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José Fuentes Sepúlveda
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Abstract

As of 31st December, 2013, the total number of accessible Web pages amounted to
14.3 trillions and the total size of accessible data was calculated to be approximately
672EB (exabytes), not including very large private databases. In specific domains,
such as bioinformatics, the amount of data generated by the second generation of
sequencing technologies is constantly increasing. It is safe to assume that the same
trend will persist in the coming years: The size of the data available will keep growing
exponentially. Thus, it now has become imperative to find ways to solve the problem
of reading, processing and storing those enormous amounts of data. To date, two
main approaches have been proposed to solve the problem: The traditional increase
in the machines’ processing power (led by clock speed up until the beginning of the
millenium, and superseded by adding processors as of 2004), and the more modern,
algorithm-based minimization of the space required to store data. In this thesis, we
combine both approaches, constructing succinct data structures on multicore archi-
tectures.

In particular, three succinct data structures are addressed: Wavelet trees, a well-
known data structure to represent sequences; succinct ordinal trees, a data struc-
ture that uses a space-efficient representation of ordinal trees and supports time-
efficient queries; and succinct triangulated plane graphs, a data structure that uses a
space-efficient representation of triangulated plane graphs and supports time-efficient
queries. For wavelet trees, we present two construction algorithms that achieve O(n)
and O(lg n) time using O(n lg σ + σ lg n) and O(n lg σ + pσ lg n/ lg σ) bits of space,
respectively, where n is the length of the input, σ is the alphabet size and p is the
number of available threads. For succinct trees, we introduce a practical construction
algorithm that takes O(lg n) time and O(n lg n) bits of space for a tree on n nodes.
For triangulated plane graphs, we present a parallel algorithm that computes the
succinct representation of a triangulated plane graph, with n vertices and a canonical
ordering, in O(lg n) time and O(n lg n) bits of space.
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Chapter 1

Introduction

As of 31st December, 2013, the total number of accessible Web pages amounted to
14.3 trillions, of which only 48 billions were indexed by Google (∼ 0.0034% of the
total) and 14 billions were indexed by Microsoft’s Bing (∼ 0.00098% of the total)
[76]. Around the same time, the total size of accessible data was calculated to be
approximately 672EB (exabytes), not including very large private databases such as
Facebook, Twitter, the stock exchange, human genome, among others. In specific
domains, such as bioinformatics, the cost of DNA sequencing has plummeted in the
last few years thanks to next-generation sequencing technologies [137]. In addition,
these technologies are also much faster. For example, in 2005, a single sequencing
run could generate at most one gigabase of data. Meanwhile, in 2014, a single se-
quencing run could generate up to 1.8 terabases of data [77]. These two factors have
drastically increased the amount of genomic data to be processed. Therefore, indexes
over genomic data need to be updated periodically. It is safe to assume that, barring
some unexpected catastrophe, the same trend will persist in the coming years: The
size of the data available will remain growing exponentially. Thus, it now has become
imperative to find ways to solve the problem of reading, processing and storing those
enormous amounts of data. To date, two main approaches have been proposed to
solve the problem: The traditional increase in the machines’ processing power (led
by clock speed up until the beginning of the millenium, and superseded by adding
processors and cores as of 2004), and the more modern, algorithm-based minimization
of the space required to store data. Reducing the space required by the data, it can
be processed in memories closer to the processors, improving its processing time.

After their introduction in the mid-2000s, multicore computers have become per-
vasive. In fact, it is hard nowadays to find a single-core desktop, let alone a high-end
server. The argument for multicore systems is simple [113, 130]: Thermodynamic and
material considerations prevent chip manufacturers from increasing clock frequencies
beyond 4GHz. Since 2005, clock frequencies have stagnated at around 3.75GHz for
commodity computers, and even in 2013 4GHz computers are rare. With more pro-
cessing power, we can speed up algorithms that process large data and, accordingly,
process more data in less time. The first approach delineated in the previous para-
graph aims at taking advantage of these new multi-core architectures.

The second approach, the minimization of the space needed by data, can be fur-
ther subdivided into two categories of algorithms: Those reducing the space needed to
store the data and those reducing space considering some operations of interest. The
algorithms in the first category reduce space by exploiting regularities in the data.
This approach is known as compression. Huffman code [75] and Lempel-Ziv [138]

2



3

belong to this category. Operations on the compressed data are not always possible,
requiring users to decompress the data either partially or totally. The second category
of algorithms use the information-theoretic minimum number of bits to represent data
while supporting operations in ideally optimal time, that are of interest to the problem
at hand. This approach is known as succinct data structures [79]. With succinct data
structures, the data can be stored and processed in memories closer to the processing
units, reducing the costs of memory transfers. In general, compression techniques
use less space than succinct data structures, but succinct data structures support
operations directly without requiring decompression. Succinct data structures have
constant or logarithmic time complexity in most of their primitive operations. There-
fore, in contexts where the data will be queried constantly, succinct data structures
are a better choice.

In this thesis, we integrate two recent approaches to manage large amounts of
data: Multicore machines and succinct data structures. A weak point of data struc-
tures in general, and succinct data structure in particular, is their construction time,
which is generally quite slow compared to other operations of the data structure. We
integrate the capabilities of multicore machines to reduce the construction time suc-
cinct data structures. We focus on improving the design of succinct data structures
over multicore architectures, obtaining good theoretical results that are also practical.
In this work, practical results means results that can be implemented in commodity
architectures, results that scale on time over the number of cores on a machine and
results where their implementations use memory space accordingly with the theoret-
ical results. Improving the construction time using multicore architectures allows us
to design succinct data structures with competitive query time, efficient space usage
- taking advantage of the hierarchical memory - and fast/scalable construction time.

This thesis is organized as follows: In Chapter 2 we talk about the background
needed to understand the remaining chapters. In Chapter 3 we discuss works related
to this project and explain the sequential versions of all the data structures that
we construct in parallel. In Chapters 4 to 6 we present our parallel algorithms: In
Chapter 4 we present our parallel algorithms to construct wavelet trees. Chapter 5
discusses the parallel construction of succinct ordinal trees. The parallel construction
of succinct triangulated plane graphs is shown in Chapter 6. In Chapter 7, we discuss
open problems and future work. Finally, in Chapter 8 we present our conclusions.

1.1 Hypothesis

The thesis is based on the following hypothesis: It is possible to design practical
succinct data structures on multicore machines. That is, succinct data structures that
can be implemented in commodity architectures, can scale on time over the number
of cores on a machine and their implementations use memory space accordingly with
the theoretical results.



4

1.2 Goals

1.2.1 Main Goal

The main goal of this thesis is to design and implement a subset of relevant suc-
cinct data structures on a multicore architecture, in particular, wavelet trees, succinct
ordinal trees and triangulated plane graphs.

1.2.2 Specific Goals

1. To design construction and query algorithms on multicore machines for wavelet
trees, succinct ordinal trees and succinct planar graphs.

2. To analyze the bounds of the designed multicore algorithms in the dynamic
multithreading model.

3. To build practical implementations of the algorithms on multicore machines.

4. To evaluate the performance of these multicore data structures on several dimen-
sions including time, memory usage, and memory transfers using both synthetic
and real world data.

1.3 Methodology

• All succinct data structures are designed to work on Symmetric Multiprocessor
Systems (SMP) (see Section 2.1). Thus, we worked with the restriction of a
relatively small number of cores, compared to the input size (i.e., p� n, where
p is the number of cores and n is the input size). We focused more in the
construction algorithm, since previously, very few parallel algorithms have been
designed to construct succinct data structures.

• Each succinct data structure was analyzed using the Dynamic Multithreading
Model (DYM) (see Section 2.2) and its metrics: Work, span, speedup and par-
allelism. Furthermore, in this thesis, we report two different speedups. The
first speedup formula: T1/Tp, where T1 is the time of the proposed construction
algorithm running with one thread and Tp is the time of the proposed construc-
tion algorithm running with p threads. The second speedup formula: Tbest/Tp,
where Tbest is the best sequential time of the baselines and Tp is the time of the
proposed construction algorithm running with p threads.

• All proposed data structures in this thesis were implemented in C and compiled
with the GCC Cilk branch. This branch was selected because it implements the
complete DYM specification as of the time of writing.

• In the evaluation of the data structures, mainly their construction time, we
used inputs taken from real world corpora whenever possible. For each data
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structure, we obtained two main metrics: Time and memory usage. The ulti-
mate goal is that construction time scales linearly with the number of threads,
and that the memory usage is competitive with their sequential counterparts,
even when increasing the number of threads. As a secondary metric, memory
transfers (measured by the number of cache misses at the last level), are used to
explain some scalability effects of parallel construction time. Regarding queries,
we considered the time, but not the memory usage.

• Reproducibility of the results obtained in this work is an integral part of this
dissertation. As such, all implementations, corpora and results are available at
http://thesis.josefuentes.cl

All implementations were tested in two multicore machines. The description of
each machine is below:

Machine A: This machine implements the Westmere microarchitecture. The ma-
chine has a dual-processor Intel R© Xeon R© CPU (E5645) with six cores per processor,
for a total of 12 physical cores running at 2.40GHz. Hyperthreading is disabled. The
computer runs Linux 3.5.0-17-generic, in 64-bit mode. This machine has per-core L1
and L2 caches of sizes 32KB and 256KB, respectively and a per-processor shared L3
cache of 12MB, with a 5,958MB (∼6GB) DDR3 RAM memory, clocked at 1333MHz.
All cache levels are inclusive.

Machine B: This machine implements the Bulldozer microarchitecture. The ma-
chine has four AMD OpteronTM Processor 6278 with 16 cores per processor1, for a
total of 64 physical cores running at 2.40GHz. The computer runs Linux 3.11.0-26-
generic, in 64-bit mode. This machine has a per-core L1 and L2 caches of sizes 64KB
and 2048KB, respectively, and a per-processor shared L3 cache of 6MB, with a 189GB
DDR3 RAM memory, clocked at 1333MHz. Caches L1 and L2 are inclusive. L3 is
neither inclusive nor strictly exclusive of the L2 caches.

Both machines are Non Uniform Memory Access (NUMA) systems. In a NUMA
system, each processor has a local memory and can access the local memory of other
processors (remote memory) through a dedicated wiring2. To manage the memory
access, each processor has an integrated memory controller. As usual, accesses to
local memory are cheaper than accesses to remote memory. In a NUMA system,
all the processors are connected in a grid topology [37], which increases the memory
bandwidth, since all processors can access to memory independently. See Figure 1.1
for an example of a NUMA system with four processors.

1Each processor has 8 dual-cores. Each dual-core shares the instruction fetch and decode units,
floating point unit, L1 instruction cache and the L2 cache. In this thesis, for our experiments, we
consider that each processor has 16 cores.

2In Intel processors, the dedicated wiring is called QuickPath Interconnect Technology. In AMD
processors, the dedicated wiring is called HyperTransport Technology.

http://thesis.josefuentes.cl
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Figure 1.1: Example of a NUMA system and a grid topology with four processors.

For a performance comparison of Intel Sandy Bridge microarchitecture (the suc-
cessor of Westmere microarchitecture) and AMD Bulldozer microarchitecture, please
see [100].

In Appendix B we show the memory hierarchy of each machine.

1.4 Contributions

The contributions of this thesis are listed below:

• We designed and implemented two parallel algorithms to construct wavelet
trees. For an input sequence of size n and an alphabet of size σ, our first
algorithm has O(n lg σ) work (sequential time), O(n) span (parallel time) and
uses O(n lg σ + σ lg n) bits. Our second algorithm has O(n lg σ) work, O(lg n)
span and uses O(n lg σ+ pσ lgn

lg σ
) bits, where p is the number of available threads.

In our experiments, we obtained speedups up to 32, with respect to the best
sequential implementation. These algorithms are described in Chapter 4. We
published our results in the Symposium on Experimental Algorithms [49] and in
the journal Knowledge and Information Systems [50].

• We designed two parallel algorithms to construct succinct representations of
ordinal trees. For a tree with n nodes stored as a sequence of balanced paren-
theses, our first algorithm builds a succinct tree representation with O(n) work,
O(lg n) span and supports a rich set of operations in O(lg n) time. We im-
plemented this algorithm and obtained speedups up to 30 with respect to its
sequential version and up to 21 with respecto to the best sequential imple-
mentation. Our second algorithm improves the query support. It constructs a
succinct representation that supports queries in O(c) time, taking O(n) work
and O(lg n) span, for any positive constant c. Both algorithms use O(n lg n)
bits of working space. We also introduced an algorithm that takes O(n) work,
O(lg n) span and uses O(n lg n) bits to construct the balanced parenthesis se-
quence of the input tree required by our succinct tree construction algorithm.
These algorithms are described in Chapter 5. We published our results in the
Symposium on Experimental Algorithms [44].

• We design and implement a parallel algorithm to construct succinct represen-
tations of triangulated plane graphs. For a triangulated plane graph with n
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nodes, our algorithm has O(n) work, O(lg n) span and uses O(n lg n) bits. In
our experiments, we obtained speedups up to 24, with respect to its sequential
version. These algorithms are described in Chapter 6.

• We provide a repository with all our implementations and datasets. The repos-
itory is available on http://thesis.josefuentes.cl.

http://thesis.josefuentes.cl


Chapter 2

Models for Parallel Computation

In this section, we discuss the parallel models that we used in this thesis and how we
measured performance. With respect to models, it is necessary to distinguish between
models for hardware and models for algorithm analyses. Models for hardware specify
how the memory and the processing units are organized, while models for algorithms
define how to analyze the complexities of the algorithms, based on running time,
resource usage, among others. Both kind of models complement each other. They
are described below.

2.1 Parallel Model for Hardware

This thesis assumes the Symmetric Multiprocessor System (SMP) [129]. An SMP
system consists of a collection of homogeneous processing units which share a common
physical memory called Main Memory. Each processing unit works independently
with respect to the other processing units and all of them take equally long to access
main memory. In order to access main memory, processing units use the Front Side
Bus (FSB), shared by all of them. If two or more processing units try to use the FSB
at the same time, a unit called the Bus Master randomly selects one of them to access
the FSB. Generally, each processing unit has a high-speed memory called a cache to
improve the locality of data. Among processors, caches and main memory, the unit
of transfer is the cache line. A cache line can be in more than one cache, at the same
time. Synchronization among processing units is done through Main Memory. SMP
systems also assume that there exists just one operating system and all read/write
operations to main memory are atomic. Figure 2.1 shows how an SMP system looks
like.

A further assumption in SMP systems is that all processing units see the same
memory content at any time. To ensure that uniform view of the memory, a cache
coherency protocol is considered. In this thesis, we assume the Modified-Exclusive-
Shared-Invalid (MESI) cache coherency protocol. The MESI protocol assumes the
following four states for each cache line:

• Modified: The cache line has been modified by the local processing unit. This
state implies that there is only one copy of the cache line.

• Exclusive: The cache line is not modified and there is only one copy of it.

• Shared: The cache line is not modified and there might exist more than one
copy of it in different caches.

8
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Figure 2.1: Symmetric Multiprocessor System (SMP).

• Invalid: The cache line is invalid or unused.

Figure 2.2 shows the transitions among states. Initially, all cache lines are empty
and their state is Invalid. If a cache line is loaded to be written, then the cache line
changes to Modified. If the cache line is loaded to be read, then its state changes to
Exclusive or Shared, depending on whether another processing unit has a copy of the
cache line.

If a remote processing unit wants to read a Modified cache line, then the local
processing unit sends the cache line to the remote processing unit and both processing
units, the local and the remote, change its copy of the cache line to Shared. If a remote
processing unit wants to write a Modified cache line, then the local unit sends the
cache line and changes the state of its copy to Invalid.

If a Shared cache line is locally written, then its state changes to Modified and all
other possible copies change their states to Invalid. If a remote processing unit wants
to write a Shared cache line, then the state of the cache line changes to Invalid. The
case of Exclusive cache lines is similar to Shared cache lines with only one difference:
A local write does not generate changes in the states of other copies of the cache line.
Any other transition does not change the state of the cache line.

The choice of the SMP system hardware model was based on two considerations:
first, SMP systems reflect the parallel architectures that are implemented most com-
monly today in commodity computers; that is, computers that are readily available
in the mass market. Currently, also, it is common to find large clusters that consist
of several SMP-like computers– more than one core, shared memory and one oper-
ating system, making the findings effectively applicable to some distributed memory
architectures as well. Second, the model of computation that we used in this thesis
(see Section 2.2) assumes an ideal parallel computer which consists of a set of cores
and sequentially consistent shared memory [31]. SMP systems match that definition
of the ideal parallel computer.
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Figure 2.2: MESI protocol transitions.

2.2 Parallel Model for Algorithms Analysis

The lack of a standard model for parallel computation is evident when reviewing
the literature. Since the 1970’s until now the number of parallel models has been
increasing, making it complicated to compare algorithmic solutions.

One of the most used parallel models is PRAM [47, 56, 59]. The PRAM model
is simple enough to model the dependencies inside a parallel computation. Thanks
to its simplicity, the amount of research over this model is impressive, even more
so considering the absence of real machines implementing this model’s assumptions.
Even though adaptations of solutions on PRAM can be considered practical today on
SMP systems [8] and Graphic Processors (GPU) [2], the big picture is that PRAM
model is not a practical model. PRAM model assumes an unbounded set of cores,
an unbounded global memory and an unbounded local memory for each core, which
is not practical. Besides, PRAM model assumes that all the cores can access simul-
taneously to the global memory, which is unrealistic if we consider SMP systems (see
Section 2.1). Additionally, most PRAM algorithms assume SIMD machines (single
instruction, multiple data), which do not take advantage of the MIMD architectures
(multiple instruction, multiple data) that are prevalent today.

