
Self-Efficacy and Mental Models in Learning to Program
Vennila Ramalingam

Media Lab

Massachusetts Institute of
Technology

Cambridge, MA 02139 USA

vennila@media.mit.edu

Deborah LaBelle
Pennsylvania State University

Delaware County

Media, PA 19063 USA

+1 610 892 1343

dml19@psu.edu

Susan Wiedenbeck
College of IST

Drexel University

Philadelphia, PA 19104 USA

+1 215 895-2490

sw53@drexel.edu

ABSTRACT
Learning to program is a unique experience for each student, and
it is not fully understood why one person in an introductory
programming course learns to program better and more quickly
than the next. Self-efficacy is an individual’s judgment of his or
her ability to perform a task within a specific domain [1]. A
mental model is a person’s internal (mental) representation of real
world objects and systems [9]. Research has shown that high self-
efficacy and a good mental model are important to knowledge
acquisition and transfer. This research investigates the effects of
students’ self-efficacy and mental models of programming on
learning to program. The results show that self-efficacy for
programming is influenced by previous programming experience
and increases as a student progresses through an introductory
programming course. The results also show that the student’s
mental model of programming influences self-efficacy and that
both the mental model and self-efficacy affect course
performance.

Categories and Subject Descriptors
K.3.2 [Programming Languages]: Computer and Information
Science Education – Computer science education.

General Terms
Experimentation

Keywords
Learning to program, self-efficacy, mental models

1. INTRODUCTION
The dropout and failure rates in introductory programming
courses at the university level are evidence to the fact that
learning to program is a difficult task. Some studies suggest that
the dropout and failure rate is as high as 30 percent [6]. Success in
the entry level programming course often determines whether the
student will continue to pursue a computer related major. These

individual decisions, in turn, affect the future of the computing
profession. In spite of research on factors that influence the
enrolment and success of novices in introductory programming, it
is not well understood what makes programming an enjoyable and
motivating experience for some, while others find it a painful
struggle to complete the course.

The literature has suggested several factors that may influence
novices’ success in computing. These include previous computing
experience [2, 3, 15], comfort level [18], computer playfulness
during training [11], computer self-efficacy [7], mathematics or
science background [3, 18], students’ attributions of success [18],
learning style [3, 16], and the student’s mental model of
programming [4, 14, 17].

Two key constructs in modern cognitive and social cognitive
theory are mental models and self-efficacy. The goal of this
research is to study self-efficacy and mental models of beginning
level programmers, explore the relationship between these two
very important concepts, and study their combined influence on
the student’s course performance.

2. PRIOR RESEARCH
Bandura ([1], p. 391) defines self-efficacy as “people’s judgments
of their capabilities to organize and execute courses of action
required to attain designated types of performance.” Self-efficacy
is important in learning because “competent functioning requires
both skills and self-beliefs of efficacy to use them effectively”
([1], p. 391). In learning situations, self-efficacy influences the
amount of effort expended, type of coping strategies adopted, use
of cognitive strategies while solving problems, persistence in the
face of failure, and performance outcomes [1]. Bandura posits that
judgments of self-efficacy are based on four principal sources of
information: the individual’s performance attainments, vicarious
experiences of observing the performance of others, verbal
persuasion and associated types of social influences, and
physiological states from which people partly judge their
capableness, strength, and vulnerability. The most important of
these is performance attainments.

It should be noted that self-efficacy is specific to a certain
activity. Therefore, a person may have high self-efficacy in one
domain, such as gardening, and low self-efficacy in another, such
as computer programming. Nevertheless, transfer of self-efficacy

1 Current address: 640 E. 11th Street #3, New York, NY, 10009.
Telephone number: +1 212 979 7335

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ITICSE’04 June 28-30, 2004, Leeds, United Kingdom.
Copyright 2004 ACM 1-58113-836-9/04/0006…$5.00.

171

Figure 1. Proposed model of factors affecting student performance in an introductory programming course

beliefs across related activities may occur [1], for example,
across different programming languages or tasks.

Because skills and self-beliefs are so intertwined, one way of
improving student performance is to improve student self-
efficacy. While self-efficacy can be enhanced by the use of
behavior modeling, cooperative learning environments and
verbal persuasion [1, 5], the greatest influence of all is positive
personal experience [1].

