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ABSTRACT 
Learning to program is a unique experience for each student, and 
it is not fully understood why one person in an introductory 
programming course learns to program better and more quickly 
than the next. Self-efficacy is an individual’s judgment of his or 
her ability to perform a task within a specific domain [1]. A 
mental model is a person’s internal (mental) representation of real 
world objects and systems [9]. Research has shown that high self-
efficacy and a good mental model are important to knowledge 
acquisition and transfer. This research investigates the effects of 
students’ self-efficacy and mental models of programming on 
learning to program. The results show that self-efficacy for 
programming is influenced by previous programming experience 
and increases as a student progresses through an introductory 
programming course.  The results also show that the student’s 
mental model of programming influences self-efficacy and that 
both the mental model and self-efficacy affect course 
performance.  

Categories and Subject Descriptors 
K.3.2 [Programming Languages]: Computer and Information 
Science Education – Computer science education. 

General Terms 
Experimentation 
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1. INTRODUCTION 
The dropout and failure rates in introductory programming 
courses at the university level are evidence to the fact that 
learning to program is a difficult task. Some studies suggest that 
the dropout and failure rate is as high as 30 percent [6]. Success in 
the entry level programming course often determines whether the 
student will continue to pursue a computer related major. These 

individual decisions, in turn, affect the future of the computing 
profession. In spite of research on factors that influence the 
enrolment and success of novices in introductory programming, it 
is not well understood what makes programming an enjoyable and 
motivating experience for some, while others find it a painful 
struggle to complete the course.  

The literature has suggested several factors that may influence 
novices’ success in computing. These include previous computing 
experience [2, 3, 15], comfort level [18], computer playfulness 
during training [11], computer self-efficacy [7], mathematics or 
science background [3, 18], students’ attributions of success [18], 
learning style [3, 16], and the student’s mental model of 
programming [4, 14, 17].  

Two key constructs in modern cognitive and social cognitive 
theory are mental models and self-efficacy. The goal of this 
research is to study self-efficacy and mental models of beginning 
level programmers, explore the relationship between these two 
very important concepts, and study their combined influence on 
the student’s course performance. 

2. PRIOR RESEARCH 
Bandura ([1], p. 391) defines self-efficacy as “people’s judgments 
of their capabilities to organize and execute courses of action 
required to attain designated types of performance.” Self-efficacy 
is important in learning because “competent functioning requires 
both skills and self-beliefs of efficacy to use them effectively” 
([1], p. 391). In learning situations, self-efficacy influences the 
amount of effort expended, type of coping strategies adopted, use 
of cognitive strategies while solving problems, persistence in the 
face of failure, and performance outcomes [1]. Bandura posits that 
judgments of self-efficacy are based on four principal sources of 
information:  the individual’s performance attainments, vicarious 
experiences of observing the performance of others, verbal 
persuasion and associated types of social influences, and 
physiological states from which people partly judge their 
capableness, strength, and vulnerability. The most important of 
these is performance attainments.   

It should be noted that self-efficacy is specific to a certain 
activity.  Therefore, a person may have high self-efficacy in one 
domain, such as gardening, and low self-efficacy in another, such 
as computer programming. Nevertheless, transfer of self-efficacy 
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Figure 1. Proposed model of factors affecting student performance in an introductory programming course

beliefs across related activities may occur [1], for example, 
across different programming languages or tasks. 

Because skills and self-beliefs are so intertwined, one way of 
improving student performance is to improve student self-
efficacy. While self-efficacy can be enhanced by the use of 
behavior modeling, cooperative learning environments and 
verbal persuasion [1, 5], the greatest influence of all is positive 
personal experience [1]. 

Norman [9] defines mental models as predictive representations 
of real world systems. That is to say, people create internal 
representations of objects and information in the world, and they 
use these mental representations to reason about, explain, and 
predict the behavior of external systems.  

Programming is a highly cognitive activity that requires the 
programmer to develop abstract representations of a process in 
the form of logic structures. Having a well-developed and 
accurate mental model may affect the success of a novice 
programmer in an introductory programming course. Such a 
model could include knowledge about how programs work in 
general, as well as knowledge about the syntax and semantics of 
a specific language [4]. Mental models (also referred to as 
schemas) play an important role in program comprehension [10, 
14, 17] and correspondingly in comprehension-related tasks, 
such as modification and debugging. 