Since the approach of this thesis is to provide practical solutions, it is necessary to
adopt models other than PRAM. Although the choice of models is wide-ranging [133,
12, 15], the Dynamic Multithreading Model (DYM, for short) proposed in [31] stands
out for its influence on practical concurrency platforms, such as Intel’s CilkPlus1[90],
OpenMP2, and Threading Building Blocks3. A comparison of some of those platforms
can be found in [116].

1Intel’s CilkPlus: www.cilkplus.org
2OpenMP: www.openmp.org
3Threading Building Blocks: www.threadingbuildingblocks.org

www.cilkplus.org
www.openmp.org
www.threadingbuildingblocks.org
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DYM specifies the logical parallelism of an algorithm, using a reduced set of key-
words: spawn, sync, and parfor. It is possible to obtain a serialization of a parallel
algorithm in DYM by just deleting the keywords spawn and sync, and replacing the
keyword parfor with the traditional keyword for. Thanks to that, DYM allows us
to measure the parallelism of an algorithm in a clear and simple way, with the added
characteristic that all correct parallel programs also imply correct sequential ones.
Another feature of DYM is that it considers the usage of a work-stealing scheduler,
which simplifies algorithm design, making the mapping of the parallel computation
onto cores transparent to the programmer. DYM is the model for parallel computa-
tion used in this thesis. The next section describes DYM in more detail.

2.2.1 Dynamic Multithreading Model

As previously stated, DYM works by declaring the logical parallelism of an algorithm
using the keywords spawn, sync, and parfor. In other words, spawn, sync, and
parfor indicate which parts of the computation may proceed in parallel. The spawn
keyword signals that the procedure call that it precedes may be executed in parallel
with the next instruction in the instance that executes the spawn. In turn, the sync
keyword signals that all spawned procedures must finish before proceeding with the
next instruction in the stream. Finally, parfor is “syntactic sugar” for spawning one
thread per iteration in the for loop, thereby allowing these iterations to run in parallel,
followed by a sync operation that waits for all iterations to complete. In practice, the
parfor keyword is implemented by halving the range of loop iterations, spawning
one half and using the current procedure to process the other half recursively until
reaching one iteration per range. After that, the iterations are executed in parallel.
This implementation adds an overhead to the parallel algorithm bounded above by
the logarithm of the number of loop iterations. If a stream of instructions does not
contain one of the above keywords, or a return (which implicitly syncs) from a
procedure, they form what is called a strand.

For all our parallel algorithms, their sequential versions can be obtained by re-
placing parfor instructions with sequential for instructions.

In DYM, a multithreaded computation can be seen as a directed acyclic graph
(DAG) G = (V,E), where the set of vertices V are instructions and (u, v) ∈ E are
dependencies between instructions; in this case, u must be executed before v. The
possibility of seeing a multithreaded computation as a DAG allows us to obtain an
estimation Tp of the time needed to execute the computation on p cores. Tp depends
on two parameters of the computation: Its work T1 and its span T∞. For simplicity,
let us assume that each strand takes unit time (observe that we can decompose a
strand that takes more than unit time into several strands that take unit time). The
work is the total running time taken by all strands when executing on a single core.
In other words, it is the number of vertices of the DAG4. Since p cores can execute

4Note that analyzing the work amounts to finding the running time of the serial algorithm using
the RAM model.



12

A : array of 8 numbers
parfor i = 0 to 7 do

A[i] = 0
return

Algorithm 1: Example of a parallel
algorithm using the parfor keyword. In
parallel, the algorithm initializes all the
elements of the array A with 0.

Figure 2.3: Example of a multithreaded
computation on the Dynamic Multithreading
Model. It corresponds to the directed acyclic
graph representation of Algorithm 1.
Vertices represent strands and edges
represent dependences.

only p instructions at a time, we have Tp = Ω(T1/p). The span, T∞, is the critical
path (the longest path) of the DAG. Since the instructions on this path need to be
executed in order, we also have Tp = Ω(T∞). Together, these two lower bounds
give the upper bound Tp = O(T∞ + T1/p). In the study of parallel algorithms, the
speedup is a metric that measures how a parallel algorithm scales with respect to
a sequential one. In DYM, the speedup of a computation is defined as the ratio
T1/Tp, where linear speedup, T1/Tp = Θ(p), is ideal. In DYM, we also compute
the parallelism, which corresponds to the ratio T1/T∞ and can be interpreted as the
theoretical maximum number of cores for which it is possible to achieve linear speedup.
Finally, the efficiency is defined as T1/(Tp × p), the ratio between the speedup and
the number of cores, and can be interpreted in three ways: As the percentage of
improvenment achieved by using p cores, as the speedup per core, or how close we
are of the linear speedup.

Algorithms 1 and 2, and Figures 2.3 and 2.4, give two examples of the usage of
DYM. In the figures, each circle represents one strand and each rounded rectangle
represents strands that belong to the same procedure call. Algorithm 1 represents a
parallel algorithm using parfor and Figure 2.3 shows its multithreaded computation.
The algorithm starts on the initial procedure call with the entire range [0, 7]. The
first half of the range is spawned (black circle in the initial call) and the second
half is processed by the same procedure (gray circle of the initial call). This divide-
and-conquer strategy is repeated until reaching strands with one iteration of the
loop (black circles on the bottom of the figure). Once an iteration is finished, the
corresponding strand syncs to its calling procedure (white circles), until reaching the
final strand (white circle of the initial call). Assuming that each strand takes unit
time, the work is 29 time units and the span is 8 time units (this is represented in
the figure by the nodes connected with shaded edges).

The case of Algorithm 2 is similar, but using spawn and sync. Figure 2.4 shows
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Input: A, v, s, e

1 c = 0
2 if e− s = 1 then
3 if A[s] = v then return 1
4 return 0

5 m = b(s+ e)/2c
6 a =spawn pcount(A, v, s,m)
7 b = pcount(A, v,m+ 1, e)
8 sync
9 return a+b

Algorithm 2: pcount(). Example of a
parallel recursive algorithm using the
spawn and sync keywords. In parallel,
the algorithm counts the occurrences of
the element v between the s-th and e-th
elements of the subarray A.

Figure 2.4: Example of a multithreaded
computation on the Dynamic Multithreading
Model. It corresponds to the directed acyclic
graph representation of the call
pcount(A, v, 0, 6) of Algorithm 2. Vertices
represent strands and edges represent
dependences.

the corresponding multithreaded computation. Let A[s, e] be the subarray with ele-
ments A[s], A[s+ 1], . . . , A[e]. The algorithm starts on the initial procedure call with
the subarray A[0, 6]. The first half of the subarray is spawned (black circle in the
initial call) and the second half is processed by the same procedure (gray circle of
the initial call). This divide-and-conquer strategy is repeated until reaching strands
with one element of the array A (black circles on the bottom of the figure, where s is
equal to e). Once a bottom strand is finished, it syncs to its calling procedure (white
circles), until reaching the final strand (white circle of the initial call). Assuming that
each strand takes unit time, the work is 25 time units and the span is 8 time units.

The DYM takes advantage of greedy schedulers [13, 31, 14] to schedule the
strands efficiently onto cores of an ideal parallel computer. Greedy schedulers assign
as many strands to cores as possible at each step; i.e., if the parallel computer has p
available cores and at least p strands are ready to be executed, then p strands are exe-
cuted; otherwise, if less than p strands are ready, all of them are executed. Such kind
of schedulers have been proven to achieve at least half of the optimal performance.
More precisely, for any multithreaded computation with work T1 and span T∞, and for
any number p of cores, any greedy scheduler χ achieves Tχ,p ≤ T1/p+T∞, where Tχ,p is
the minimal execution time of the multithreaded computation using p cores with the
scheduler χ. In particular, in this thesis we worked with the work-stealing sched-
uler[3, 14, 90], which is the most used greedy scheduler in practical concurrency plat-
forms. To simplify the notation, instead of Tχ,p, we use Tp. The work-stealing sched-
uler uses the work-stealing algorithm to compute a schedule. Figure 2.5 shows a
diagram of a work-stealing scheduler and illustrates the work-stealing algorithm. In
the work-stealing algorithm, strands are also called tasks or lightweight-threads;
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strands are distributed on threads (also called static threads), and threads are
mapped to physical cores. Each thread maintains a pool of ready strands from which
it obtains work. The pool is maintained as a double-ended queue or deque. If the
pool of a thread is empty, this thread (called the thief ) tries to steal a strand from
another thread (called the victim). If the steal is successful, the thief executes the
stolen strand; otherwise, the thief chooses another victim and tries to steal again.
To steal a strand, the thief has to try to steal from the top of the corresponding
pool/deque. If the pool is not empty, the thread continues executing a strand from
the bottom of its pool (working effectively as a stack). Each time a thread creates a
new strand (through spawn or parfor), such a strand is pushed in the bottom of the
pool associated with that thread. This strategy balances the workload of the threads.
The work-stealing scheduler simply schedules strands onto threads and assumes that
the operating system schedules the threads on the physical cores. The incurred over-
head by the operating system scheduler is not considered part of the work-stealing
scheduler (and is in fact referred to as an “adversary” in parts of the literature).
However, in this thesis we have considered the same amount of static threads and
cores, reducing the probability of context switching among cores. In that way, the
overhead of the operating system scheduler is negligible, or at least controlled. For
more details about the work-stealing scheduler and its implementation, please review
these works [14, 3, 90, 30].

Figure 2.5: Diagram of the work-stealing scheduler. The strands are symbolized by
squares, pools by rectangles, cores by circumferences and threads by arrows. The thread
associated with the core 3 must steal a strand from another randomly selected thread,
since this is the only option of this thread to obtain work on the work-stealing scheduler.

Finally, with respect to the memory usage of the work-stealing scheduler, Blumofe
and Leiserson [3, 14] show that the scheduler exhibits at most a linear expansion
of space, that is, O(S1p), where S1 is the minimum amount of space used by the
scheduler for any execution of a multithreaded computation using one core. This
upper bound is optimal to within a constant factor [3]. In this thesis we assume that
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the number of threads is much lower than the size of the succinct data structures.
Therefore, the space used by the scheduler can be considered negligible. In that way,
in this thesis we prove that our succinct data structures use the memory efficiently.

2.2.2 Performance Measurement

Considering practical implications of the succinct data structures studied in this the-
sis, it is necessary to consider additional tools besides the models. For each suc-
cinct data structure we obtain three measurements: Time, memory usage, and cache
misses. Time allows us to measure the impact of adding more processing units in
the creation of the data structures. Memory usage is important to see if including
more processing units involves more memory usage. Finally, cache misses is an ad-
ditional measurement that allows us to detect if the use of more processing units
improves/deteriorates the cache behavior. To measure the time we used the high-
resolution (nanosecond) C function clock gettime5. The function was set with the
timer CLOCK THREAD CPUTIME ID to measure the time of the main thread. Memory
usage will be measured by counting the explicit memory allocations, through malloc

in C or new in C++. To do that, we used a tool called malloc count [11]. On the
other hand, perf was used to obtain the cache misses.

5We used the C function clock getres() to ensure that the function clock gettime has a
nanosecond resolution.



Chapter 3

Related Work

3.1 Parallel Data Structures

Little work has been done to date on parallel succinct data structures, even in PRAM
or SMP systems. With respect to non-succinct data structures, such as linked data
structures, i.e., data structures which consist of a set of data nodes linked together and
organized by references, the research has been more plenty on multicore architectures
[1, 35, 39, 64, 72, 74, 83]. In general, the research on this kind of data structures is
based on the synchronization of threads through synchronization primitives, allowing
each thread to manipulate the data structure in a concurrent way. Such synchroniza-
tion primitives may belong in two categories: Blocking or Non-blocking. Blocking
primitives, such lock, lock all except one thread, ensuring that just one thread can
manipulate the data structure. Once the thread finishes, the rest of the threads can
continue using the data structure. Depending on the data structure, the primitives
can be used to lock the entire structure or just a portion of it. As the counter-
part, non-blocking primitives, such as compare-and-swap(CAS), do not use locks.
Instead, these primitives make small changes that involve few machine instructions.
Those machine instructions are applied atomically, preventing two threads from inter-
fering each other. As these primitives make small changes, the overhead generated by
the scheduling of the threads is low. Both kind of primitives are available in current
architectures, being part of the main programming languages.

Solutions to parallel non-succinct data structures can be evaluated to apply them
in parallel versions of succinct data structures. In particular, concepts such as lin-
earizability [73], a correctness condition for data structures shared by concurrent pro-
cesses, and wait-free/lock-free synchronization [71, 69] may be useful in the context
of dynamic succinct data structures, where the succinct structure will be modified
concurrently.

3.2 Succinct Data Structures

A succinct data structure is an asymptotically space-efficient and query-time-efficient
representation of a data structure [79]. Space-efficient means that the space used by
the succinct data structure is close to the information-theoretic lower bound of that
data structure. In particular, let lwr be the information-theoretic lower bound, then
a succinct data structute uses lwr+ o(lwr) bits. Query-time-efficient means that the
optimal time reached by other non-succinct data structures on query time is achieved
by succinct representations. For example, consider the representation of a binary tree

16
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of n nodes. Let us consider first a traditional linked representation, where each node
has references to its left-child, right-child and parent. Under the RAM-model with
Θ(lg n) bits per reference, the traditional representation uses Θ(n lg n) bits. Now,
let us consider a succinct representation. Since there exist only C =

(
2n+1
n

)
/2n + 1

different binary trees, then lwr = lgC, which is fewer that 2n bits. Therefore, a
succinct representation for a binary tree should use 2n+o(n) bits while still supporting
operations in optimal time.

The research on succinct data structures has been broad, including succinct rep-
resentation for text indexes [53, 110, 28, 95, 58, 62, 16, 58], trees [109, 80, 122, 104,
10, 54, 82, 92, 65, 41], and graphs [80, 23, 9, 21], among others [128, 18, 98, 115, 101].
Those structures also show a good behavior in practice [16, 4, 42]. For a good survey
of succinct data structures, see [111].

In this thesis we worked on three succinct data structures: Wavelet trees (hence-
forth wtree), one of the most used succinct data structures in text indexing, unlabeled
succinct ordinal trees (henceforth stree), which is the base of the succinct represen-
tation of other structures such as labeled succinct trees and planar graphs [9, 80]
and succinct triangulated plane graphs (henceforth sgraph), which have applications
in representing geographic maps, microchip layouts, among others [125, 108, 34, 84].

3.2.1 Wavelet Tree

The wtree was introduced the first time in [60]. Previously, in Computational Ge-
ometry, Chazelle [20] introduced a similar non-succinct data structure. Although
the wtree was originally devised as a data structure for encoding a reordering of the
elements of a sequence[60, 43], it has been successfully used in many applications.
For example, it has been used to index documents [134], grids [112] and even sets of
rectangles [18, 19], to name a few applications (we refer to [110, 96] for comprehensive
surveys).

For the purpose of this thesis, a wtree is a data structure that maintains a sequence
of n symbols S = s1, s2, . . . , sn over an alphabet Σ = [1..σ] efficiently supporting
the following operations: access(S, i), which returns the symbol at position i in S;
rankc(S, i), which counts the times symbol c appears up to position i in S; and
selectc(S, j), which returns the position in S of the j-th appearance of symbol c.
Wtrees can be stored in space bounded by different measures of the entropy of the
underlying data, thus enabling compression. In addition, they can be implemented
efficiently [27] and perform well in practice.

The wtree is a balanced binary tree. We identify the two children of a node as left
and right. Each node represents a range R ⊆ [1, σ] of the alphabet Σ. Its left child
represents a subset Rl, which corresponds to the first half of R, and its right child a
subset Rr, which corresponds to the second half. Every node virtually represents a
subsequence S ′ of S composed of symbols whose value lies in R. This subsequence
is stored as a bitmap in which a 0 bit means that position i belongs to Rl and a 1
bit means that it belongs to Rr. In this work, we focus on wtrees where the symbols
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(a) Representation of a wtree using O(1) pointers per node and its associated bitmaps.
The subsequences of S in the nodes (gray font) and the subsets of Σ in the edges are
drawn for illustration purposes.

(b) Representation of a wtree using one pointer per level and its associtaed n-bit bitmap.
It can simulate the nagivation on the tree by using the rank operation over the bitmaps.
Figure 3.1: A wtree for the sequence S =“once upon a time a PhD student” and the
contiguous alphabet Σ = {o,n,c,e,‘ ’,u,p,a,t,i,m,P,h,D,s,d}. We draw spaces
using stars.

of Σ are contiguous in [1, σ]. If they are not contiguous, a bitmap is used to remap
the sequence to a contiguous alphabet [27]. Under these restrictions, the wtree is a
balanced binary tree with dlg σe levels.

In its simplest form, this structure requires ndlg σe+o(n lg σ) bits for the data, plus
O(σ lg n) bits to store the topology of the tree (considering O(1) pointers per node),
and supports aforementioned queries in O(lg σ) time by traversing the tree using
O(1)-time rank/select operations on bitmaps [119]. A simple recursive construction
algorithm takes O(n lg σ) time (we do not consider space-efficient construction algo-
rithms [29, 131]). As mentioned before, the space required by the structure can be
reduced: The data can be compressed and stored in space bounded by its entropy (via
compressed encodings of bitmaps and modifications on the shape of the tree), and the
O(σ lg n) bits of the topology can be removed, effectively using one pointer per level
of the tree [27], which is important for large alphabets. The removal of the O(σ lg n)
bits of the topology can also be done using the wavelet matrix [28]. Unless otherwise
stated, we will focus on construction using a pointer per level because, even though it
adds some running time costs, it is more suitable for large datasets. Notwithstanding
this, it is trivial to apply the technique to the case of O(1) pointers per node, and
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our results can be readily extended to other encodings and tree shapes.