Norman [9] defines mental models as predictive representations
of real world systems. That is to say, people create internal
representations of objects and information in the world, and they
use these mental representations to reason about, explain, and
predict the behavior of external systems.

Programming is a highly cognitive activity that requires the
programmer to develop abstract representations of a process in
the form of logic structures. Having a well-developed and
accurate mental model may affect the success of a novice
programmer in an introductory programming course. Such a
model could include knowledge about how programs work in
general, as well as knowledge about the syntax and semantics of
a specific language [4]. Mental models (also referred to as
schemas) play an important role in program comprehension [10,
14, 17] and correspondingly in comprehension-related tasks,
such as modification and debugging.

This study proposes a model of performance of novice
programmers based on their self-efficacy and mental models
(see Fig. 1). The ovals represent variables and the arrows
represent predicted relationships of the variables. In line with
the existing research [2, 3, 15], we expect that previous
experience will be a significant predictor of both students’ self-
efficacy and mental models of programming. Based on self-
efficacy theory [1], we further expect that students’ self-efficacy
will increase as a result of instruction and continued hands-on
exposure to programming (post-self-efficacy higher than pre-
self-efficacy). We also hypothesize the students’ mental models
of programming will be significantly related to their perceptions
of self-efficacy. Finally, it is expected that both mental model
and self-efficacy will explain a significant amount of course
performance, i.e., in keeping with Bandura, students’ knowledge
content and self-perceptions will be intertwined in successful
performance.

3. METHODOLOGY
3.1 Participants
Seventy-five students enrolled in four sections of a CS1 course
at a public university took part in this study. The students were
undergraduates majoring in computer science, as well as a wide
variety of other majors ranging from agricultural science to
management information systems.

3.2 Materials
The materials included a background questionnaire, a self-
efficacy scale, and two instruments to measure mental models.
All of the materials except the self-efficacy scale were
developed specifically for this study.

The background questionnaire used five questions measuring
the breadth of participants’ prior computer and programming
background: number of courses taken that used computer
applications as a mandatory part of course work (e.g.,
spreadsheets, databases), number of programming courses
taken, number of programming languages used, number of
programs written, and length of the programs written.

Self-efficacy was measured using the Computer Programming
Self-Efficacy Scale [12]. This validated instrument was used
previously by Wilson and Shrock [18] in their research on
success factors in introductory computer science courses. The
scale consists of thirty-three items that ask students to judge
their ability in a wide range of programming tasks and
situations, e.g., “I would be able to write syntactically correct
statements,” “I would be able to write a program that computes
the average of 3 numbers,” “I would be able to comprehend a
long, complex multi-file program,” “I would be able organize
and design my program in a modular manner.” Responses are
marked on a 7-point Likert scale.

The students’ mental models were evaluated by using two
measurements, program comprehension and program recall. The
program comprehension booklet consisted of six short C++
programs (each 15-20 lines long). The programs consisted of a
class definition, a constructor, a member function of the class,
and a main function. Each of the programs was followed by a
list of five true/false questions covering each of the information
categories originally developed by Pennington [10] to measure
the mental model of programmers: elementary operations,

Previous
Experience

Pre
Self-efficacy

Mental
Model

Post
Self-efficacy Performance

(Grade)

172

control flow, data flow, program function, and program state.
These same categories have been used in more recent research
on mental models in OO programming [17]. Recall (measured
as the number of lines recalled correctly) has been used as a
measure of mental organization or mental models in past
programming research, e.g., Shneiderman [13]. Our program
recall booklet, modeled on Shneiderman’s, contained a C++
program that dealt with temperature conversion. The program
had 27 lines of code.

3.3 Procedure
The study was conducted over the course of a fifteen week
semester in two parts, one in the second week of the semester,
and the other in the thirteenth week of the semester.

The first phase of the study involved collecting the student
background information and having students complete the self-
efficacy scale, which yielded the pre-self-efficacy score.

The second phase of the study involved completion of the same
self-efficacy scale (yielding the post-self-efficacy score) and the
two tasks designed to assess the students’ mental model. The
students completed the self-efficacy scale first and then were
given the program comprehension booklet. For each of the six
programs, they had 1.5 minutes to study the program and two
minutes to answer the questions. The students were not allowed
to look back at the programs while answering the questions.
Finally, students were given the recall booklet. They had five
minutes to study the program, then closed the booklet and had
five more minutes to recall and reproduce the program from
memory, to the best of their ability.