This study proposes a model of performance of novice 
programmers based on their self-efficacy and mental models 
(see Fig. 1). The ovals represent variables and the arrows 
represent predicted relationships of the variables. In line with 
the existing research [2, 3, 15], we expect that previous 
experience will be a significant predictor of both students’ self-
efficacy and mental models of programming. Based on self-
efficacy theory [1], we further expect that students’ self-efficacy 
will increase as a result of instruction and continued hands-on 
exposure to programming (post-self-efficacy higher than pre-
self-efficacy). We also hypothesize the students’ mental models 
of programming will be significantly related to their perceptions 
of self-efficacy. Finally, it is expected that both mental model 
and self-efficacy will explain a significant amount of course 
performance, i.e., in keeping with Bandura, students’ knowledge 
content and self-perceptions will be intertwined in successful 
performance.  

3. METHODOLOGY 
3.1 Participants 
Seventy-five students enrolled in four sections of a CS1 course 
at a public university took part in this study. The students were 
undergraduates majoring in computer science, as well as a wide 
variety of other majors ranging from agricultural science to 
management information systems.   

3.2 Materials 
The materials included a background questionnaire, a self-
efficacy scale, and two instruments to measure mental models. 
All of the materials except the self-efficacy scale were 
developed specifically for this study. 

The background questionnaire used five questions measuring 
the breadth of participants’ prior computer and programming 
background: number of courses taken that used computer 
applications as a mandatory part of course work (e.g., 
spreadsheets, databases), number of programming courses 
taken, number of programming languages used, number of 
programs written, and length of the programs written.  

Self-efficacy was measured using the Computer Programming 
Self-Efficacy Scale [12]. This validated instrument was used 
previously by Wilson and Shrock [18] in their research on 
success factors in introductory computer science courses. The 
scale consists of thirty-three items that ask students to judge 
their ability in a wide range of programming tasks and 
situations, e.g., “I would be able to write syntactically correct 
statements,” “I would be able to write a program that computes 
the average of 3 numbers,” “I would be able to comprehend a 
long, complex multi-file program,” “I would be able organize 
and design my program in a modular manner.” Responses are 
marked on a 7-point Likert scale.  

The students’ mental models were evaluated by using two 
measurements, program comprehension and program recall. The 
program comprehension booklet consisted of six short C++ 
programs (each 15-20 lines long). The programs consisted of a 
class definition, a constructor, a member function of the class, 
and a main function. Each of the programs was followed by a 
list of five true/false questions covering each of the information 
categories originally developed by Pennington [10] to measure 
the mental model of programmers: elementary operations, 
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control flow, data flow, program function, and program state. 
These same categories have been used in more recent research 
on mental models in OO programming [17]. Recall (measured 
as the number of lines recalled correctly) has been used as a 
measure of mental organization or mental models in past 
programming research, e.g., Shneiderman [13]. Our program 
recall booklet, modeled on Shneiderman’s, contained a C++ 
program that dealt with temperature conversion. The program 
had 27 lines of code.  

3.3 Procedure 
The study was conducted over the course of a fifteen week 
semester in two parts, one in the second week of the semester, 
and the other in the thirteenth week of the semester.  

The first phase of the study involved collecting the student 
background information and having students complete the self-
efficacy scale, which yielded the pre-self-efficacy score.  

The second phase of the study involved completion of the same 
self-efficacy scale (yielding the post-self-efficacy score) and the 
two tasks designed to assess the students’ mental model. The 
students completed the self-efficacy scale first and then were 
given the program comprehension booklet. For each of the six 
programs, they had 1.5 minutes to study the program and two 
minutes to answer the questions. The students were not allowed 
to look back at the programs while answering the questions. 
Finally, students were given the recall booklet. They had five 
minutes to study the program, then closed the booklet and had 
five more minutes to recall and reproduce the program from 
memory, to the best of their ability.  

The performance measure was the student’s final course grade 
and was obtained from the instructor at the end of the semester. 

4. RESULTS 
4.1 Self-Efficacy of Novice Programmers 
The alpha-reliability of the self-efficacy scale was .98, 
indicating a highly reliable scare. The mean pre-self-efficacy 
score was 94.63 and the mean post-efficacy score was 163.37 
out of a maximum possible score of 231 (Table 1). Self-efficacy 
of participants increased significantly over the course of a 
semester of instruction (t = 12.78, p<.0001). The mean increase 
in self-efficacy was 68.75.  