Figure 3.1 shows an example of two wtree representations for the sequence S =
“once upon a time a PhD student”. Figure 3.1a shows the O(1)-pointers-per-node
representation, while Figure 3.1b shows the one-pointer-per-level representation. In
our algorithms, we implemented the one-pointer-per-level representation; however, for
clarity, we use the O(1)-pointers-per-node representation to exemplify. In both rep-
resentations, we highlighted the traversal performed by the operation access(S, 24),
assuming that the bitmaps begin with index 0. To answer it, a top-down traversal
of the wtree is performed: If a bit 0 is found, we visit the left branch; if a 1, the
right branch is chosen. In the first representation, the query works as follows: Let
curr be the root, Bcurr be the bitmap of the current node, i = 24 be the index of
interest, R be the range [0, σ − 1] = [0, 15] and rank c(Bcurr , i) be the number of c-
bits up to position i in Bcurr . At the beginning, we inspect the bit Bcurr [i]. Since
the bit is 1, we recompute i = rank 1(Bcurr , i) − 1 = 7, change curr to be the right
child of curr and halve R = [8, 15]. Then, we repeat the process. Since Bcurr [i] = 0,
i = rank 0(Bcurr , i)−1 = 4, curr is updated to be the left child of curr and R = [8, 11].
Now, Bcurr [i] = 0, i = rank 0(Bcurr , i)− 1 = 2, curr is changed to be the left child of
curr and R = [8, 9]. Finally, in the last level, Bcurr [i] = 0, so the range R = [8, 8]
and the answer for access(S, 24) is Σ[8] =‘ t ’. rankc(S, i) and selectc(S, i) per-
form similar traversals to access(S, i). For a more detailed explanation of wtree
operations, see [110]. For the one-pointer-per-level representation, the procedure is
similar, with the exception that the traversal of the tree must be simulated with rank
operations over the bitmaps [27].

The wtree supports more complex queries than the primitives described above.
For example, Mäkinen and Navarro [95] showed its connection with a classical two-
dimensional range-search data structure. They showed how to solve range queries in
a wtree and its applications in position-restricted searching. Independently, Chazelle
[20] proposed a similar data structure for the two-dimensional range-search problem.
The main difference is that the data structure of Chazelle is not succinct. In [86], the
authors represent posting lists in a wtree and solve ranked AND queries by solving
several range queries synchronously. Some work has been done in parallel processing
of wtrees. In [5], the authors explore the use of wtrees in distributed web search
engines. They assume a distributed memory model and propose partition techniques
to balance the workload of processing wtrees. Note that our work is complementary to
theirs, as each node in their distributed system can be viewed as a multicore computer
that can benefit from our algorithms. In [88], the authors explore the use of SIMD
instructions to improve the performance of wtrees (and other string algorithms, see, for
example, [40]). This set of instructions can be considered as low-level parallelism. We
can also benefit from their work as it may improve the performance of the sequential
parts of our algorithms.
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Figure 3.2: Balanced parentheses representation P of a tree T . This representation, also
known as folklore encoding, can be stored using a bit vector, writing a 1 for each open
parenthesis and a 0 for each closed parenthesis.

3.2.2 Succinct ordinal trees

Succinct ordinal trees were introduced in 1989 by Jacobson [79]. He showed how to
represent an ordinal tree on n nodes using 2n+ o(n) bits so that computing the first
child, next sibling or parent of any node takes O(lg n) time in the bit probe model.
Clark and Munro [25] showed how to support the same operations in constant time in
the word RAM model with word size Θ(lg n). Since then, much work has been done
on succinct tree representations, to support more operations, to achieve compression,
to provide support for updates, and so on. See [121] for a thorough survey. Navarro
and Sadakane [109] recently proposed a succinct tree representation, referred to as
NS-representation throughout this thesis, which was the first to achieve a redundancy
of O(n/ lgc n) bits for any positive constant c. The redundancy of a data structure is
the additional space it uses above the information-theoretic lower bound. While all
previous tree representations achieved a redundancy of o(n) bits, their redundancy
was Ω(n lg lg n/ lg n) bits, that is, just slightly sublinear. The NS-representation also
supports a large number of navigational operations in constant time (see Table 3.1);
only the work in [65, 41] supports two additional operations. An experimental study of
succinct trees [4] showed that a simplified version of this representation uses less space
than other existing representations in most cases and performs most operations faster.
In this thesis, we present a parallel algorithm for constructing the NS-representation.

Simplified NS-representation

The NS-representation is based on the balanced parenthesis sequence P of the input
tree T , which is obtained by performing a preorder traversal of T and writing down
an open parenthesis when visiting a node for the first time and a closed parenthesis
after visiting all its descendants. Thus, the length of P is 2n. See Figure 3.2 for an
example.
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Operation Description

1 child(x, i) Find the ith child of node x
2 child rank(x) Report the number of left siblings of node x
3 degree(x) Report the degree of node x
4 depth(x) Report the depth of node x
5 level anc(x, i) Find the ancestor of node x that is i levels

above node x
6 subtree size(x) Report the number of nodes in the subtree

rooted at node x
7 height(x) Report the height of the subtree rooted at x
8 deepest node(x) Find the deepest node in the subtree rooted

at node x
9 LCA(x, y) Find the lowest common ancestor of nodes x

and y
10 lmost leaf(x) /rmost leaf(x) Find the leftmost/rightmost leaf of the

subtree rooted at node x
11 leaf rank(x) Report the number of leaves before node x

in preorder
12 leaf select(i) Find the ith leaf from left to right
13 pre rank(x)/post select(x) Report the number of nodes preceding node

x in preorder/postorder
14 pre select/post select(i) Find the ith node in preorder/postorder
15 level lmost(i)/level rmost(i) Find the leftmost/rightmost node among all

nodes at depth i
16 level succ(x)/level pred(x) Find the node immediately to the left/right

of node x among all nodes at depth i

17 access(i) Report P [i]
18 find open(i)/find close(i) Find The matching parenthesis of P [i]
19 enclose(i) Find the closest enclosing matching

parenthesis pair for P [i]
20 rank open(i)/rank close(i) Report the number of open/closed

parentheses in P [1..i]
21 select open(i)/select close(i) Find the ith open/closed parenthesis

Table 3.1: Operations supported by the NS-representation [109], including operations
over the corresponding balanced parenthesis sequence.

The NS-representation is not the first structure to use balanced parentheses to
represent trees. Munro and Raman [104] used succinct representations of balanced
parentheses to represent ordinal trees and reduced a set of navigational operations
on trees to operations on their balanced parenthesis sequences. Their solution sup-
ports only a subset of the operations supported by the NS-representation. Additional
operations can be supported using auxiliary data structures [92, 124, 106, 107], but
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supporting all operations in Table 3.1 requires many auxiliary structures, which in-
creases the size of the final data structure and makes it complex in both theory and
practice. The main novelty of the NS-representation lies in its reduction of a large set
of operations on trees and balanced parenthesis sequences to a small set of primitive
operations. Representing P as a bit vector storing a 1 for each open parenthesis and
a 0 for each closed parenthesis (see Figure 3.2), these primitive operations are the
following, where g is an arbitrary function on {0, 1}:

sum(P, g, i, j) =
∑j

k=i g(P [k])

fwd search(P, g, i, d) = min{j | j ≥ i, sum(P, g, i, j) = d}
bwd search(P, g, i, d) = max{j | j ≤ i, sum(P, g, j, i) = d}

rmq(P, g, i, j) = min{sum(P, g, i, k) | i ≤ k ≤ j}
RMQ(P, g, i, j) = max{sum(P, g, i, k) | i ≤ k ≤ j}

rmqi(P, g, i, j) = argmin
k∈[i,j]

{sum(P, g, i, k)}

RMQi(P, g, i, j) = argmax
k∈[i,j]

{sum(P, g, i, k)}

Most operations supported by the NS-representation reduce to these primitives
by choosing g to be one of the following three functions:

π : 1 7→ 1 φ : 1 7→ 1 ψ : 1 7→ 0

0 7→ −1 0 7→ 0 0 7→ 1

For example, assuming the ith parenthesis in P is an open parenthesis, the match-
ing closed parenthesis can be found using fwd search(P, π, i, 0). Thus, it (almost)1

suffices to support the primitive operations above for g ∈ {π, φ, ψ}. To do so, Navarro
and Sadakane designed a simple data structure called Range Min-Max Tree (RMMT),
which supports the primitive operations above in logarithmic time when used to rep-
resent the entire sequence P . To achieve constant-time operations, P is partitioned
into chunks. Each chunk is represented using an RMMT, which supports primitive op-
erations inside the chunk in constant time if the chunk is small enough. Additional
data structures are used to support operations on the entire sequence P in constant
time.

Next we review the RMMT structure and how it supports the primitive operations
for g = π (In Figure 3.3 we show an example of the function π). Navarro and
Sadakane [109] discussed how to make it support these operations also for φ and ψ
while increasing its size by only O(n/ lgc n). To define the variant of the RMMT we

1A few navigational operations cannot be expressed using these primitives. The NS-representation
includes additional structures to support these operations.
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Figure 3.3: Range min-max tree of the balanced parentheses sequence of Figure 3.2,
with s = 7. In the figure, the m′ and M ′ values involved in the operation
fwd search(P, π, 5, 0) = 20 are underlined.

implemented, we partition P into chunks of size s = w lg n, where w is the machine
word size. For simplicity, we assume that the length of P is a multiple of s. The
RMMT is a complete binary tree over the sequence of chunks (see Figure 3.3). (If the
number of chunks is not a power of 2, we pad the sequence with chunks of zeroes to
reach the closest power of 2. These chunks are not stored explicitly.) Each node u of
the RMMT represents a subsequence Pu of P that is the concatenation of the chunks
corresponding to the descendant leaves of u. Since the RMMT is a complete tree, we
need not store its structure explicitly. Instead, we index its nodes as in a binary heap
and refer to each node by its index. The representation of the RMMT consists of four
arrays e′, m′, M ′, and n′, each of length equal to the number of nodes in the RMMT. The
uth entry of each of these arrays stores some crucial information about Pu: Let the
excess at position i of P be defined as sum(P, π, 0, i) =

∑i
k=0 π(P [k]). e′[u] stores the

excess at the last position in Pu. m
′[u] and M ′[u] store the minimum and maximum

excess, respectively, at any position in Pu. n
′[u] stores the number of positions in Pu

that have the minimum excess value m′[u].
Combined with a standard technique called table lookup, a RMMT supports the

primitive operations for π in O(lg n) time. Consider fwd search(P, π, i, d) for exam-
ple. We first check the chunk containing P [i] to see if the answer is inside this chunk.
This takes O(lg n) time by dividing the chunk into portions of length w/2, where w
is the machine word size, and testing for each portion in turn whether it contains the
answer. Using a lookup table whose content does not depend on P , the test for each
portion of length w/2 takes constant time: For each possible bit vector of length w/2,
each of the w/2 positions in it and for any excess value in the range [−w/2, w/2],
the table stores the answer of fwd search(P, π, i, d) if it can be found inside this bit
vector, or −1 otherwise. As there are 2w/2 bit vectors of length w/2, this table uses
2w/2poly(w) bits. If we find the answer inside the chunk containing P [i], we report it.
Otherwise, let u be the leaf corresponding to this chunk. If u has a right sibling, we
inspect the sibling’s m′ and M ′ values to determine whether it contains the answer.
If so, let v be this right sibling. Otherwise, we move up the tree from u until we find
a right sibling v of an ancestor of u whose corresponding subsequence Pv contains the
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query answer. Then we use a similar procedure to descend down the tree starting
from v to look for the leaf descendant of v containing the answer and spend another
O(lg n) time to determine the position of the answer inside its chunk. Since we spend
O(lg n) time for each of the two leaves we inspect and the tests for any other node in
the tree take constant time, the cost is O(lg n).

Figure 3.3 shows the m′ and M ′ values involved in the answer of
fwd search(P, π, 5, 0). In this particular example, the objective is to find the closest
position after i = 5 with excess value d = 0. Using lookup tables, we check if the
answer is in the range [5, 6] of the chunk b5/7c = 0. Since the answer is not there, we
analyze the right sibling of the chunk 0. The m′ and M ′ values of the right sibling
are 2 and 4, so the answer is not there. We now move to the parent of the parent of
the chunk 0. Let us call v such node. The m′ and M ′ values of v are 0 and 5, and
therefore, the answer exists and it is in the right child of v. Then, we check the m′

and M ′ values of the child of v, 1 and 5, and move to the left child of the right child
of v. Since the current node is a leaf, we use lookup tables to find the first value 1 in
that chunk. In this case, such 1 value is at position 20.

Supporting operations on the leaves, such as finding the ith leaf from the left,
reduces to rank and select operations over a bit vector P1[1..2n] where P1[i] = 1 iff
P [i] = 1 and P [i+ 1] = 0. rank and select operations over P1 in turn reduce to sum

and fwd search operations over P1 and can thus be supported by an RMMT for P1. P1

does not need to be stored explicitly because any consecutive O(w) bits of P1 can be
computed from the corresponding bits of P using table lookup.

Constant time queries

To support constant time queries on arbitrary-sized trees, the balanced parentheses
representation P needs to be partitioned into blocks. We represent each block us-
ing a RMMT and then construct additional data structures considering the minimum,
maximum and excess values of the RMMT of each block. The size of each block is
wc, so we have τ = d2n/wce of such blocks. To support constant time queries in-
side each block, we construct a RMMT, similar as before, but with s = w/2 and arity
k = Θ(w/c lgw), instead of arity 2. Let m1, . . . ,mτ , M1, . . . ,Mτ , n1, . . . , nτ and
e1, . . . , eτ be the minima, maxima, number of minima and excess stored at the root
of the τ RMMTs. Depending on the operations, the additional data structures differ.

To solve fwd search(P, π, i, d), we first try to solve it inside block j = bi/wcc.
The answer is returned if it is found in that block. If it is not, we must find the first
excess d′ = d + ej−1 + sum(P, π, 0, i − 1 − wc · (j − 1)) in the RMMTs of the following
blocks. Applying Lemma 4.4 of [109], we must either find the first block r > j such
that mr ≤ d′, or such that Mr ≥ d′. Once we find such a block, we complete the
query inside of it with a local fwd search(P, π, 0, d′ − er−1).

To find the corresponding block r in constant time, the authors propose additional
data structures to represent the left-to-right minima and maxima values. For the case
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(a) 2d-Min-Heap of the sequence
(1, 4, 9, 5, 10, 7, 3, 2, 5, 4).

(b) The ladders generated by the
2d-Min-Heap of Figure 3.4a.

Figure 3.4: Example of the sequence (1, 4, 9, 5, 10, 7, 3, 2, 5, 4) and its ladders
decomposition. In the 2d-Min-Heap, the indices of the sequence are inside and the values
are outside of the nodes of the tree.

of left-to-right minima, it is necessary to build a tree called 2d-Min-Heap (the left-to-
right maxima is similar):

Definition 1. [109] Let m1, . . . ,mτ be a sequence of integers. We define for each
1 ≤ j ≤ τ the left-to-right minima starting at j as lrm(j) = (j0, j1, . . .) where j0 = j,
jr < jr+1, mjr+1 < mjr , and mjr+1, . . . ,mjr+1−1 ≥ mjr

Once two lrm sequences coincide, they do so until the end. Thus, a 2d-Min-
Heap is defined as a trie of τ nodes, composed of the reversed lrm sequences. Since
the resulting trie can be composed of disconnected paths, a dummy root is used to
generate the tree. If we assign weight to the edges, where the weight of an upward
edge (ji, ji+1) is defined as mji −mji+1

, we can reduce the problem of finding the first
block r > j such that mr ≤ d′ to a weighted level ancestor query over the 2d-Min-
Heap. More precisely, we need to find the first ancestor jr of node j such that the
sum of the weights between j and jr is greater than or equal to d′′ = mj − d′. Figure
3.4a shows an example of the 2d-Min-Heap for the sequence (1, 4, 9, 5, 10, 7, 3, 2, 5, 4).

To answer the weighted level ancestor query, we need to decompose the 2d-Min-
Heap. The 2d-Min-Heap is decomposed into paths by recursively extracting the
longest path. Then, for each path of length l, we store an extension of it by adding at
most l nodes towards the root. These extended paths are called ladders. Figure 3.4b
shows an example of ladders. This decomposition ensures that a node with height h
will have its first h ancestors in its ladder. For each ladder, a sparse bitmap is stored,
where the i-th 1 of the bitmap represents the i-th node upward in the ladder, and the
distance between two 1’s is equal to the weight of the edge between them. All the
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bitmaps are concatenated into one of size O(n), which is represented by the sparse
bitmap of Pǎtraşcu [115]. Additionally, for each node v of the 2d-Min-Heap, the at
most lg τ ancestors at depths depth(v) − 2i, i ≥ 0 are stored in an array. Similarly,
for each node v, the lg τ accumulated weights toward the ancestors at distance 2i are
stored using fusion trees [48]. Fusion trees are used to store z keys of l bits each one
in O(zl) bits, supporting predecessor queries in O(lgl z) time, by using a l1/6-ary tree.
The 1/6 factor can be reduced to achieve O(1/ε) predecessor query, where 0 < ε ≤ 1/2
[109].

Observe that there is no guarantee that the weighted level ancestor jr of the node
j is in the ladder of j. Therefore, to answer the weighted level ancestor query we
need first to compute the ancestor j′ of node j with accumulated weight 2blg d

′′c. The
ancestor j′ can be founded in constant time by a predecessor query of fusion tree of
the node j and the array with the lg τ ancestors of the node j. The answer is in
the ladder of j′. If j′ is at distance 2i, then the answer is at distance less than 2i+1.
Applying rank/select queries over the bitmap of the ladder of node j′, we find the
node jr.

To solve rmqi(P, g, i, j) and RMQi(P, g, i, j) operations on the τ blocks, we just
need to build a data structure that supports range minimum and maximum queries
in constant time, such as [45, 123].