The performance measure was the student’s final course grade
and was obtained from the instructor at the end of the semester.

4. RESULTS
4.1 Self-Efficacy of Novice Programmers
The alpha-reliability of the self-efficacy scale was .98,
indicating a highly reliable scare. The mean pre-self-efficacy
score was 94.63 and the mean post-efficacy score was 163.37
out of a maximum possible score of 231 (Table 1). Self-efficacy
of participants increased significantly over the course of a
semester of instruction (t = 12.78, p<.0001). The mean increase
in self-efficacy was 68.75.

To evaluate the effect of pre-self-efficacy on the amount of
change in self-efficacy during the course, we divided the
participants into quartiles of equal size based on their pre-self-
efficacy scores (Table 2). Change in self-efficacy was calculated
as the difference between the post-self-efficacy and the pre-self-
efficacy score and was subjected to a one-way ANOVA. The
ANOVA was significant, F(3,71) = 12.83, p<.0001. The results
show significant effects of time of measurement (pre vs. post),
quartile, and the interaction between the two. The ANOVA was
followed by a Tukey range test to determine specifically how
the groups differed from one another. Results suggest that the
group with the highest pre-self-efficacy (group mean = 165.05)
experienced the least increase in self-efficacy and differed
significantly (p<.05) from all other groups, which registered
much larger increases in efficacy (Table 2). The other three
groups did not differ significantly from one another.

Table 1. Self-efficacy descriptive data (N=75)
Variable Mean StdDev Min Max

Pre-SE 94.63 49.51 33 219

Post-SE 163.37 41.36 52 229

Table 2. Descriptive data for the four quartiles divided on

initial self-efficacy
Group Pre-SE

Mean
Post-SE
Mean

Change
Mean

Change
StdDev

N

1 46.47 134.42 87.95 46.68 19

2 66.39 159.94 93.56 32.01 18

3 99.11 170.05 70.95 31.98 19

4 165.05 188.89 23.84 40.25 19

4.2 Relationship of Self-Efficacy and Mental
Models
The mental model measure was a cumulative sum of
participants’ program comprehension scores and the recall
scores. Analysis of the data revealed a simple Pearson
correlation of r = .3227, p<.01 between the mental model
measure and post-self-efficacy score. There was no significant
correlation between pre-self-efficacy and mental models.

4.3 Analysis of the Model
A major goal of this study was to evaluate the effect of self-
efficacy and mental models on students’ performance. To test if
our model was supported by the data, a path analysis was
conducted [8]. Path analysis consists of a series of multiple
regressions used to analyze the relationships of variables in a
model. Each arrow in our model (Fig. 1) represents a possible
relationship of a predictor (independent) variable on a response
(dependent) variable. Figure 2 shows the results of the multiple
regressions. The strengths of each relationship are depicted as
“path coefficients,” or regression weights, which vary between 0
and 1 (shown on the arrows in Fig. 2). A significant path
coefficient indicates that there is indeed a reliable relationship
between the predictor and response variable. All paths predicted
in the model were significant (p<.05) except for the path from
previous experience to mental model. The R2 values associated
with the dependent variables indicate how much of the variance
in the variable is explained by the predictor variables feeding
into it. As Fig, 2 shows, the variance explained is substantial
except for the effect of previous experience on mental model.

In addition to analyzing the individual relationships, path
analysis seeks to analyze the “fit” of the overall model to the
data. This is done using a Chi-square test. Eliminating the non-
significant path from previous experience to mental model, the
Chi-square test of this model with four degrees of freedom
yielded χ2=1.35, p>.85. Contrary to the usual interpretation, in
this analysis the non-significant result represents a good fit.
Literally, it means that our model containing a theory-based
subset of all possible paths is just as good a predictor of
performance as a model containing every possible path, i.e., this
more parsimonious subset of relationships adequately represents
the important influences on student performance.