To evaluate the effect of pre-self-efficacy on the amount of 
change in self-efficacy during the course, we divided the 
participants into quartiles of equal size based on their pre-self-
efficacy scores (Table 2). Change in self-efficacy was calculated 
as the difference between the post-self-efficacy and the pre-self-
efficacy score and was subjected to a one-way ANOVA. The 
ANOVA was significant, F(3,71) = 12.83, p<.0001. The results 
show significant effects of time of measurement (pre vs. post), 
quartile, and the interaction between the two. The ANOVA was 
followed by a Tukey range test to determine specifically how 
the groups differed from one another. Results suggest that the 
group with the highest pre-self-efficacy (group mean = 165.05) 
experienced the least increase in self-efficacy and differed 
significantly (p<.05) from all other groups, which registered 
much larger increases in efficacy (Table 2). The other three 
groups did not differ significantly from one another. 

Table 1. Self-efficacy descriptive data (N=75) 
Variable Mean StdDev Min Max 

Pre-SE 94.63 49.51 33 219 

Post-SE 163.37 41.36 52 229 

 
Table 2. Descriptive data for the four quartiles divided on 

initial self-efficacy 
Group Pre-SE 

Mean 
Post-SE 
Mean 

Change 
Mean 

Change 
StdDev 

N 

1 46.47 134.42 87.95 46.68 19 

2 66.39 159.94 93.56 32.01 18 

3 99.11 170.05 70.95 31.98 19 

4 165.05 188.89 23.84 40.25 19 

 

4.2 Relationship of Self-Efficacy and Mental 
Models 
The mental model measure was a cumulative sum of 
participants’ program comprehension scores and the recall 
scores. Analysis of the data revealed a simple Pearson 
correlation of r = .3227, p<.01 between the mental model 
measure and post-self-efficacy score. There was no significant 
correlation between pre-self-efficacy and mental models. 

4.3 Analysis of the Model 
A major goal of this study was to evaluate the effect of self-
efficacy and mental models on students’ performance. To test if 
our model was supported by the data, a path analysis was 
conducted [8]. Path analysis consists of a series of multiple 
regressions used to analyze the relationships of variables in a 
model. Each arrow in our model (Fig. 1) represents a possible 
relationship of a predictor (independent) variable on a response 
(dependent) variable. Figure 2 shows the results of the multiple 
regressions. The strengths of each relationship are depicted as 
“path coefficients,” or regression weights, which vary between 0 
and 1 (shown on the arrows in Fig. 2). A significant path 
coefficient indicates that there is indeed a reliable relationship 
between the predictor and response variable. All paths predicted 
in the model were significant (p<.05) except for the path from 
previous experience to mental model. The R2 values associated 
with the dependent variables indicate how much of the variance 
in the variable is explained by the predictor variables feeding 
into it. As Fig, 2 shows, the variance explained is substantial 
except for the effect of previous experience on mental model. 

In addition to analyzing the individual relationships, path 
analysis seeks to analyze the “fit” of the overall model to the 
data. This is done using a Chi-square test. Eliminating the non-
significant path from previous experience to mental model, the 
Chi-square test of this model with four degrees of freedom 
yielded χ2=1.35, p>.85. Contrary to the usual interpretation, in 
this analysis the non-significant result represents a good fit. 
Literally, it means that our model containing a theory-based 
subset of all possible paths is just as good a predictor of 
performance as a model containing every possible path, i.e., this 
more parsimonious subset of relationships adequately represents 
the important influences on student performance. 

173



 

 
Figure 2. Results of the analysis of the relationships in the model (*p<.05) 

 
5. DISCUSSION 
5.1 Self-Efficacy, Mental Models, and 
Programming Performance 
The self-efficacy of students increased significantly over the 
course of a semester of instruction. The results suggest that 
individuals’ changes in self-efficacy are a function of their pre-
self-efficacy. The three lower quartiles showed a significant 
increase in efficacy with group 2 registering the greatest increase. 
However, the group with the highest initial self-efficacy 
experienced the least increase in efficacy as a result of a semester 
of instruction in C++ programming. This is a sensible result 
because a strong sense of self-efficacy is not easily changed, but 
weak self-efficacy is more malleable [1].   

The highest quartile is different from the other groups in another 
aspect as well. The standard deviation for this group was almost 
double its mean change in self-efficacy (Table 2). The implication 
is that, while some students in the group registered an increase in 
efficacy, others decreased. Further analysis showed that about 
one-fifth of this group (21.1%) experienced a decrease in self-
efficacy. This suggests that these students overestimated their 
ability to cope with the challenges of the introductory course. 