To solve degree(i) operations, we need to consider pioneers. Let pioneers be the
tighest matching pair of parentheses (i, j), with j = find close(i), such that i and
j belong to different blocks. We define a marked block to be a block that has the
opening parenthesis of a pionner (i, j) such that (i, j) contains a whole block, i.e., i
and j do not belong to consecutive blocks. Let a be a marked block with pionner
(i, j) and let b be a block, we say that the block a contains the block b if the block b
is between the blocks where i and j belong. We also say that b is a’s child. There are
O(τ) of such marked blocks. The degree(i) operation, which computes the number
of children of a node i, can be solved as follows: If the operation can be solved in
at most two consecutive blocks, then the answer can be computed in constant time
consulting the at most two corresponding RMMTs. Otherwise, it corresponds to the
degree of a node that defines a marked block. Since there are O(τ) of such blocks,
we can spend O(τ lg n) bits to store explicitly the degree of all the nodes that define
marked blocks and answer the operation in constant time.

The marked blocks are also used to support child(i, q) and child rank(i) opera-
tions. Both for child(i, q) and child rank(i), if the block of i is not a marked block,
then both can be solved in at most two in-block queries. For marked blocks, we store
a bitmap to represent the information about the children of each of the nodes that
define them. For each marked block j, we store, in left-to-right order, information of
marked blocks and blocks fully contained in j. For each block j′ contained in block
j, we store the number of children of the node associated to j that starts within j′

(the number of minima of block j′) and for each marked block contained in j, we
store a 1, which represents a block containing one child of j. All numbers are stored
in a bitmap as gaps of 0’s between consecutive 1’s. For the child(i, q) query, we first
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check if child(i, q) lies in the block of i or in find close(i). If it does, we solve
it with an in-block query. If not, we compute p = rank1(Ci, select0(Ci, q)), where
Ci is the bitmap associated to the block of i. The value p represents the position
of the block or marked block contained in i, where the q-th child of i lies. If it is a
marked block, then it is the answer. If it is a block j, then the answer corresponds
to the q′-th minimum within that block, where q′ = q − rank0(Ci, select1(Ci, p)).
child rank(i) can be solved similarly. Since the number of 1’s on each bitmap is less
than the number of 0’s, the bitmap can be stored using the sparse bitmap of [115].

The remaining operations require rank and select on P , or the virtual bit vectors
P1 and P2. For rank, it is necessary to store the answers at the end of each block,
finishing the query inside the corresponding block. For select1 (and select0), we
build a sequence with the accumulated number of 1’s in each of the τ blocks of P .
Such a sequence is stored in a bitmap, representing each number in unary as gaps of
0’s between consecutive 1’s using the results of [115].

Memory space

To analyze the space used for the simplified NS-representation, observe that storing
P requires 2n bits, while the space needed to store the vectors e′, m′, M ′, and n′ is
2(n/s) lg n = 2n/w. The space needed to store the same vectors for the RMMT of P1

is the same. Since we can assume that w = Ω(lg n), the total size of the simplified
RMMT is thus 2n+O(n/ lg n) bits.

The NS-representation that supports constant time queries requires the construc-
tion of τ = d2n/wce RMMTs over sequences of wc parentheses. Thus, the τ RMMTs require
2n+O(n/ lg n) bits. The additional data structures needed to support constant time
queries add some extra space: To support fwd search, the ladders use O(n lgn

wc ) bits,

the arrays of ancestors use O(n lg2 n
wc ) bits, the sparse bitmap uses O(n lgwc

wc + ntt

lgt n
+n3/4)

bits and the fusion trees use O(n lg2 n
wc ) bits. Thus, the extra structures to support

fwd search use O(n lg2 n
wc + ntt

lgt n
+ n3/4) bits, with t > 0. The rmqi and RMQi query

structures add O(n/wc) extra bits. Since there are O(n/wc) marked blocks, the
degree operation uses O(n lg n/wc) extra bits. The bitmaps of the remaining opera-
tions, such as child and child rank, uses 2n

wc lg(wc) +O( ntt

lgt n
+n3/4) extra bits, since

they correspond to the sparse bitmap of [115]. Therefore, the total space used by the

additional data structures is O(n(c lgw+lg2 n)
wc + ntt

lgt n
+n3/4 +

√
2w) bits, where the term√

2w corresponds to the lookup tables. With w = Ω(lg n) and t = c, the extra space

is O(n(c lg lgn+lg2 n)+ncc

lgc n
+ n3/4 +

√
n) bits. Combined with the 2n + O(n/ lg n) bits of

the RMMTs, the NS-representation requires 2n + O(n/ lg n + n(c lg lgn+lg2 n)
lgc n

) bits, with

c > 0, supporting queries in O(c) time.

According to [109], the O(n/ lg n) space of the RMMTs can be reduced by using aB-
trees [115]. Given an array A of size N , with N a power of B, an aB-tree is a complete
tree of arity B, that stores B consecutive elements of A on its leaves. Besides, each
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node of the aB-tree stores a value ϕ ∈ Φ. For the leaves, ϕ must be a function of the
elements of A that it stores; for internal nodes, ϕ must be a function of the ϕ-values
of its children. An aB-tree can decode the B ϕ-values of the children of any internal
node and the B values of A for the leaves in constant time, if they are packed in a
machine word. An aB-tree can be stored in N + 2 + O(

√
2w) bits (see [115] for the

details). Thus, with A = P , B = k = s = O( w
c lgw

), ϕ-values encoding e′,m′,M ′, n′

values and blocks of size N = Bc, it is possible to store each RMMT in N + 2 +O(
√

2w)

bits. The sum of all the RMMTs is 2n + O( n
Bc +

√
2w) = 2n + O(n(c lg lgn)c

lgc n
+
√

2w).
Finally, using aB-trees to store the RMMTs, the space usage of the NS-representation

is reduced to 2n+O(n(c lg lgn+lg2 n)
lgc n

+
√

2w) bits.

3.2.3 Triangulated plane graphs

The triangulated plane graphs have been used to represent polytopes, geographic
maps, microchip layouts and design, software engineering diagrams, surface meshes
in computer graphics, among others. In practice, triangulated plane graphs may be
large, such as in VLSI (very large scale integration) circuits or TIN (triangulated
irregular network) surfaces. Thus, the design of space-efficient representations of
triangulated plane graphs becomes useful.

A graph G = (V,E), with |V | = n vertices, |E| = m edges and f faces, is a
triangulated planar graph if G is planar and the addition of any edge to G results in a
nonplanar graph. A triangulated planar graph with a particular drawing or embedding
is a triangulated plane graph. Triangulated plane graphs are also known as maximal
plane graphs. See Figure 3.5 for an example of a triangulated plane graph. Notice
that a triangulated plane graph with n vertices has 3n− 6 edges, 2n− 4 faces and all
its faces are triangles.

A common approach to construct succinct representations of triangulated plane
graphs is to decompose them into a set of trees and subgraphs, representing them as
parenthesis sequences to then apply some ideas of succinct ordinal trees to support
operations in optimal time. Operations of interest are the computation of the degree
of a vertex (degree) and the adjacency test of two vertices (adjacency). Usually,
decomposition is achieved using either canonical ordering [22, 23, 67, 7], realizers
[9, 125] and orderly spanning trees [21]. In [99], authors show that canonical orderings,
realizers and orderly spanning trees are equivalent on triangulated plane graphs. We
adopt the canonical ordering approach, but extend our results to realizers, which
support more operations.

Succinct representation of triangulated plane graphs based on canonical
orderings

Before explaining the succinct representation of triangulated plane graphs based on
canonical ordering, we need to introduce the definition of canonical ordering. The
canonical orderings of a maximal plane graph were introduced by de Fraysseix, Pach,
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Figure 3.5: Triangulated plane graph with n = 12, m = 30 and f = 20. The canonical
ordering of the graph is given beside each vertex. Thick edges indicate the canonical
spanning tree Tco.

and Pollack [33, 34] and later generalized by Kant [84]. Canonical orderings are the
necessary input to several graph-drawing algorithms that work on plane graphs, such
as [85, 84, 33, 34].

A canonical ordering Π is defined as follows: Let G = (V,E) be a triangulated
plane graph, where |V | = n > 3, |E| = m edges, vertices u, v and w are in the outer
face of G, and where Π = (v1, . . . , vn) is an ordering of V such that v1 = u, v2 = v
and vn = w. Let Gk be the subgraph of G induced by v1, . . . , vk, and Ck to be the
contour of Gk. We say that Π is a canonical ordering of G if the following conditions
are satisfied for each k = (3, 4, . . . , n− 1, n):

• Each Gk is 2-connected and internally triangulated.

• Ck contains (v1, v2).

• If k < n, then vk+1 is in the outer face of Gk and all neighbours of vk+1 in Gk

appear on Ck consecutively.

For example, the canonical ordering of the graph in Figure 3.5 is Π = (a, b, c, h, i, j,
d, e, k, f, l, g).

In [34, 63] a sequential algorithm to compute the canonical ordering in linear time
was introduced. The algorithm labels the vertices with a −1 if the vertex has not
been visited yet, a 0 if the vertex has been visited once or i > 0 if the vertex has been
visited more than once. A vertex v with label i > 0 means that there are i intervals
of processed neighbors in the list of neighbors of v, in ccw order.
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Input : Triangulated plane graph G with external vertices u, v and w. All the
vertices, except the externals, are labelled with −1. Vertices u and v are
initially labelled with 1 and vertex w will not be processed.

Output: The canonical ordering of the graph G.
1 k = 1
2 while There are unprocessed vertices do
3 vv = a vertex of G with label 1
4 Assign the order k to vv in the canonical ordering of G
5 k = k + 1
6 foreach neighbor v′ of vv do
7 if v′ has label −1 then
8 relabel v′ with 0
9 else if v′ has label 0 then

10 v′1, v
′
2 =AdjNeighbors(v′, vv)

11 if v′1 or v′2 has been processed then
12 relabel v′ with 1
13 else
14 relabel v′ with 2

15 else if v′ has label i > 0 then
16 v′1, v

′
2 =AdjNeighbors(v′, vv)

17 if v′1 and v′2 have been processed then
18 relabel v′ with i− 1
19 else if neither v′1 and v′2 have been processed then
20 relabel v′ with i+ 1

21 Mark vv as processed
Algorithm 3: Sequential algorithm to compute the canonical ordering of a trian-
gulated plane graph.

The algorithm is detailed in Algorithm 3. The input consists of a triangulated
plane graph with external vertices u, v and w. All the vertices in the graph are
labelled with −1, except the externals. Vertices u and v are initially labelled with 1.
The vertex w is not processed by the algorithm. Instead, we assign w = vn, the last
vertex in the canonical ordering.

The algorithm starts by choosing a vertex with label 1, vv (line 3). The chosen
vertex will take the next position in the canonical ordering of G (line 4). Notice
that, at the beginning, the external vertices u and v will be the first chosen vertices,
assigning order v1 and v2 to them. After choosing the vertex vv, the algorithm visits
all the neighbors of vv. Let v′ a neighbor of vv. The first time that v′ is visited,
the algorithm changes its label to 0 (lines 7-8). If v′ has label 0, then v′ has another
neighbor that has been processed. If such a neighbor and vv are adjacent in the
counterclockwise (ccw) order of the neighbors of v′, then, the algorithm relabels v′

with 1. Otherwise, the algorithm relabels it with 2. To check the condition in constant
time, the algorithm uses the function AdjNeighbors(v′, vv), which returns the two
vertices that are adjacent to vv, v′1 and v′2, in the ccw order of the neighbors of v′. It
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suffices to check if v′1 or v′2 has been processed (lines 9-14). In the third condition (lines
15-20), the label i > 0 of v′ means that there are i intervals of processed neighbors
in the list of neighbors of v′, in ccw order. Thus, if the two adjacent vertices of vv in
the ccw order of the neighbors of v′ have been processed, then the algorithm relabels
v′ with i − 1 (two intervals are merged). If neither have been processed, then the
algorithm relabels v′ with i + 1 (a new interval is added). Otherwise, the label of v′

does not change. After checking all the conditions, the algorithm marks the vertex
vv as processed, which means that it will not be chosen again. The algorithm finishes
when all the vertices have been processed. Since each vertex is processed once and
the number of edges of G is 3n − 6, the algorithm takes O(n) time, by inserting in
a queue structure each time a vertex is labelled with 1 and using the same queue to
retrieve the next vertex to process.

Table 3.2 shows an execution example of this algorithm taking the graph of Figure
3.5 as input. The output corresponds to the canonical ordering in Figure 3.5. The
iterations of the algorithm are shown in the rows of the table. In the first row, the
external vertex g is designated as the last vertex of the canonical ordering, v12. In
each iteration, the chosen vertex is circled. Observe that the canonical ordering is
not unique. For example, in the iteration three of Table 3.2, instead of the vertex h,
the algorithm could have chosen the vertex d. No matter which vertex is chosen, the
output canonical ordering will be correct.

a b c d e f g h i j k l

0 Initial 1© 1 −1 −1 −1 −1 v12 −1 −1 −1 −1 −1
1 Processing v1/a v1 1© 0 0 0 0 v12 −1 −1 −1 −1 −1
2 Processing v2/b v1 v2 1© 0 0 0 v12 0 0 −1 −1 0
3 Processing v3/c v1 v2 v3 1 0 0 v12 1© 2 0 −1 0
4 Processing v4/h v1 v2 v3 1 0 0 v12 v4 1© 0 −1 0
5 Processing v5/i v1 v2 v3 1 0 0 v12 v4 v5 1© 0 1
6 Processing v6/j v1 v2 v3 1© 0 2 v12 v4 v5 v6 1 1
7 Processing v7/d v1 v2 v3 v7 1© 2 v12 v4 v5 v6 1 1
8 Processing v8/e v1 v2 v3 v7 v8 1 v12 v4 v5 v6 1© 1
9 Processing v9/k v1 v2 v3 v7 v8 1© v12 v4 v5 v6 v9 1
10 Processing v10/f v1 v2 v3 v7 v8 v10 v12 v4 v5 v6 v9 1©
11 Processing v11/l v1 v2 v3 v7 v8 v10 v12 v4 v5 v6 v9 v11

Table 3.2: An execution of Algorithm 3. Each row is an iteration of the algorithm.
Iterations are ordered top-down according to their execution. In each iteration, the vertex
that will be processed next is circled. The input is the graph in Figure 3.5. “Processing
vk/x” represents the iteration where the order k is designated to the vertex x.

He et al. [66] introduced the only parallel algorithm that computes the canonical
ordering of a triangulated plane graph in O(lg4 n) time using O(n2) processors in the
CREW PRAM model. The authors defined the extended graph Ĝ of G as the graph
obtained after adding a new vertex vf to G for each internal face f , connecting vf to
each vertex in the boundary of f . The algorithm is based on computing independent
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sets and a realizer of Ĝ (see next section for a definition of a realizer). As far as we
know, there is not an implementation of this algorithm.

Given the canonical ordering introduced in the preceding paragraphs, a succinct
representation of G can be constructed using its canonical spannning tree, Tco [22, 23,
67]. The canonical spanning tree is a tree rooted at v1, including the edge (v1, v2) and
edges (vi, vj), where i < j in the canonical ordering and the node vi is the leftmost
neighbor of node vj with lower canonical order. For a node v, its leftmost neighbor
with lower canonical order is defined as follows: Let nv1, n

v
2, . . . be the neighbors of

v in counterclockwise order. The leftmost neighbor with lower canonical of v is its
neighbor at the j-th position, such that co(v) < co(nvj−1) and co(v) > co(nvj ), where
co(v) denotes the canonical ordering of v. For example, in Figure 3.5, the leftmost
neighbor of node k (with order 9) is the node j (with order 6), therefore, the edge
(j, k) is part of the canonical spanning tree. Using parentheses to encode Tco and
brackets to encode the edges in G \ Tco, a string Sco is built as follows:

1. Sco = FE(Tco), where FE(Tco) is the folklore encoding of Tco. In the folklore
encoding, each node vi of Tco is represented by a parenthesis pair (i and )i.

2. For each edge (vi, vj) of G \ Tco, with i < j, write a “[” right after )i and a “]”
right after (j. For us, G \ Tco represents the set of edges that belong to G, but
not to Tco.

See Figure 3.6 for an example of the string Sco. Observe that, as was pointed in
[23], an equivalent definition of the construction of Sco is:

• Sco = FE(Tco).

• For each vertex vi of Tco, count the number of lower-numbered neighbors, li,
and higher-numbered neighbors, hi, of vi in G \ Tco.

• For each vertex vi of Tco, write li “]”s right after (i and hi “[”s right after )i.

We use this equivalente definition in Section 6.1.1 to present our parallel algorithm
to compute Sco. In Sco, the parentheses and brackets are balanced. Each matching
pair of parenthesis corresponds to an edge in Tco and each matching pair of brackets
corresponds to an edge in G \ Tco.

Let n() and n[] the number of parentheses and brackets of Sco, respectively. Sco
can be encoded by bit-vectors, S1 and S2, with size 2n() +n[] + o(n() +n[]) bits. Such
bit-vectors are defined as follows:

• If Sco[i] is a parenthesis, with 1 ≤ i ≤ n() + n[], then S1[i] = 1. Otherwise
S1[i] = 0.

• If the j-th parenthesis of Sco is open, with 1 ≤ j ≤ n(), then S2[j] = 1. Otherwise
S2[j] = 0.
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Applying standard techniques of succinct representations of bit-vectors and bal-
anced parenthesis sequences [101, 109] over S1 and S2, we can retrieve Sco[i] in con-
stant time as follows.

• If S1[i] = 1, Sco[i] is a parenthesis. If S2[rank1(S1, i)] = 1, then Sco[i] is an open
parenthesis. Otherwise it is a closed parenthesis.