173

Figure 2. Results of the analysis of the relationships in the model (*p<.05)

5. DISCUSSION
5.1 Self-Efficacy, Mental Models, and
Programming Performance
The self-efficacy of students increased significantly over the
course of a semester of instruction. The results suggest that
individuals’ changes in self-efficacy are a function of their pre-
self-efficacy. The three lower quartiles showed a significant
increase in efficacy with group 2 registering the greatest increase.
However, the group with the highest initial self-efficacy
experienced the least increase in efficacy as a result of a semester
of instruction in C++ programming. This is a sensible result
because a strong sense of self-efficacy is not easily changed, but
weak self-efficacy is more malleable [1].

The highest quartile is different from the other groups in another
aspect as well. The standard deviation for this group was almost
double its mean change in self-efficacy (Table 2). The implication
is that, while some students in the group registered an increase in
efficacy, others decreased. Further analysis showed that about
one-fifth of this group (21.1%) experienced a decrease in self-
efficacy. This suggests that these students overestimated their
ability to cope with the challenges of the introductory course.

Therefore, as depicted in the results (Fig. 2), we can say that
previous experience is a strong predictor of pre-self-efficacy, and
interestingly it also predicts post-self-efficacy. This indicates that
students’ prior high school experience continues to affect their
perceptions of their capabilities even near the end of the
university course. The results also show that having developed a
strong mental model increases feelings of self-efficacy. Finally,
both what student know, as represented by their internal mental
model, and what they believe about themselves, as represented by
their self-efficacy, affect their performance in the course. While
instructors have always recognized the importance of what
students know, the results of this study underline the parallel
importance of students’ self-beliefs.

5.2 Implications for Pedagogy
An ongoing challenge in computer science education is to attract
students to introductory computer science courses and support
them in what, for many, are the difficult early days. This applies

to computer science majors, as well as to students taking a single
course in programming.

Computer science instructors are well aware of the importance of
students internalizing good mental models of programming. This
study shows that a well-developed and accurate mental model
directly affects course performance and also increases self-
efficacy, the other key element in course performance. Given this
double impact, helping students develop good mental models
should remain a goal in introductory programming courses.
Teaching from the object-oriented perspective may in itself assist
the goal of developing the mental model, because the high
salience of objects, their attributes, and the relationships of
objects highlights the correspondence of computing objects to real
world objects [17]. Apart from the programming language, the
goal of building good mental models could also be achieved by
instruction that engages the student in experiential learning tasks
that involve tracing the logic of a program [4]. Tasks such as
debugging and modifying programs often involve tracing and are
likely to promote development of the mental model. In general,
assignments that involve both program comprehension and
creation strengthen the mental model through reasoning about
consequences, e.g., adding a new module to a program that
involves interactions with other parts of the program.

The other path to increasing student performance is direct self-
efficacy interventions. When teaching an introductory
programming course we must challenge students but not
overwhelm them with complex programming tasks that
undermine their self-efficacy. Interventions that support and
increase self-efficacy have been identified by Bandura [1]:
performance attainments, observation of the performance of
others, social persuasion, and monitoring of one’s own
physiological state. The importance of performance attainments
on self-efficacy indicates that students need to incrementally build
up a history of success at increasingly difficulty tasks. This
suggests that frequent assignments with quick and ample feedback
are more desirable than a smaller number of longer-term projects.
In terms of observation of the performance of others, it is known
that watching another person carry out a difficult task increases
self-efficacy [1, 5]. In learning computer applications [5] it has
been shown that peer modeling is most likely to aid learners,
because it shows the learner that someone “like me” can do the
job. In computer programming we could build the students’ self-

Previous
Experience

.62*

.26*

.39*

.23*

.40*
.24*

.23

Pre
Self-efficacy

Mental
Model

Post
Self-efficacy Performance

(Grade)

R2=.44

R2=.30

R2=.05

R2=.24

174

efficacy by modeling how to build a complex program. A video
of students at work planning, creating, and debugging a program
might provide appropriate modeling. Social persuasion from peers
also promotes self-efficacy [1]. This implies a classroom that
encourages group work and strong interaction with other students.
Social connections may also be built by augmenting the
traditional class setting with online work groups. Finally, a calm
physiological state, as opposed to anxiety and apprehension,
increases feelings of self-efficacy. This may be promoted by
taking measures to increase comfort in the classroom [18] and
decrease student competition. It may also be promoted by
evaluation methods that incorporate measures of student
improvement rather than just absolute measures of achievement.