Therefore, as depicted in the results (Fig. 2), we can say that 
previous experience is a strong predictor of pre-self-efficacy, and 
interestingly it also predicts post-self-efficacy. This indicates that 
students’ prior high school experience continues to affect their 
perceptions of their capabilities even near the end of the 
university course. The results also show that having developed a 
strong mental model increases feelings of self-efficacy. Finally, 
both what student know, as represented by their internal mental 
model, and what they believe about themselves, as represented by 
their self-efficacy, affect their performance in the course. While 
instructors have always recognized the importance of what 
students know, the results of this study underline the parallel 
importance of students’ self-beliefs. 

5.2 Implications for Pedagogy 
An ongoing challenge in computer science education is to attract 
students to introductory computer science courses and support 
them in what, for many, are the difficult early days. This applies 

to computer science majors, as well as to students taking a single 
course in programming. 

Computer science instructors are well aware of the importance of 
students internalizing good mental models of programming. This 
study shows that a well-developed and accurate mental model 
directly affects course performance and also increases self-
efficacy, the other key element in course performance. Given this 
double impact, helping students develop good mental models 
should remain a goal in introductory programming courses. 
Teaching from the object-oriented perspective may in itself assist 
the goal of developing the mental model, because the high 
salience of objects, their attributes, and the relationships of 
objects highlights the correspondence of computing objects to real 
world objects [17]. Apart from the programming language, the 
goal of building good mental models could also be achieved by 
instruction that engages the student in experiential learning tasks 
that involve tracing the logic of a program [4]. Tasks such as 
debugging and modifying programs often involve tracing and are 
likely to promote development of the mental model. In general, 
assignments that involve both program comprehension and 
creation strengthen the mental model through reasoning about 
consequences, e.g., adding a new module to a program that 
involves interactions with other parts of the program.  

The other path to increasing student performance is direct self-
efficacy interventions. When teaching an introductory 
programming course we must challenge students but not 
overwhelm them with complex programming tasks that 
undermine their self-efficacy. Interventions that support and 
increase self-efficacy have been identified by Bandura [1]: 
performance attainments, observation of the performance of 
others, social persuasion, and monitoring of one’s own 
physiological state. The importance of performance attainments 
on self-efficacy indicates that students need to incrementally build 
up a history of success at increasingly difficulty tasks. This 
suggests that frequent assignments with quick and ample feedback 
are more desirable than a smaller number of longer-term projects. 
In terms of observation of the performance of others, it is known 
that watching another person carry out a difficult task increases 
self-efficacy [1, 5]. In learning computer applications [5] it has 
been shown that peer modeling is most likely to aid learners, 
because it shows the learner that someone “like me” can do the 
job. In computer programming we could build the students’ self-

Previous 
Experience 

.62* 

.26* 

.39* 

.23* 

.40* 
.24* 

.23 

Pre 
Self-efficacy 

Mental 
Model 

Post 
Self-efficacy Performance 

(Grade) 

R2=.44 

R2=.30 

R2=.05 

R2=.24 

174



efficacy by modeling how to build a complex program. A video 
of students at work planning, creating, and debugging a program 
might provide appropriate modeling. Social persuasion from peers 
also promotes self-efficacy [1]. This implies a classroom that 
encourages group work and strong interaction with other students. 
Social connections may also be built by augmenting the 
traditional class setting with online work groups. Finally, a calm 
physiological state, as opposed to anxiety and apprehension, 
increases feelings of self-efficacy. This may be promoted by 
taking measures to increase comfort in the classroom [18] and 
decrease student competition. It may also be promoted by 
evaluation methods that incorporate measures of student 
improvement rather than just absolute measures of achievement.  

As a final comment, it is worth noting that any students in 
introductory CS courses are not computer science majors. These 
students often, however, enter careers in which they develop end-
user programs, such as spreadsheets or interactive web sites, to 
support their own work. Since end-user programming is usually 
voluntary, motivation is the key to whether the user programs. 
Having strong self-efficacy beliefs may be especially important 
for future end users. 

6. FUTURE DIRECTIONS 
Limitations of this study include the short time span in which the 
study took place, the self-reporting of previous experience, and 
the performance measure of based on the final course grade.  

An important area of future research is the study of students who 
drop out of introductory programming course (and thus are not 
even included in studies such as this that require pre and post 
measurement). For such students, it may be important to plan 
early interventions to support development of students’ self-
efficacy and mental model, before the student gives up. 
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