• If S1[i] = 0, Sco[i] is a bracket. If S2[rank1(S1, i)] = 1, then Sco[i] is a closed
bracket. Otherwise it is an open bracket.

In order to support degree and adjacency queries in constant time, the authors
of [23, 22, 67] propose the construction of two strings of length 2|Sco|, S() and S[]. S()

and S[] are defined in a similar way. For each 0 ≤ i < |Sco|:

• If Sco[i] is an open parenthesis, then S()[2i] and S()[2i + 1] are defined as open
parentheses.

• If Sco[i] is a closed parenthesis, then S()[2i] and S()[2i+ 1] are defined as closed
parentheses.

• Otherwise, S()[2i] is defined for an open parenthesis and S()[2i + 1] as a closed
parenthesis.

Again, applying standard techniques of succinct representations of bit-vectors and
balanced parenthesis sequences over S() and S[], degree and adjacency queries can
be answered in constant time. Note that the strings S() and S[] are not explicitly
stored, because each symbol of S()[i] and S[][i] can be determined from Sco[bi/2c] in
constant time.

Observe that strings S() and S[] may be replaced by a bit-vector S3 of size n[] and
still maintain constant-time support for degree and adjacency queries. The bit-vector
S3 is defined as follows:

• If the i-th bracket of Sco is an open bracket, with 1 ≤ i ≤ n[], then S3[i] = 1.
Otherwise S3[i] = 0.

An example of bit-vectors S1, S2 and S3 are shown in Figure 3.6.
Before defining the degree and adjacency queries using S3, we need some extra

definitions:

• first1(S1, i): The position of the closest 1 after S1[i]. It can be computed in
O(1) with select1(S1, rank1(S1, i) + 1).

• last1(S1, i): The position of the closest 1 before S1[i]. It can be computed in
O(1) with select1(S1, rank1(S1, i)− 1).

• enclose1(S3, i, j): The position (p, q) of the closest matching bracket pair that
encloses S3[i] and S3[j]. Since S3 can be seen as a parentheses sequence, it can
be computed in O(1) using the results of [109] (see Section 3.2.2).
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S1=11100000101010100100010101001010010010100100101010000101000011
S2=110110101110000101010100
S3=11111001001110000111111001101000010000

Figure 3.6: Parentheses representation Sco of the graph in Figure 3.5. In the string Sco,
parentheses represent the edges of Tco and brackets represent the edges of G \ Tco. The
bit-vectors S1, S2 and S3 obtained from Sco are also shown.

• op(Sco , i): The position in Sco of the open parenthesis associated with the vertex
vi.

• cp(Sco , i): The position in Sco of the closed parenthesis associated with the
vertex vi.

Two vertices vi and vj, with i < j, are adjacent in G if they are adjacent in
Tco or in G \ Tco. Otherwise, they are not adjacent. If vi is the parent of vj in
Tco, then level anc(vj, 1) = vi, which means that vi and vj are adjacent in Tco (see
Table 3.1, operation 5). In G \ Tco, if cp(Sco , i) < select0(S1, p) < select0(S1, q) <
first1(S1, op(Sco , j )), where (p, q) = enclose(S3, rank0(S1, first1(S1, cp(Sco , i))),
rank0(op(Sco , j ))), then they are adjacent.

The degree of a vertex vi in G is the degree of vi in Tco plus the degree of vi
in G \ Tco. The degree of a vertex in Tco can be computed in O(1) using the re-
sults of [109]. The degree of a vertex in G \ Tco can be computed in O(1) with
(first1(S1, op(Sco , j ))− op(Sco , j )− 1) + (first1(S1, cp(Sco , j ))− cp(Sco , j )− 1).

The succinct representation described above uses 2m+ 2n+ o(m+ n) bits, while
still supporting degree and adjacency queries in O(1) time.

Succinct representation of triangulated plane graphs based on realizers

Schnyder introduced realizers, also called Schnyder woods, in [125]. A realizer of a
triangulated plane graph G = (V,E), with |V | = n ≥ 3 vertices, |E| = m edges, and
external vertices u, v, w, is a partition of the interior edges of G into three sets T1, T2,
T3 of directed edges such that for each interior vertex v′ it holds that:

• v′ has outdegree one in each of T1, T2, T3.

• The counterclockwise ordering of the edges incident on v′ is: Leaving in T1,
entering in T3, leaving in T2, entering in T1, leaving in T3, entering in T2. This
is also known as local condition.
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With this partition, each set T1, T2 and T3 forms a directed tree, which includes all
the internal vertices and one of the external vertices. See Figure 3.7 for an example.

Schnyder [125] also describes a linear time algorithm to compute realizers based
on edge contraction and in an ordering of the vertices of G. This ordering is equivalent
to a canonical ordering as defined previously. Here, we describe a variation of the
original algorithm, based on a canonical ordering Π = (v1, v2, . . . , vn) of G. This
variation was presented in [23, 108]. A realizer of G can be computed as follows:

• First we choose v1 and v2 as the root of T1 and T2, respectively.

• Let Ck be the contour of the subgraph of G induced by v1, . . . , vk. For each vk,
3 6 k 6 n − 1, let Ck−1 be (w0 = v1, w1, . . . , wl = v2), and the neighbours of
vk on Ck−1 are wp, wp+1, . . . , wq. Orient (wp, vk) ∈ T1 towards wp, (wq, vk) ∈ T2

towards wq, and (wp+1, vk), (wp+2, vk), . . . , (wq−1, vk) ∈ T3 towards vk.

• Finally, choose vn as the root of T3, and set all inner incident edges to vn in T3.

The derived partition of inner edges T1, T2 and T3 is a realizer. For instance,
considering the canonical ordering given in Figure 3.5, we obtain the realizer shown
in Figure 3.7. Nakano [108] shows that it is possible to obtain a canonical ordering
from a realizer. Observe that T1 corresponds to the canonical spanning tree of G.

In [51], Fürer et al. present a parallel algorithm to construct realizers and straight-
line embeddings in O(log n log log n) time using O(n/ log n log log n) processors under
the CRCW PRAM model.

Barbay et al. [9] introduced a succinct representation of plane graphs based on
realizers. With T1, T2 and T3, the authors define three new orders of the vertices
that are used later to encode the graph using a string of three kinds of parentheses.
The first order is called zeroth order and it corresponds to the ccw pre-order of
T
′
1 = T1 ∪ (v1, v2) ∪ (v1, vn). The other two orders, first order and second order,

use the same ccw pre-order to compute their own order of vertices, but based on trees
T
′
2 = T2 ∪ (v2, vn) and T3, respectively. Authors explain that by assigning a different

kind of parenthesis to each pre-order and merging them into a parentheses sequence
S
′
rz, it is possible to obtain a succinct representation of G that uses 2m lg 6 + o(m)

bits, which supports in constant time adjacency and degree operations and two extra
operations: Find the ith neighbor of a vertex in ccw order and find the number of
neighbors between two other vertices.

The parenthesis sequence S
′
rz is computed as follows [9]:

1. S
′
rz = FE(T

′
1), where FE(T

′
1) is the folklore encoding of T

′
1. In the folklore

encoding, each node vi of T
′
1 is represented by a parenthesis pair (i and )i.

2. Let v
′
1, v

′
2 . . . , v

′
n be the ccw preorder of the nodes of T

′
1. For each vertex v

′
i, visit

all the neighbors of v
′
i in ccw order and insert:

• A “[” for each egde (v
′
i, v

′
j) in T

′
2, where i < j, right before )i.
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Figure 3.7: Realizer of the graph in Figure 3.5. T1 is represented by thick edges, T2 by
dashed edges and T3 by dotted edges. This realizer is also induced by the canonical
ordering of Figure 3.5.

• A “]” for each egde (v
′
i, v

′
j) in T

′
2, where i < j, right after (j.

• A “}” for each egde (v
′
i, v

′
j) in T3, where i > j, right after (i.

• A “{” for each egde (v
′
i, v

′
j) in T3, where i > j, right before )j.

The relative order of the parentheses “[”, “]”, “{” and “}” inserted between two
consecutive parentheses “(” and “)” does not matter. Figure 3.8 shows an example of
the parenthesis sequence S

′
rz of the graph in Figure 3.7. Notice that the ccw preorder

of T
′
1, v

′
1, v

′
2 . . . , v

′
n, corresponds to another canonical ordering of G, which can be

different to the canonical ordering used in the computation of the realizers.
In Section 6.2.1 we show how to compute the sequence S

′
rz in parallel, but using

an equivalent definition of the construction of S
′
rz. With the equivalent definition,

the sequence S
′
rz is constructed as follows:

1. Classify all the edges of G as part of T1, T2 or T3. At the end of this stage, we
will have the three spanning trees.

2. Perform an Euler tour over T1 to define a new order among the vertices of G.

3. For each vertex vi of G, count its number of neighbors in T2 that are lower-
numbered, lT2i , and higher-numbered, hT2i . The same is done for neighbors in
T3.

4. Perform a new Euler tour over T1. Each time we visit a forward edge, write “(”
followed by lT2i “]”s and lT3i “}”s. Each time we visit a backward edge, write hT3i
“{”s followed by hT2i “[”s and a “)”. The resulting parenthesis sequence is S

′
rz.
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S
′
1 = (()(()()((())))()()()())
S
′
2 = [ [ [ [ [ ] ] ] [ [ ] ] ] [ [ ] [ ] ] ]
S
′
3 = {}{}{{{{}{{}}}{}}}
B1 = 11000001101001100000110101000100100101100001100110000011000011
B2 = 1 1 1 1 1 1 1 0 1 0 0 1 1 1 1 1 0 0 0 1 0 1 0 1 0 0 1 1 0 1 0 0 0 0 1 0 0 0

Figure 3.8: Parentheses representation S
′
rz of the graph in Figure 3.7. In the string S

′
rz,

( and ) represent the edges of T
′
1, [ and ] represent the edges of T

′
2, and { and } represent

the edges of T3. The parenthesis sequences S1, S2, S3 and the bit-vectors B1 and B2

obtained from S
′
rz are also shown.

The number of edges of T
′
1 is n, of T

′
2 is n − 2 and of T3 is n − 3, therefore, the

length of S
′
rz is 2(n+ n− 2 + n− 3) = 2(3n− 5) = 2(m+ 1).

To store S
′
rz succinctly, the authors in [9] propose to decompose S

′
rz into two bit-

vectors, B1 and B2, and three parenthesis sequences, S
′
1, S

′
2 and S

′
3. Let n(), n[] and

n{} be the number of “()”, “[]” and “{}”, respectively. The succinct representation
of S

′
rz is constructed as follows:

• If S
′
rz[i] is a “(” or “)”, with 1 ≤ i ≤ n() + n[] + n{}, then B1[i] = 1. Otherwise

B1[i] = 0.

• If the parenthesis associated with the ith 0 in B1 is either a “[” or “]”, with
1 ≤ i ≤ n[] + n{}, then B2[i] = 1. Otherwise B2[i] = 0.

• S ′1 corresponds to the subsequence of S
′
rz containing the parentheses “(” and

“)”.

• S ′2 corresponds to the subsequence of S
′
rz containing the parentheses “[” and

“]”.

• S ′3 corresponds to the subsequence of S
′
rz containing the parentheses “{” and

“}”.

The bit-vectors B1 and B2 are stored as a rank/select structure in 2m lg 3 + o(m)
bits, using the results of [120]. Parenthesis sequences S

′
1, S

′
2 and S

′
3 are stored in

2m + o(m) bits, using the results of [105] and [109]. Thus, the total space used by
the succinct representation of Barbay et al. is 2m lg 6 + o(m) bits.

This succinct representation supports the following operations:

• adjacency(vi, vj): Whether vertices vi and vj are adjacent, with i < j. Vertices
vi and vj are adjacent if and only if one is the parent of the other in one of the
trees T

′
1, T

′
2 and T3. To check if vi is parent of vj in T

′
1, we just need to check
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if level anc(vj, 1) is equal to vi, where level anc is defined in [109]. To test
if vi is the parent of vj in T

′
2, we need to check if the only outgoing edge of vj,

denoted by a “]”, is an incoming edge of vi, denoted by a “[”. The case of T3 is
similar. Algorithm 4 shows how to answer the adjacency operations using the
parenthesis sequences S

′
1, S

′
2, S

′
3 and the bit-vectors B1 and B2. In Algorithm

4, first0(S
′

k, i) is the position of the closest 0 after S
′

k[i], with k ∈ {1, 2, 3},
which can be computed in O(1) with select0(S

′

k, rank0(S
′

k, i) + 1).

• degree(vi): The degree of the vertex vi. The answer is the sum of the degree
of vi in T

′
1, T

′
2 and T3. The degree of vi in T

′
1 can be obtained in constant time

with the results of [109]. The degree in T
′
2 and T3 can be computed with the

formula (ofirst−oleft−1)+(cright−clast−1), where oleft and cright correspond to
the open and closed parentheses of the vertex vi in S

′
rz, ofirst is the position of

the open parenthesis in S
′
rz of the first child of vi in T

′
1 and clast is the position

of the closed parenthesis in S
′
rz of the last child of vi in T

′
1. Algorithm 5 shows

how to answer degree operations using parenthesis sequences S
′
1, S

′
2, S

′
3 and

bit-vectors B1 and B2. In the algorithm, last0(S
′

k, i) is the position of the
closest 0 before S

′

k[i], with k ∈ {1, 2, 3}, which can be computed in O(1) with
select0(S0

k , rank0(S
′

k, i)− 1).

• select neighbor ccw(vi, vj, r): The r-th neighbor of vertex vi starting from
vertex vj in ccw order if vi and vj are adjacent, and ∞ otherwise. To support
this operations, it is necessary to use the local condition of realizers. The local
condition indicates that, given a vertex vi, its neighbors listed in ccw order
form the following six types of vertices: vi’s parent in T

′
1, vi’s children in T3,

vi’s parent in T
′
2, vi’s children in T

′
1, vi’s parent in T3 and vi’s children in T

′
2.

The constant time operations child(vi, i) and child rank(vj) of [109] allow
us to obtain the i-th child of vi and the number of siblings before vj in ccw
order (where vj is a neighbor of vi) in T

′
1, respectively. Besides, the number

of children of vi in T
′
2 can be computed by counting the “[”s right before the

closed parenthesis of vi and the number of children of vi in T3 can be computed
by counting the “}”s right after the open parenthesis of vi. Additionally, we
can compute the number of each type of neighbors of vi in constant time. Since
all the previous operations are supported by rank/select operations over the
parenthesis sequences S

′
1, S

′
2, S

′
3 and the bit-vectors B1 and B2, the operation

select neighbor ccw(vi, vj, r) is supported in constant time.

• rank neighbor ccw(vi, vj, vk): The number of neighbors of vertex vi between
(and including) the vertices vj and vk in ccw order if vj and vk are both neighbors
of vi, and ∞ otherwise. This operation is supported in the same way as the
select neighbor ccw(vi, vj, r) operation.

In this thesis, we focus our efforts on the construction of succinct representa-
tions based on canonical orderings. Using the equivalence of canonical orderings and
realizers, we extend our results to succinct representation based on realizers.
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Input : Vertices vi and vj
Output: True if vi and vj are

adjacent or False
otherwise

if level anc(vj, 1) = vi then
return True

a = select1(S
′
1, vj)

b = select1(B1, a)
c =
rank1(B2, rank0(B1, b)-1)-1

d = first0(S
′
2, c)

e = match(S
′
2, d)

f = select1(B2, e)
g = rank1(B1, f)-1

h = first0(S
′
1, g)

i = match(S
′
1, h)

if i = vi then
return True

return False

Input : Vertex vi
Output: The degree of the vertex vi in

the graph G

d = degree(S
′
1, vi)

oleft = select1(B1, select1(S
′
1, vi))

cright = select1(B1,
select0(S

′
1,match(S

′
1, vi)))

if vi is a leaf of T
′
1 then

ofirst = 0
clast = 0

else
ofirst = select1(B1,
select1(S

′
1,first1(S

′
1, vi)))

clast = select1(B1,
select0(S

′
1,last0(S

′
1,match(S

′
1, vi))))

d += ofirst − oleft − 1
d += cright − clast − 1

return d

Algorithm 4: Adjacency operation of the
succinct representation of maximal plane
graphs based on realizers.

Algorithm 5: Degree operation of the
succinct representation of maximal plane
graphs based on realizers.

3.3 Parallel Succinct Data Structures

At the time of this thesis, three succinct data structures have been studied for multi-
core machines: wtrees and rank/select structures. Based on work in [49], in [126], the
author introduced two new algorithms to construct wtrees in parallel. The first algo-
rithm, called levelWT, constructs the wtree level-by-level. In each level of the dlg σe
levels, the algorithm construct the nodes and their bitmaps in parallel with O(n)
work and O(lg n) span, which gives an algorithm of O(n lg σ) work and O(lg n lg σ)
span, for an input sequence of size n and an alphabet of size σ. The second algorithm,
called sortWT, constructs all levels in parallel, instead of one-by-one. For a level l,
the sortWT algorithm applies a parallel stable integer sorting using the l most signif-
icant bits of each symbol as the key. With the sorted input sequence, the algorithm
fills the corresponding bitarrays in parallel, using parallel prefix sum and filter algo-
rithms to compute the position of the bits. The total work of the sortWT algorithm
is O(Wsort lg σ), where Wsort is the work of the sorting algorithm, and the span is
O(Ssort + lg n), where Ssort corresponds to the span of the sorting algorithm and the
lg n component is the span of the prefix sum and filter algorithms. The author also
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discusses a variation of the sortWT algorithm, reaching O(n lg σ) work and O(lg n lg σ)
span. In practice, the levelWT algorithm shows better performance. Compared to
our previous algorithms in [49], the levelWT and sortWT algorithms can scale beyond
O(lg σ) cores. However, both also need to duplicate and modify the input sequence,
resulting in an increase in memory usage, requiring O(n lg n) bits of extra space. Most
recently, in [87]2, two new algorithms to construct wtrees were proposed. The first
algorithm, called recursiveWT, constructs the wtree recursively, performing parallel
recursive calls to construct the two children of each node in the wtree. This algorithm
is an optimization of the prwt algorithm in Section 4.1.1. The main problem with
this algorithm is its dependency on the frequency of symbols. When few symbols
have a high frequency, its scalability will be diminished. The second algorithm, ddWT,
construct the wtree in a domain-decomposition fashion, constructing partial wtrees
and then merging them into a final wtree. This algorithm is based on our domain-
decomposition algorithm in [49]. Coincidentally, the ddWT algorithm improves our
previous algorithm by improving the merge of the partial wavelet trees, in the same
way that our new dd algorithm does (See Section 4.1.3).