As a final comment, it is worth noting that any students in
introductory CS courses are not computer science majors. These
students often, however, enter careers in which they develop end-
user programs, such as spreadsheets or interactive web sites, to
support their own work. Since end-user programming is usually
voluntary, motivation is the key to whether the user programs.
Having strong self-efficacy beliefs may be especially important
for future end users.

6. FUTURE DIRECTIONS
Limitations of this study include the short time span in which the
study took place, the self-reporting of previous experience, and
the performance measure of based on the final course grade.

An important area of future research is the study of students who
drop out of introductory programming course (and thus are not
even included in studies such as this that require pre and post
measurement). For such students, it may be important to plan
early interventions to support development of students’ self-
efficacy and mental model, before the student gives up.

7. ACKNOWLEDGMENTS
This work was supported in part by the EUSES Consortium
via NSF grant CCR-0324844.

8. REFERENCES
[1] Bandura, A. Social Foundations of Thought and Action.

Prentice Hall, Englewood Cliffs, NJ, 1986.

[2] Bunderson, E.D. & Christensen, M.E. An analysis of
retention problems for female students in university
computer science programs. Journal of Research on
Computing in Education, 28(1) (1995), 1-15.

[3] Byrne, P. & Lyons, G. The effect of student attributes on
success in programming. Proceedings of ITiCSE 2001,
(2001). ACM Press, NY, 49-52.

[4] Cañas, J.J., Bajo, M.T. & Gonzalvo, P. Mental models and
computer programming. International Journal of Human-
Computer Studies, 40 (5) (1994), 795-811.

[5] Compeau, D.R. & Higgins, C.A. Computer self-efficacy:
development of a measure and initial test. MIS Quarterly
(June 1995), 189-211.

[6] Guzdial, M. & Soloway, E. Log on education: teaching the
Nintendo generation to program. Communications of the
ACM, 45(4) (2002), 17-21.

[7] Karsten R. & Roth R.M. Computer self-efficacy: a practical
indicator of student computer competency in introductory IS
courses. Informing Science. 1(3) (1998), 61-68.

[8] Kerlinger, F.N. & Pehazur, E.J. Multiple Regression in
Behavioral Research. Holt, Reinhart & Winston, New York,
1973.

[9] Norman, D.A. Some observations on mental models. In D.
Gentner and A.L. Stevens, Eds., Mental Models, Erlbaum,
Hillsdale, NJ, 1983.

[10] Pennington, N. Comprehension strategies in programming.
In E. Soloway and S. Iyengar, Eds., Empirical Studies of
Programmers: Second Workshop. Ablex, Norwood, NJ,
1987, 100-113.

[11] Potosky, D. A field study of computer efficacy beliefs as an
outcome of training: the role of computer playfulness,
computer knowledge, and performance during training.
Computers in Human Behavior, 18 (2002), 241-255.

[12] Ramalingam V. & Wiedenbeck S. Development and
validation of scores on a computer programming self-
efficacy scale and group analyses of novice programmer
self-efficacy. Journal of Educational Computing Research,
19(4) (1998), 365-379.

[13] Shneiderman, B. Exploratory experiments in programmer
behavior. International Journal of Computer and Information
Sciences, 5 (2) (1976), 123-143.

[14] Soloway, E. & Ehrlich, K. Empirical studies of programmer
knowledge. IEEE Transactions of Software Engineering, SE-
10 (5) (1984), 595-609.

[15] Taylor, H. & Mounfield, L. Exploration of the relationship
between prior computing experience and gender on success
in college computer science. Journal of Educational
Computing Research, 11(4) (1994), 291-306.

[16] Thomas, L., Woodbury, J. & Jarman, E. Learning styles and
performance in the introductory programming sequence.
Proceedings of SIGCSE 2002 (Covington KY, Feb. 2002).
ACM Press, NY, 33-37.

[17] Wiedenbeck, S., Ramalingam, V., Sarasamma, S. &
Corritore, C.L. A comparison of the comprehension of
object-oriented and procedural programs by novice
programmers. Interacting with Computers, 11 (1999), 255-
282.

[18] Wilson, B.C. & Shrock S. Contributing to success in an
introductory computer science course: s study of twelve
factors. Proceedings of SIGCSE 2001 (2001), ACM Press,
NY, 184-188.

175

