grammar more declar-

ative, but also requires the grammar to be very

precise.

This certainly makes it harder to write a gram-

mar.

262

The parser has to perform two tasks: (1)

�nding matches and (2) assembling deriva-

tions.

1: Bottom-up phase (element level)

{ generate as many production instances

as possible

this generates the collection of building

blocks for all possible derivations

#

2: Top-down phase (production instance level)

{ select a subset of production instances

which forms a viable derivation for the

graph

263

The bottom-up phase

� Start with the graph G

� Repeat until no newmatches can be found:

{ Search G for a match of some right-

hand side

{ If found:

� extend G with left-hand side

(does not delete the right-hand side!)

� generate production instance

� Return all production instances

264

Examples

contains

contains

starts ends
Circle

String

Arrow

String

Circle

Circle

String

contains labelsends

DoubleArrow

Arrow
starts

ends
String

labels

State

Circle

covers

Circle Stringcontains

::=

contains Circle
c c

contains

contains

starts ends
Circle

String

Arrow

String

Circle

Circle

String

contains labelsends

DoubleArrow

Arrow
starts

ends
String

labels

State

covers

265

contains

contains

starts ends
Circle

String

Arrow

String

Circle

Circle

String

contains labelsends

DoubleArrow

Arrow
starts

ends
String

labels

State

State

Circle

covers ::=

c
Circle Stringcontainsc

contains

contains

starts ends
Circle

String

Arrow

String

Circle

Circle

String

contains
labelsends

DoubleArrow

Arrow
starts

ends
String

labels

State

State

State
covers covers

covers

covers

266

contains

contains

starts ends
Circle

String

Arrow

String

Circle

Circle

String

contains labelsends

DoubleArrow

Arrow
starts

ends
String

labels

State

State

State

State

Circle

State

Circle

Transition

covers covers

from tos1

c1

s2

c2

::=

State

Circle

State

Circle

covers covers

starts ends

s1

c1

s2

c2
Arrow

String
labels

contains

contains

starts ends
Circle

String

Arrow

String

Circle

Circle

String

contains labelsends

DoubleArrow

Arrow
starts

ends
String

labels

State

State

State

Transitionfrom to

267

The entire grammar:

p0 ::= Automatonλ

p1

Automaton
State

Circle DoubleArrow

covers::=

ends

p2

State ::= State StateTransitionfrom to

Circle

covers

p3
State State ::= State StateTransitionfrom to

p5

State

Circle

State

Circle

State

Circle

State

Circle

Transition

covers covers

from to

::=

covers covers

starts endsArrow

String
labels

p6

State

Circle

covers

Circle Stringcontains

::=

p7

State

Circle

covers

Circle Stringcontains

::=

contains Circle

268

Optimizations

� Each right-hand side is represented by a

single linear search plan

Leads to the notion of dotted rule

� These matches are step-by-step extended

� Many partial matches are simultaneously

maintained

� Strati�cation gives a good ordering on the

productions

Our bottom-up phase is straightforward as it

does not have to deal with derivations.

269

Dependencies

Production instances might depend on each

other:

� Above:

If production instance pi adds an element

x to the graph, which is matched by the

right-hand side of pi0, then pi0 above pi.

contains

contains

starts ends
Circle

String

Arrow

String

Circle

Circle

String

contains labelsends

DoubleArrow

Arrow
starts

ends
String

labels

State

State

State

Transitionfrom to

270

� Excludes:

If both pi and pi0 consume a same element

x of the graph, then pi excludes pi0 and

vice versa.

contains

contains

starts ends
Circle

String

Arrow

String

Circle

Circle

String

contains
labelsends

DoubleArrow

Arrow
starts

ends
String

labels

State

State

State
covers covers

covers

271

The top-down phase

Combines production instances into a deriva-

tion for G by selecting a subset of them.

It starts with the axiom graph A and applies

production instances pi1; : : : ; pin to it such that

� A
pi1
) : : :

pin
) G

� :9pi; pi0 : pi excludes pi0

� 8pii; pij : if pii above pij then i < j

Production instances are selected on basis of

the dependencies alone.

272

� The order within pi1; : : : ; pin is insigni�-

cant, as long as the above relation is re-

spected (equivalent derivations).

� Once pi is added to a derivation, it is no

longer possible to add pi0, if pi excludes pi0.

) it is a choice to add pi instead of pi0

We deal with these choices in a pseudo-

parallel fashion.

By knowing the dependencies beforehand:

� we know the choice points

� we can postpone choice points

273

Comparison

In CMG, parsing is optimized by requiring de-

terministic grammars.

In our approach, parsing is optimized by having

explicit relationships instead of constraints on

attribute values.

Our approach allows for a far larger class of

grammars, but requires very precise produc-

tions.

An interesting combination would be to use

the CMG algorithm as bottom-up phase, and

part of our algorithm as top-down phase.

This would be a less e�cient, but complete

parsing algorithm for the full class of Attribute

/ Constraint Multiset Grammars.

274