In [126], the author introduces a technique to parallelize rank and select struc-
tures. The parallelised rank structure is based on that by Jacobson in [79]. The
parallelization consists of three steps: First, the first and second level directories of
Jacobson’s structure are built by performing a parallel prefix sum over the input
bit-vector. Then the entries of the second level directory are packed into machine
words. Finally the corresponding lookup tables are constructed in parallel. With
respect to the select structure, the author shows how to construct the select structure
of Clark [24]. The parallelization has three steps: First, the position of all the 1-bits
are computed using a parallel prefix sum together with parallel filter algorithms [81].
Then, the second level directory is also computed using a prefix sum algorithm over
the results of the first step to finally construct the lookup tables in parallel. In [87],
the implementations of these parallel algorithms have speedups up to 38 for the rank
structure and up to 14 for the select structure, with respect their sequential versions.

3.4 Libraries of Succinct Data Structures

Currently, there are several libraries that implement succinct data structures: Libcds
[26], Sdsl [55], Sux [135], Dynamic[117] and Succinct [114]. In this thesis,
we use Libcds and Sdsl. Libcds has implementations for bit vectors supporting
rank and select operations, trees and, in its second version, succinct trees. Sdsl
supports the same structures that Libcds and additionally implements compressed
suffix trees, compressed suffix arrays, longest common prefix arrays and range min-
imum/maximum query structures. Both libraries implement the data structures in
C++ and are available in the Web. Although both libraries are the best available
implementations of succinct data structures, none of them have implementations of

2Published after we sent our new wtree algorithms to revision.
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such data structures for parallel machines, in particular, for SMP systems.
In this thesis, both Libcds and Sdsl are used as baselines. In this manner,

the speedup for each succinct data structure implemented in this thesis is calculated
considering the fastest current implementation of such data structures, either Libcds
or Sdsl .



Chapter 4

Parallel Construction of Wavelet Trees

4.1 Parallel Construction

As was mentioned in Section 3.2.1, we focus on binary wtrees, where the symbols in
Σ are contiguous in [1, σ]. Under these restrictions, the wtree is a balanced binary
tree with lg σ levels. We built the representation of wtrees that removes the O(σ lg n)
bits of the topology. Hence, when we refer to a node, this is a conceptual node that
does not exist in the actual implementation of the data structure.

In what follows, two iterative construction algorithms are introduced that capital-
ize on the idea that any level of the wtree can be built independently from the others.
Unlike in a classical wtree construction, when building a level we cannot assume that
a previous step is providing us with the correct permutation of the elements of S.
Instead, we compute the node at level i for each symbol of the original sequence.
More formally,

Proposition 1. Given a symbol s ∈ S and a level i, 0 ≤ i < l = dlg σe, of a wtree
where the nodes are enumerated left-to-right, the node at which s is represented at
level i can be computed as bs/2l−ic.

In other words, if the symbols of Σ are contiguous, then the i most significant bits
of the symbol s give us its corresponding node at level i. In the word-RAM model
with word size Ω(lg n), this computation takes O(1) time, and thus the following
corollary holds:

Corollary 1. The node at which a symbol s is represented at level i can be computed
in O(1) time.

4.1.1 Parallel recursive algorithm

Before introducing our iterative algorithms, we present a näıve parallel recursive algo-
rithm, based on the simplest sequential algorithm (see Section 3.2.1). In its sequential
version, the recursive algorithm works by halving Σ recursively, representing by 0’s
the symbols of the first half and by 1’s the symbols of the second half, until 1s and
0s mean only one symbol in Σ. We parallelized it by the technique of spawning one
task for each recursive call except the last, while doing the last call on the calling
thread [90]. In our case, we spawn the left subtree to continue working on the right
subtree.

The algorithm, called prwt, is shown in Algorithm 6. The algorithm takes as
input a sequence of symbols S, the length n of S, and the size of the alphabet, σ.

42
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Input : S, n, σ
Output: A wavelet tree representation WT of S

1 WT is a new wavelet tree with dlg σe levels
2 B is an array of dlg σe bitarrays of size n
3 createNode(S,n,B,0,0, dlg σe)
4 parfor i = 0 to dlg σe − 1 do
5 WT [i] = createRankSelect(B[i])
6 return WT

Algorithm 6: Parallel recursive algorithm (prwt)

The output is a wtree WT that represents S. We denote the ith level of WT as
WT [i], ∀i, 0 ≤ i < dlg σe.

The first step of prwt (lines 1 and 2) allocates memory for the output wtree and
its bitarrays, B. After that, the algorithm calls the function createNode which sets,
recursively, the bitarrays of the wtree (line 3). Finally, in lines 4-5, the algorithm
creates the rank/select structures for each level of the wtree.

The function createNode performs the major part of the work. Its input corre-
sponds to a sequence of symbols S, the length n of S, the array of bitarrays of the
wtree, B, the current level, lvl, the offset from which the function should start to
write on the bitarray B[lvl], and the number of levels of the wtree, levels . The initial
call of the function creates the bitarray of the first level of the wtree (see line 3 of
Algorithm 6), therefore, S corresponds to the original input sequence and lvl and
offset are 0. On each call, the function generates two new sequences, Sleft and Sright,
from S. The size of Sleft and Sright is computed by scanning S (lines 4 to 8 of the
function createNode). In lines 9 and 10, the function allocates memory for the new
sequences. Then, the function sets the bits of B[lvl] and the symbols of Sleft and
Sright, sequentially scanning S (lines 12 to 20). For each symbol in S, the function
computes if the symbol belongs to either the first or second half of Σ for the current
node. Notice that each call of the function represents the computation of one (virtual)
node of the wtree. If the symbol belongs to the first half of Σ assigned to the node, the
bit at position offset + i of B[lvl] is set to 0 using bitmapSetBit, and the symbol S[i]
is copied into Sleft at position llen (lines 17 to 20). Similarly, if the symbol belongs
to the second half, the bit at position offset + i of B[lvl] is set to 1 and the symbol
S[i] is copied into Sright at position rlen (lines 12 to 16). Once the new sequences
and the bitarray at level lvl are computed, the memory allocated to store S can be
released in order to reduce the working space (line 21). Finally, we recursively call
the function with the new sequences. For example, at line 22, the function creates a
parallel recursive task to compute a new node, with Sleft as input.

This new parallel task is pushed into the bottom of the deque of the calling thread.
Meanwhile, the calling thread performs a recursive call with Sright as input (line 23).
All parallel recursive calls are synced at line 24.

Under the DYM model, the DAG of the prwt is weighted. Not all strands in this
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Input : S, n, B, lvl, offset , levels
Output: Setting of the array of bitarrays B

1 if lvl == levels then
2 return // last level

3 llen = 0, rlen = 0
4 for i = 0 to n do

5 if (S[i] & 2dlg σe−lvl−1) 6= 0 then
6 increment(rlen)
7 else
8 increment(llen)

9 Sleft is an array of llen symbols
10 Sright is an array of rlen symbols
11 llen = 0, rlen = 0
12 for i = 0 to n do

13 if (S[i] & 2dlg σe−lvl−1) 6= 0 then
14 bitmapSetBit(B[lvl], offset + i, 1)
15 Sright[rlen] = S[i]
16 increment(rlen)

17 else
18 bitmapSetBit(B[lvl], offset + i, 0)
19 Sleft[llen] = S[i]
20 increment(llen)

21 release S
22 spawn createNode(Sleft, llen, B, lvl + 1, offset, levels)
23 createNode(Sright, rlen, B, lvl + 1, llen + offset, levels)
24 sync

Function createNode

DAG have the same weight: The frequency of symbols is not the same. All paths
are the same length; that is, O(lg σ). The critical path will be given by the weight of
the heaviest path in the DAG. In the worst case, where one branch always contains
most of S, T∞ = O(n lg σ). This is the case, for example, when Σ is ordered by
frequency. In the best case, when all symbols in Σ have exactly the same frequency,
then T∞ = O(n). Finally, the parallelism for the worst case of prwt is T1/T∞ = O(1),
which is no parallelism at all. In turn, in the best case, we have that the parallelism
is O(lg σ), which means that the algorithm scales on σ.

The working space needed by prwt is limited by the space needed for the wtree
and the new sequences Sleft and Sright. Since on each call to the function createNode
the input S is released, the working space is O(n lg σ) bits.

4.1.2 Per-level parallel algorithm

Our second algorithm, called pwt, is shown in Algorithm 7. The algorithm takes as
input a sequence of symbols S, the length n of S, and the size of the alphabet, σ. The
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Input : S, n, σ
Output: A wavelet tree representation WT of S

1 WT is a new wavelet tree with dlg σe levels
2 parfor i = 0 to dlg σe − 1 do
3 B is a bitarray of size n
4 C is an integer array of size 2i

5 for j = 0 to n− 1 do

6 increment(C[S[j]/2dlg σe−i])
7 parPrefixSum(C)

8 for j = 0 to n− 1 do

9 if (S[j] & 2dlg σe−i−1) 6= 0 then

10 bitmapSetBit(B,C[S[j]/2dlg σe−i], 1)
11 else

12 bitmapSetBit(B,C[S[j]/2dlg σe−i], 0)

13 increment(C[S[j]/2dlg σe−i])

14 WT [i] = createRankSelect(B)

15 return WT

Algorithm 7: Per-level parallel algorithm (pwt)

output is a wtree WT that represents S. We denote the ith level of WT as WT [i],
∀i, 0 ≤ i < dlg σe.

The outer loop (line 2) iterates in parallel over dlg σe levels. Lines 3 to 14 scan
each level performing the following tasks: The first step (lines 3 and 4) initializes
the bitmap B of the ith level and initializes an array of integers C. The array C
will be used to count the number of bits in each node of the wtree at level i, using
counting sort. The second step (lines 5 and 6) computes the size of each node in the
ith level performing a linear-time sweep over S. For each symbol in S, the algorithm
computes the corresponding node for the alphabet range at the current level. The
expression S[j]/2dlg σe−i in line 6 shows an equivalent representation of the idea in
Proposition 1. The third step performs a parallel prefix sum algorithm [68] over the
array C, obtaining the offset of each node. Once the offset of the nodes is known, the
algorithm constructs the corresponding bitarray B, sequentially scanning S (lines 8
to 13). For each symbol in S, the algorithm computes the corresponding node and
whether the symbol belongs to either the first or second half of Σ for that node.
The corresponding bit is set using bitmapSetBit at position C[S[j]/2dlg σe−i]. Line 14
creates the rank/select structures of the bitmap B of the ith level.

Figure 4.1 shows a snapshot of the execution of the pwt for the input sequence
of Figure 3.1: The levels of the wtree can be constructed in different threads asyn-
chronously.

The work T1 of this algorithm takes O(n lg σ) time. This matches the time for
construction found in the literature1. Each of the lg σ tasks that create the pwt

1Sequential algorithms with O(n lg σ/
√

lg n) construction time appear after the publication of
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Figure 4.1: Snapshot of an execution of the algorithm pwt for the sequence introduced in
Figure 3.1. In the snapshot, thread t1 is writing the first bit of the symbol S[10] =‘ a ’ at
level 0, thread t2 is writing the second bit of S[15] =‘ e ’ at level 1, thread t3 is writing the
third bit of S[19] =‘ P ’ at level 2 and thread t4 is writing the fourth bit of S[26] =‘ d ’ at
level 3. Black areas represent bits associated with unprocessed symbols.

algorithm has a complexity of O(n + σ/p + lg p), due to the scans over the input
sequence and the parallel prefix sum over the array C. The work of pwt is still
T1 = O(n lg σ). Since all tasks have the same complexity, assuming constant access
to any position in memory, the critical path is given by the construction of one level of
the wtree. That is, for p =∞, T∞ = O(n+lg σ) = O(n). In the same vein, parallelism
will be T1/T∞ = O(lg σ). It follows that having p ≤ lg σ the algorithm will obtain
optimal speedup. The overhead added for the parfor, O(lg lg σ) is negligible. With
respect to the working space, the algorithm pwt needs the space of the wtree and the
extra space for the array C, that is, a working space of O(n lg σ + σ lg n) bits.

The main drawback of the pwt algorithm is that it only scales until the number of
cores equals the number of levels in the wavelet tree. So, even if we have more cores
available, the algorithm will only use up to lg σ cores. Nevertheless, this algorithm
is simple to implement, and suitable in domains where it is not possible to use all
available resources to the construction of wtrees.

4.1.3 Domain decomposition parallel algorithm

The third algorithm we propose makes efficient use of all available cores. The main
idea of the algorithm is to divide the input sequence S into k segments of size O(n/k)
and then apply the pwt algorithm on each segment, generating O(lg σ) tasks per
segment and creating k partial wtrees. After that, the algorithm merges all the partial

this chapter. For more details, see [102, 6].
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Input : S, n, σ, k
Output: A wavelet tree representation WT of S

1 WT is a new tree with dlg σe levels
2 B is an array of dlg σe bitarrays of size n
3 pB is a bidimensional array of bitarrays of dimensions k × dlg σe
4 G,L are tridimensional arrays of integers of dimensions k × dlg σe × 2level

5 parfor i = 0 to k − 1 do
6 pB[i] = createPartialBA(S,σ,i,n/k)
7 parfor i = 0 to dlg σe − 1 do
8 parPrefixSum(i,k)
9 B = mergeBA(n,σ,k,pB)

10 parfor i = 0 to dlg σe − 1 do
11 WT [i] = createRankSelect(B[i])
12 return WT

Algorithm 8: Domain decomposition parallel algorithm (dd)

wtrees into a single one that represents the entire input text. We call this algorithm
dd because of its domain decomposition nature.

The dd algorithm is shown in Algorithm 8. It takes the same input as pwt with the
addition of the number of segments, k. The output is a wtree WT , which represents
the input data S.

The first step of dd (lines 1 to 4) allocates memory for the output wtree, its
bitarrays, B, the bitarrays of the partial wtrees, pB, and two 3-dimensional arrays of
numbers, L and G, where the third dimension changes according to the number of
nodes in each level. Arrays L and G store local and global offsets, respectively. The
local offsets store the offsets of all the nodes of the partial wtrees with respect to the
partial wtree containing them. Similarly, G stores the offsets of all the nodes of the
partial wtrees with respect to the final wtree. In other words, each entry L[a][b][c]
stores the position of node c at level b whose parent is partial wtree a. Each entry
G[a][b][c] stores the position of node c at level b into the partial wtree a inside the
final wtree. We will treat the arrays L and G as global variables to simplify the
pseudocode.

The second step (lines 5 and 6) computes the partial wtrees of the k segments
in parallel. For each segment, createPartialBA is called to create the partial wtree.
This function is similar to the one in the pwt algorithm, performing a parallel prefix
sum (line 5 in Function createPartialBA) to compute the local offsets and store them
both in G and L. We reuse the array G to save memory in the next step. Notice that
the output of the function is a partial wtree composed of dlg σe bitarrays, without
rank/select structures over such bitarrays.

The third step of the dd algorithm uses the local offsets stored in L to compute
the global ones (lines 7 and 8). To do that, at each level i, the algorithm applies a
parallel prefix sum algorithm using the k local offsets of that level. The prefix sum
algorithm uses the implicit total order within the local offsets. Since each level in the
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Input : S, σ, k′, n
Output: A bitarray representation B of the k′th segment of S

1 B is an array of dlg σe bitarrays of size n
2 parfor i = 0 to dlg σe − 1 do
3 for j = n× k′ to n× (k′ + 1)− 1 do

4 increment(G[k′][i][S[j]/2dlg σe−i])
5 parPrefixSum(G,L)
6 for j = n× k′ to n× (k′ + 1)− 1 do

7 if (S[j] & 2dlg σe−i−1) 6= 0 then

8 bitmapSetBit(B,G[k′][i][S[j]/2dlg σe−i], 1)
9 else

10 bitmapSetBit(B,G[k′][i][S[j]/2dlg σe−i], 0)

11 increment(G[k′][i][S[j]/2dlg σe−i])

12 return B
Function createPartialBA

offsets is independent of the others, we can apply the dlg σe calls of the parallel prefix
sum algorithm in parallel.

Once we have the global offsets computed, the fourth step merges all partial
wtrees, in parallel. Function mergeBA creates one parallel task for each node in the
partial wtrees. In each parallel task (lines 5 to 10) the function concatenates the
bitarray of the node m/k of the ith level of the m%k partial wtrees into the cor-
responding bitarray, B[i], of the final wtree. Using the local and the global offsets,
the function parallelBitarrayConcat copies nb bits of pB[i], starting at position
L[m%k][i][m/k] into the bitarray B[i] at position G[m%k][i][m/k]. The function
parallelBitarrayConcat is thread-safe: The first and last machine words that com-
pose each bitarray are copied using atomic operations. Thus, the concatenated bitar-
rays are correct regardless of multiple concurrent concatenations. The last step, lines
10-11, creates the rank/select structures for each level of the wtree.

For an example of the algorithm, see Figure 4.2. Figure 4.2a shows a snapshot of
the function createPartialBA and Figure 4.2b shows a snapshot of mergeBA.

The dd algorithm has the same asymptotic complexity as pwt, with work T1 =
O(n lg σ). When running on p cores and dividing S into k = O(p/ lg σ) segments,
the construction of the partial wtrees takes O(n lg σ/p) time. The prefix sum takes
O(σ/ lg σ+lg p) time [68]. Merge takes O(n lg σ/pw), where w is the word size of that
architecture. The overhead of the parfors is O(lg p + lg σ lg lg σ). For p = ∞, the
span of the construction of the partial wtrees is O(1), O(lg(kσ)) for the prefix sum
section and O(1) for the merge function. In the case of the merge function, the offsets
of the bitarrays have been previously computed and each bit can be copied in parallel.
Thus, considering w as a constant and k = O(p/ lg σ), the span is T∞ = O(lg n) in
all cases.

The working space needed by dd is limited by the space needed for the wtree,
the partial wtrees, and local and global offsets, totalling O(n lg σ + kσ lg n) bits. By
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(a) Snapshot of Function createPartialBA. The figure shows the construction of the
partial wtrees after the split of the input sequence introduced in Figure 3.1 into three
subsequences. To create each partial wtree, the algorithm uses the pwt algorithm. These
partial wtrees are the input of Function mergeBA.

(b) Snapshot of the Function mergeBA. White, light gray and dark gray bitarrays
represent the bitarrays of first, second and third partial wtrees, respectively. The positions
of the partial wtrees bitarrays are computed in advance. Therefore such bitarrays can be
copied to the final wtree in parallel. Black areas represent uncopied bits.

Figure 4.2: Snapshot of an execution of the algorithm dd. Figures 4.2a and 4.2b
represent snapshots of Functions createPartialBA and mergeBA, respectively. The result
of this example is the wtree of Figure 3.1a.
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Input : n, σ, k, pB
Output: A bitarray representation B of the input sequence S

1 B is an array of dlg σe bitarrays of size n
2 parfor i = 0 to dlg σe − 1 do
3 parfor j = 0 to k − 1 do
4 parfor m = j × 2i to (j + 1)× 2i do
5 dst = B[i] // Destination of the bits to be copied

6 src = pB[m%k][i] // Source of the bits to be copied

7 go = G[m%k][i][m/k] // Offset in dst
8 lo = L[m%k][i][m/k] // Offset in src
9 nb = L[m%k][i][m/k + 1]− L[m%k][i][m/k] // Number of bits

10 parallelBitarrayConcat(dst,src,go,lo,nb)

11 return B
Function mergeBA

manipulating the value of k, however, we can reduce the needed space or improve the
performance of dd algorithm. If k = 1, then space is reduced to O(n lg σ + σ lg n)
bits, but this limits scalability to p < lg σ. If k = p, we improve the time complexity,
at the cost of O(n lg σ + pσ lg n) bits.

4.2 Parallel Querying

We also consider the problem of answering, in parallel, a batch of queries. We distin-
guish between two kinds of queries on wtrees: Path and branch queries. Path queries
are characterized by following just a single path from the root to a leaf and the value
in level i− 1 has to be computed before the value in level i. Examples of this type of
queries are select, rank, and access. On the other hand, branch queries may follow
more than one path root-to-leaf (indeed they may reach more than one leaf). Each
path has the same characteristics as path queries and each path is independent from
others paths. Examples of this type of queries are range count and range report [53].
Given 1 ≤ i ≤ i′ ≤ n and 1 ≤ j ≤ j′ ≤ σ, a range report query rq(S,i,i′,j,j′) reports
all the symbols sx such that x ∈ [i, i′] and sx ∈ [j, j′]. The counting version of the
problem can be defined analogously.

In a parallel setting, a single path query cannot be parallelized because only one
level of the query can be computed at a time. The common alternative is parallelizing
several path queries using domain decomposition over queries (i.e., dividing queries
over p). For this näıve approach, we obtained near-optimal throughput, defined as
the number of cores times sequential throughput (see Section 4.3.3).

For branch queries, we implemented two techniques: Individual-query-answering
(IQA) and batch-query-answering (BQA). The IQA technique is the obvious query
by query processing. The BQA technique involves grouping sets of queries to take
advantage of spatial and temporal locality in hierarchical memory architectures. For
instance, at each node in the wtree, we can evaluate all the queries in a batch reusing
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the node’s bitarray, thus increasing locality.

With little effort, we can parallelize sequential IQA in a domain decomposition
fashion (denoted as dd-IQA), achieving near-optimal throughput (more than 10 times
the throughput for p = 12 compared to the sequential IQA).

The parallelization of the BQA technique is shown in Algorithm 9 (denoted as
parBQA). The input of the algorithm corresponds to a wtree, the size of the sequence S
represented by the wtree, n, the number of symbols of such sequence, σ, an array with
the branch queries, queries, the number of queries, num queries, and the number of
queries on each batch, batch size. Each branch query is represented by a structure
with four fields. For a branch query q, the range of interest in S is given by [q.Sl, q.Sr]
and the range of interest in Σ is given by [q.σl, q.σr]. The algorithm iterates over the
batches of queries (lines 4 to 8). For each batch, it starts on the root of the wtree
(lines 6 and 7) and then calls the recursive Function batchRangeCount (line 8). Each
recursive call of the function corresponds to the processing of a virtual node of the
wtree, whose limits are defined on nd. On each node, the function iterates over all the
queries in the batch, reusing the bitarray associated with the current node (lines 6 to
26 of Function batchRangeCount). Since we implement the wtree using one bitarray
per level, we need to compute an offset to obtain the correct answers. After iterating
over all the queries, the function computes the limits of the two children of the current
node (lines 27 to 30) and makes the recursive calls (lines 31 and 32). To mark when
a query is finished on a branch, the function takes as argument an array called states
which stores the state of each query. If a query q was already finished in a previous
call, then stated[q] is 1; otherwise it is 0 (lines 7 to 9). If the query is finished on the
current call, then the state of the query q is changed to 1 (lines 10 to 20). Once the
states of all queries are changed to 1, the function halts (lines 25 and 26) and the
result of each query is store into the array results.

Observe that the parfor in line 4 of Algorithm 9 exploits the spatial and temporal
locality of the node’s bitarrays and the spawn and sync in lines 31 and 33 of the
Function batchRangeCount exploit the independent paths of the branch query. With
this, we obtain a parallel query algorithm with O(q lg σ) work and O(lg σ) span, where
q is the number of branch queries. This algorithm can be applied directly both to
range count and range report. Finally, note that the algorithm can be modified to
apply batch processing to path queries.
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Input : WT , n, σ,queries, num queries, batch size
Output: results, an array containing the results for each query

1 num batches = num queries/batch size
2 results is an array of size num queries. It will store the result of each query
3 nd is a structure that stores information about the node that is being processed.
4 parfor i = 0 to num batches− 1 do
5 states is an array of size batch size. It will mark if a query is already finished.

Initially, all queries are marked as unfinished.
6 nd.Sl = 0, nd.Sr = n− 1 // The root of WT
7 nd.σl = 0, nd.σr = σ − 1, nd.lvl = 0
8 batchRangeCount(WT,σ,n,queries,nd,results,states,batch size ∗ i,batch size)

9 return results

Algorithm 9: Parallel batch query of range report (parBQA)
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Input : WT , σ, n, queries, nd, results, states, init, num queries
Output: A bitarray representation B of the input sequence S

1 queriesl is an array of num queries queries
2 local states is a copy of the array states
3 finished = 0
4 offset = rank0(WT [nd.lvl], nd.Sl − 1)
5 zeros = rank0(WT [nd.lvl], nd.Sr)− offset
6 for q = init to init+ num queries do
7 if local states[q] == 1 then
8 increment(finished) // The query is already finished

9 continue

10 if queries[q].σl > queries[q].σr then
11 local states[q] = 1, increment(finished)
12 continue

13 if queries[q].σr < nd.σl ∨ queries[q].σl > nd.σr then
14 local states[q] = 1, increment(finished)
15 continue

// The current node is contained completely by the range of

interest

// The whole range [nd.liml, nd.limr] is part of the answer

16 if queries[q].σl ≤ nd.σl ∧ queries[q].σr ≥ nd.σr then
17 local states[q] = 1
18 increment(finished)
19 results[q]+= queries[q].Sr − queries[q].Sl + 1
20 continue

21 queriesl[q].Sl = rank0(WT [nd.lvl], queries[q].Sl − 1) −offset + nd.liml

22 queriesl[q].Sr = rank0(WT [nd.lvl], queries[q].Sr) −offset + nd.Sl − 1
23 queriesl[q].σl = queries[q].σl, queriesl[q].σr = queries[q].σr

24 queries[q].Sl = queries[q].Sl − queriesl[q].Sl + zeros + nd.Sl
queries[q].Sr = queries[q].Sr − queriesl[q].Sr − 1 + zeros + nd.Sl

25 if finished == num queries then
26 return
27 ndl is a copy of nd
28 hσ = (nd.σl + nd.σl)/2
29 ndl.Sr = nd.Sl + zeros− 1, ndl.σr = halfσ, ndl.lvl ++
30 nd.Sl = nd.Sl + zeros, nd.σl = halfσ + 1, nd.lvl ++
31 spawn batchRangeCount(WT,σ,n,queriesl,ndl,results,local states,init,batch size)
32 batchRangeCount(WT,σ,n,queries,nd,results,local states,init,batch size)
33 sync
34 release local states
35 release queriesl

Function batchRangeCount
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4.3 Experiments

Construction experiments were carried out in the machine B and query experiments
were carried out in the machine A.

4.3.1 Experimental setup

The experimental trials consisted of running the algorithms on datasets of different
alphabet sizes σ, input sizes n and number of cores. The datasets are shown in Table
4.1. We distinguish between two types of datasets: Those in which each symbol
is encoded using 1 byte, and those in which each symbol is encoded using 4 bytes.
Datasets 1-10 in Table 4.1, with σ ≤ 256, were encoded using 1 byte per symbol.
Datasets 11-14 were encoded using 4 bytes. Datasets 15-18 were encoded as follows:
For x = {4, 6, 8}, each symbol was encoded with a single byte. For x = {10, 12, 14},
each symbol was encoded in four bytes. The dataset rna.13GB is the GenBank
mRNAs of the University of California, Santa Cruz2. The rest of the rna datasets
were generated by splitting the previous one. We also tested datasets of protein
sequences, prot3 and source code, src.200MB4. We also built a version of the source
code dataset using words as symbols, src.98MB. The rest of the src datasets were
generated by concatenating the previous one up to a maximum of 2GB. To measure
the impact of varying the alphabet size, we took the English corpus of the Pizza &
Chili website5 as a sequence of words and filtered the number of different symbols
in the dataset. The dataset had an initial alphabet Σ of σ=633,816 symbols. For
experimentation, we generated an alphabet Σ′ of size 2x, taking the top 2x most
frequent words in the original Σ, and then assigning a random index to each symbol
using a Marsenne Twister [97], with x ∈ {4, 6, 8, 10, 12, 14}. To create an input
sequence S of n symbols for the English dataset (en), we searched for each symbol in
Σ′ in the original English text and, when found, appended it to S until it reached the
maximum possible size given σ′ (∼1.5GB, in the case of σ′ = 218), maintaining the
order of the original English text. We then either split S until we reached the target
size n = 227 or concatenated S with initial subsequences of itself to reach the larger
sizes 228, 229 and 230. We repeated each trial five times and recorded the median time
[132].

4.3.2 Construction Experiments

We tested the implementation of our parallel wavelet tree construction algorithms
considering one pointer per level and without considering the construction time of

2http://hgdownload.cse.ucsc.edu/goldenPath/hg38/bigZips/xenoMrna.fa.gz (April,
2015)

3http://pizzachili.dcc.uchile.cl/texts/protein/proteins.gz (April, 2015)
4http://pizzachili.dcc.uchile.cl/texts/code/sources.gz (April, 2015)
5http://pizzachili.dcc.uchile.cl/texts/nlang/english.1024MB.gz (March, 2013)

http://hgdownload.cse.ucsc.edu/goldenPath/hg38/bigZips/xenoMrna.fa.gz
http://pizzachili.dcc.uchile.cl/texts/protein/proteins.gz
http://pizzachili.dcc.uchile.cl/texts/code/sources.gz
http://pizzachili.dcc.uchile.cl/texts/nlang/english.1024MB.gz
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Dataset n σ

1 rna.512MB 536,870,912 4
2 rna.1GB 1,073,741,824 4
3 rna.2GB 2,147,483,648 4
4 rna.3GB 3,221,225,472 4
5 rna.4GB 4,294,967,296 4
6 rna.5GB 5,368,709,120 4
7 rna.6GB 6,442,450,944 4
8 rna.13GB 14,570,010,837 4
9 prot 1,184,051,855 27

10 src.200MB 210,866,607 230
11 src.98MB 25,910,717 2,446,383
12 src.512MB 134,217,728 2,446,383
13 src.1GB 268,435,455 2,446,383
14 src.2GB 536,870,911 2,446,383
15 en.x.27 134,217,728 2x

16 en.x.28 268,435,456 2x

17 en.x.29 536,870,912 2x

18 en.x.30 1,073,741,824 2x

Table 4.1: Datasets used in the experiments of wtrees.

rank/select structures. We compared our algorithms against Libcds6 and Sdsl.
Both libraries were compiled with their default options and the -O2 optimization
flag. In our experiments, shun is the fastest of the three algorithms introduced in
[126], compiled also with the -O2 optimization flag. Our dd algorithm was tested
with k = p privileging time performance over memory.

Running times and speedup. Table 4.2 shows the running times of all tested
algorithms. Libcds and shun work just for n < 232, so we cannot report running
times of these algorithms for the datasets rna.4GB, rna.5GB, rna.6GB and rna.13GB.

6We also tested a new version of Libcds called Libcds2. However the former had better running
times for the construction of wtrees.
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Datasets libcds sdsl
prwt pwt dd shun

1 64 1 64 1 64 1 64

rna.512MB 23.42 32.41 18.96 22.52 11.83 7.00 12.65 0.40 12.63 0.67
rna.1GB 47.38 65.30 38.18 44.49 23.89 16.19 25.30 0.62 25.36 1.32
rna.2GB 100.13 131.86 75.72 95.00 46.98 27.62 50.80 1.20 50.89 2.64
rna.3GB 142.90 220.11 111.77 124.73 71.09 41.00 75.37 2.17 66.35 3.79
rna.4GB - 198.10 153.36 171.26 94.39 55.04 101.44 2.84 - -
rna.5GB - 329.27 192.50 213.79 117.13 68.24 126.66 3.57 - -
rna.6GB - 389.25 229.55 249.11 141.59 81.80 152.57 4.35 - -
rna.13GB - 881.41 511.89 500.94 314.86 330.44 333.14 10.75 - -
prot 104.40 142.67 91.53 59.70 58.54 21.81 68.19 2.17 64.06 3.54
src.200MB 24.81 31.41 21.65 11.43 14.68 2.67 17.70 0.52 16.73 1.06
src.98MB 7.92 9.52 8.83 4.59 5.28 0.77 5.73 3.94 5.07 0.75
src.512MB 37.77 49.21 41.63 23.21 28.94 5.07 28.98 5.36 25.52 3.07
src.1GB 75.48 99.95 83.70 46.97 57.99 8.87 55.36 9.60 49.52 6.17
src.2GB 150.67 205.41 167.33 93.59 112.78 25.30 110.83 15.11 98.11 11.77
en.4.27 8.78 14.24 8.92 6.70 5.75 1.82 6.50 0.28 6.98 0.38
en.4.28 15.82 28.53 17.61 12.96 11.44 3.67 12.88 0.40 12.34 0.77
en.4.29 35.43 57.11 35.46 30.96 23.01 7.22 25.51 0.84 24.68 1.57
en.4.30 70.00 113.88 70.84 65.30 46.10 14.40 51.06 1.63 55.56 3.06
en.6.27 12.44 19.10 12.60 7.35 7.98 1.78 9.58 0.36 10.46 0.61
en.6.28 22.65 38.37 25.24 14.30 15.92 3.33 19.35 0.52 18.38 1.17
en.6.29 50.28 76.91 51.55 25.71 31.78 7.08 37.90 1.18 41.86 2.36
en.6.30 99.66 153.72 103.11 65.59 63.62 15.90 76.59 2.20 83.29 4.68
en.8.27 15.87 26.00 16.67 7.03 11.48 1.87 13.15 0.46 14.10 0.88
en.8.28 29.06 52.15 33.43 15.67 22.86 3.71 26.52 0.78 28.28 1.58
en.8.29 64.84 105.01 67.73 31.83 45.79 7.57 52.53 1.56 56.68 3.14
en.8.30 128.65 209.54 136.23 67.69 91.83 14.65 105.00 3.13 113.13 6.26
en.10.27 21.32 33.25 24.13 9.58 14.61 2.26 13.94 1.66 17.26 1.39
en.10.28 43.55 68.00 49.90 19.24 30.32 6.43 29.05 2.18 33.15 2.78
en.10.29 89.96 136.67 101.17 38.82 60.69 9.25 58.55 4.59 67.16 5.67
en.10.30 183.57 281.53 205.90 77.43 123.88 17.70 119.14 8.93 214.2 10.77
en.12.27 24.38 39.09 28.00 9.78 17.97 2.52 17.33 2.61 20.33 1.64
en.12.28 50.17 80.22 57.70 20.05 37.66 7.62 36.36 2.66 38.97 3.25
en.12.29 103.39 161.96 117.50 40.21 75.09 10.41 72.46 5.73 128.35 6.71
en.12.30 211.66 333.32 239.11 81.75 150.02 20.33 145.04 9.66 259.21 12.99
en.14.27 27.44 43.61 31.46 8.65 21.92 3.10 21.39 2.43 22.51 1.84
en.14.28 56.44 90.05 65.00 17.60 45.85 6.11 44.70 2.94 44.53 3.67
en.14.29 116.15 182.46 131.89 35.30 90.41 12.50 88.37 6.97 91.53 7.79
en.14.30 238.36 377.77 269.91 70.88 184.83 22.31 178.58 10.50 302.14 15.98

Table 4.2: Running times, in seconds, of the sequential and parallel algorithms with 1
and 64 threads. The best sequential times are underlined and the best parallel times are
shown using bold typeface. A “-” is shown for implementations that just work for n < 232.

For each dataset, we underline the best sequential running times. We use those
values to compute speedups. The best parallel times for p = 64 are identified using
a bold typeface. Although Libcds and Sdsl are the state-of-the-art in sequential
implementations of wtrees, the best sequential running times were obtained from
the parallel implementations running on one thread. The main reason for this is
that Sdsl implements a semi-external algorithm for wtree construction, involving
heavy disk access, while Libcds uses a recursive algorithm, with known memory and
executions costs.

Figure 4.3 shows speedups for rna.3GB, prot, src.200MB, en.4.30, src.2GB,
en.14.30 datasets, with the largest n. As expected, the pwt algorithm is competitive
until p < lg σ. Thus, for small σ the pwt algorithm is not the best alternative, as



57

Number of threads

S
p
e
e
d
u
p

1 8 12 20 28 36 44 52 60

0
2

4
6

8
1

2
1

6
2

0
2

4
2

8
3

2

dd

prwt

pwt

shun

(a) rna.3GB, n ≈ 232, σ=4.
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(b) prot, n ≈ 230, σ=27.
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(c) src.200MB, n ≈ 228, σ=230.
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(d) en.4.30, n = 230, σ=16.
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(e) src.2GB, n ≈ 229, σ ≈ 221.
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(f) en.14.30, n = 230, σ=214.
Figure 4.3: Speedup with respect to the best sequential time. The caption of each figure
indicates the name of the dataset, the input size n and the alphabet size σ.
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shown in Figures 4.3a, 4.3b and 4.3d. If the algorithm recruits more threads than
levels, the overhead of handling these threads increases, generating some “noise” in
the times obtained. The performance of pwt will be dominated also by the thread
that builds the most levels. For instance, in Figure 4.3f we created a wtree with 14
levels. In the case of one thread, that thread has to build the 14 levels. In the case
of 4 threads, each has to build three levels. For 8 and 12 threads, some threads will
build two levels, so those threads dominate the running time. Finally, for the case of
16 threads, each thread has to build at most one level. This explains the “staircase”
effect seen for pwt in Figure 4.3f.

In all datasets shown in Figure 4.3, except for Figure 4.3e, the dd algorithm has a
better speedup than both pwt and shun, especially for datasets with small alphabets,
such as rna, prot and en.4. In the case of Figure 4.3e, shun has a better speedup,
because our algorithms have worse data locality. We will discuss more about the
impact of locality of reference at the end of this section. It is important to remember
that although shun has a better speedup, its memory consumption is larger than in
our algorithms, as can be seen in Figure 4.4.

Memory consumption. Figure 4.4 shows the amount of memory allocated with
malloc and released with free. For all algorithms, we report the peak of memory allo-
cation and only consider the memory allocated during construction, not the memory
allocated to store the input text. The datasets are ordered incrementally by n. In the
case of the dd algorithm, the figure shows memory consumption for k = 1. Libcds
and shun use more memory during construction time. In fact, pwt uses up to 33
and 25 times less memory than Libcds and shun, respectively. Memory usage in
libcds is dominated by its recursive nature, while shun copies the input sequence
S, of O(n lg σ) bits, to preserve it and to maintain its permutations in each itera-
tion. Additionally, shun uses an array of size O(σ lg n) bits to maintain some values
associated with the nodes of the wtree, such as the number of bits, the range of the
alphabet, and the offset. In our algorithms and in sdsl, memory consumption is
dominated by the arrays that store offset values, not by the input sequence.

The main drawback of dd with respect to our own pwt is its memory consumption,
since the latter increases with the alphabet size and the number of threads. For
small alphabets, the working space of dd is almost constant. For instance, memory
consumption for rna.2GB is 1GB, plus a small overhead for each new thread. For
larger alphabets, such as src.2GB with σ ≈ 222, the working space increases linearly
with the number of threads, using 1.46GB with 1 thread and 2.5GB with 12 threads.
Fortunately, most of the sequences used in real-world applications have an alphabet
size smaller than 217. Such is the case of DNA sequences, the human genome, natural
language alphabets (Unicode standard), etc.7.

7The Unicode Consortium: http://www.unicode.org/

 http://www.unicode.org/
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Figure 4.4: Memory consumption sorted by n.
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Other experiments. In order to have a better understanding of our algorithms,
we performed the following experiments:

Limited resources. When memory is limited, algorithms such as Libcds and
shun suffer a decrease in their performance. This is evident in Figure 4.5, where we
tested the parallel algorithms with datasets prot and src.1GB8 on a 12-core computer
with 6GB of DDR3 RAM (machine A). In this new set of experiments, the speedup
of our algorithms exceeded the speedup shown by shun, both for datasets where we
previously showed the better performance (see Figure 4.3b) and for datasets where
previously shun showed better performance (see Figure 4.3e and Table 4.2).

Encoding. We observed that the encoding of the symbols of the original se-
quence has a great impact in the speedups of the construction algorithms. Figures
4.3a–4.3d have speedups greater than 27x, while there is a noticeable performance
degradation in Figure 4.3e and Figure 4.3f. This is due to an encoding subtlety: The
datasets used in the experiments resulting in Figures 4.3a–4.3d are encoded using one
byte for each symbol, while the other used four bytes. To test the impact of the encod-
ing in the performance of the construction algorithms, we repeated the experiments
using a dataset that used four bytes per symbol for σ ≤ 28. Figures 4.3d and 4.6 show
the influence of encoding. As expected, the greater the memory used for encoding,
the worse the perfomance. On multicore architectures, some levels of the memory
hierarchy are shared by different cores. This increases the rate of memory evictions.
Hence, it is crucial to reduce the number of memory transfers. Besides, in NUMA
architectures, where each NUMA node has a local RAM and the transfers between
local RAMs are expensive, the reduction of memory transfers is critical. In the case
of one byte per symbol, each memory transfer carries four times more symbols than
in the case of four bytes per symbol, effectively helping reduce memory transfers.

Influence of the sequence size. Figure 4.7 shows that for the en.14 dataset,
fixing the number of threads to 64 and σ to 214, for larger n the domain decompo-
sition algorithm behaves better in running time than the pwt algorithm and Shun’s
algorithm. In other words, with more cores and enough work for each parallel task,
the dd algorithm should scale appropriately.

Influence of the locality of reference. Theoretically, fixing n and varying σ
with p = lg σ threads, the pwt algorithm should show a constant-time behavior, no
matter the value of σ. However, in practice, the running times of pwt increase with
the alphabet size. The reason for this difference in theoretical and practical results
is that levels closer to the leaves in the wtree exhibit a weaker locality of reference.
In other words, locality of reference of the pwt algorithm is inversely proportional to

8The construction times of shun with the src.2GB dataset exceeds one hour. To make the
algorithms in the figures comparable, we report the running times for the dataset src.1GB.
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σ. Additionally, the dynamic multithreading model assumes that the cost of access
to any position in the memory is constant, but that assumption is not true in a
NUMA architecture. In order to visualize the impact of the locality of reference over
running times, we generate two artificial datasets with n = 230, Σ = {1 . . . 2y}, with
y ∈ {4, 6, 8, 10, 12, 14} and encoding each symbol with four bytes. The first dataset,
cont, was created by writing each symbol of Σ n/σ times and then sorting the symbols
according to their position in the alphabet. The second dataset, rand, was created in
a similar fashion, but writing symbols at random positions. The objective of the cont
dataset is to force the best case of the pwt algorithm, where the locality of reference
is higher. In contrast, the rand dataset forces the average case, with a low locality
of reference. In these experiments, we used the optimal number of threads of pwt,
that is, p = lg σ. Besides, we allocated evenly the memory over the NUMA nodes to
ensure constant access cost to any position in the memory9. The results are shown in
Figure 4.8. In its average case, illustrated using dashed lines, the performance of the
pwt algorithm is degraded for larger alphabets because locality of reference is low,
increasing the amount of cache misses, and thus degrading the overall performance.
In the best case, illustrated using solid lines, pwt shows a practical behavior similar
to the theoretical one. Since the dd algorithm implements the pwt algorithm to build
each partial wtree, the locality of reference also impacts its performance. However,
because the construction of the partial wtrees involves sequences of size O(n/p), the
impact is less than in the pwt algorithm. Finally, Shun’s algorithm is insensitive to
the distribution of the symbols in the sequence.

The study of the impact of the architecture on the construction of wtrees and
other succinct data structures, and the improvement of the locality of reference of
our algorithms are interesting lines for future research.

Discussion. In most cases, the domain decomposition algorithm, dd, showed the
best speedup. Additionally, dd can be adjusted either in favor of running time or
memory consumption. pwt showed good scalability, but only up to p < lg σ. This
limitation may be overcome by using pwt as part of dd, dividing the input sequence
into an adequate number of subsequences.

With respect to working space, pwt was the algorithm with the lowest memory
consumption. This is important because an algorithm with low memory consump-
tion can be executed in machines with limited resources, can reduce cache misses due
to invalidations (false sharing) and can therefore reduce energy consumption. Even
though memory consumption of the dd algorithm increases with the number of sub-
sequences, it can be controlled by manipulating the number of segments. In the case
of shun, its memory consumption is too large to be competitive in machines with
limited memory.

The encoding and the distribution of the symbols of the input sequence impact

9To ensure the constant access cost, we use the numactl command with “interleave=all” option.
The command allocates the memory using round robin on the NUMA nodes.
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Figure 4.9: Throughput over p for 100,000 path queries. The queries were run over the
dataset en.14.29.

the performance of the algorithms. All the parallel algorithms introduced here show
a better speedup for encodings that use fewer bits because there are fewer memory
transfers. Our algorithms are also sensitive to the distribution of the symbols. When
the symbols are randomly distributed, the locality of reference is worse in comparison
with more uniform distributions. This gives us a hint to improve the performance of
our algorithms in the future.

To sum up, in general, the dd algorithm is the best alternative for the construc-
tion of wtrees on multicore architectures, considering both running time and memory
consumption. For domains with limited resources, pwt, which is a building block of
dd, arises as a good alternative on its own.

4.3.3 Query Experiments

To test our query algorithms, we generated randomly 100,000 path queries and 10,000
branch queries. For branch queries, ranges over the text were selected with random
bounds, the size of the range over the text was fixed at 1%, and the range over
the alphabet was fixed to 100%. In order to stress the parBQA query algorithm, we
replaced the condition of line 16 of Function batchRangeCount by if(nd.σl == nd.σr).
This ensured that the query traversal reached the leaves of the wtree. All the queries
were tested over the wtree created using the dataset en.14.29 and the pwt algorithm.

Figure 4.9 shows the throughput of answering 100,000 path queries in parallel
using domain decomposition. We made the experiments considering select, rank,
and access queries. For the three type of queries, we can observe a linear increase
in the throughput with respect to the number of threads. The lower throughput of
select is due to the fact that it takes more time because it goes down and then goes
up on the levels of the wtree. Meanwhile rank and access only need to go down the
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wtree.

As discussed in Section 4.2, the BQA technique implies a little more programming
effort but improves throughput over IQA in both sequential and parallel settings. This
is shown in the Figure 4.10. Figure 4.10a shows the sequential throughput of IQA
and BQA. For BQA, we created batches of 2, 5, 10, 50, 100, 200, 300, 500, 1,000,
and 10,000 queries. In all, except for batch size 2, the BQA technique has a better
throughput than the IQA technique, up to 3 times better. In general, the queries
supported by a wtree incur in more read misses that in write misses, since most of the
wtree has to be read while only few variables are written. Therefore, if we can reduce
the read misses, we can improve the throughput of our query-answering algorithms.
Since BQA exploits the spatial and temporal locality of the hierarchical memory, when
the batch size increases, the amount of read misses and, in lesser extent, write misses
decrease, increasing the throughput. For the case of batch size 2, the throughput of
BQA is lower than IQA because its number of cache misses is greater than the cache
misses of IQA. This is shown in Figure 4.10b.
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Figure 4.10: Branch queries experiments over the dataset en.14.29. For BQA technique
the batch size changes from 2 to 10,000.
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Algo
Batch Threads

size 1 2 4 6 8 10 12

dd-IQA -
Th 137.57 290.30 551.57 773.53 990.93 1266.12 1474.06
RM 665860362 657818591 737767750 766095719 741319074 704190961 681491229
WM 48081819 48041149 47328838 47987211 47378656 47449644 47528758

parBQA

2
Th 100.56 194.62 348.35 406.85 362.18 402.74 443.61
RM 834877009 785435590 731840791 710330088 714685675 700531663 694619108
WM 152382639 154227895 157085490 159295211 161359565 162841305 164377685

5
Th 146.82 301.31 554.61 628.20 548.24 643.29 712.03
RM 701741574 661159773 557769396 567348283 578432715 563580603 545671748
WM 114809684 117015656 118332101 120191416 120199560 121362289 121932783

10
Th 221.74 397.68 679.61 803.72 696.79 811.65 884.71
RM 530267689 529014444 447673290 465907488 491537029 466856907 451301658
WM 101311270 103284485 105393194 105746122 106704957 107055350 107576446

50
Th 314.22 523.12 952.55 1013.34 926.26 967.90 1202.79
RM 276960062 301410175 281768855 284070254 267223770 260184414 240708360
WM 91757596 95467415 96557132 96527690 96932334 97648510 97739287

100
Th 343.40 586.75 1017.71 1060.59 880.60 1023.97 1296.30
RM 215546652 233695241 217395892 225892186 212776916 195072536 185470773
WM 90939844 93539193 95889503 95359893 95995964 96441443 96722795

200
Th 335.09 608.06 1061.12 1133.73 936.10 1212.99 1325.53
RM 191197574 186654101 171230380 180167317 168084253 153219450 141833763
WM 91722746 93242449 94768254 94731394 95637667 95757922 96209927

300
Th 348.47 659.30 1118.17 1217.46 1013.05 1232.40 1443.27
RM 172426822 167873358 162909579 155472257 157766136 140711549 129182950
WM 91780910 92476066 94721318 94921917 95855243 96242555 96498170

500
Th 363.48 641.26 1256.25 1491.03 1278.82 1486.17 1720.98
RM 151292247 145254144 130744590 130601523 132549010 121846145 119806629
WM 91881274 92461973 93689618 94788891 95593715 96078659 96722026

1,000
Th 392.69 751.09 1370.70 1930.55 2050.69 2254.38 2669.01
RM 113568181 124760874 113050092 109214768 111164439 102412983 108209001
WM 90803770 81616490 77884008 76918965 76911836 76733067 76743158

10,000
Th 406.16 809.51 1569.76 2301.69 3014.51 3662.38 4334.43
RM 99570459 90565058 90249576 92412743 89657938 88164389 86953096
WM 85139187 69100728 61783541 59445665 58306473 58747291 59055887

Table 4.3: Throughput (Th), last level read misses (RM) and last level write misses
(WT) of the dd-IQA and parBQA parallel algorithms. The experiments were run in the
machine A with the dataset en.14.29.

Figure 4.10c shows the performance of dd-IQA and parBQA, with batch size of 2,
100, 500, 1,000 and 10,000 and varying the number of threads. Their corresponding
read and write misses are shown in Figure 4.10d. For a complete report of throughputs
and cache misses, see Table 4.3. The better throughput is reached by parBQA with a
batch size of 10,000, 2.9 times better than dd-IQA for all the threads. For dd-IQA,
the improvement with respect to itself was 10.7 times. For parBQA, it improvement
was around 4 with batch sizes 2, 5, 10, 50, 100, 200, 300 and 500; 6.8 with batch
size 1,000 and 10.7 with batch size 10,000. The amount of cache misses almost does
not vary with the number of threads. For parBQA, with a batch size less than 10,000,
the O(num queries/batch size) batches are processed in parallel, while inside each
batch the O(σ) independent paths are processes in parallel, too. For a batch size
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equal to the number of queries, there exist only one batch, processing in parallel only
the O(σ) tasks associated with the paths of the range queries. This implies that the
parBQA algorithm has a good performance due more to the exploitation of the spatial
and temporal locality and the parallel processing of the independent paths of range
queries than the domain decomposition over all the queries.

4.4 Extensions

Wavelet tree construction with very large inputs. For all our construction
algorithms we assume that the input sequence S fits in memory. However, we can
extend our results to the construction of wtrees where the input sequence S does
not fit in memory, but the wtree does fit. Following some implementation ideas of
Sdsl[55], we can read the input sequence in buffers to construct partial wtrees for
each buffer and finally merge all of them to obtain the final wtree. In more detail, we
can extend our algorithms as follows:

1. Read the input sequence S using a buffer of size b. We can use the portion of
main memory that will not be used by the wtree as the buffer.

2. Create a partial wtree without rank/select structures taking the buffer as input.
The partial wtree can be constructed in parallel using our dd algorithm with
O(b lg σ/p) time and O(1) span. (We could also use the pwt if the available
memory is scarce). The starting position of each node in the partial wtree is
stored in a bidimensional array L.

3. Repeat steps 1 and 2 until the complete input sequence is read.

4. After the complete input sequence is read, we compute the final position of the
nodes of all the partial wtrees. These positions are computed by performing a
parallel prefix sum[68] over the values of the arrays L, similar to the dd algo-
rithm. It takes O(bσ/p+ lg p) time and O(lg(bσ)) span.

5. The final wtree is constructed using Function mergeBA with O(n lg σ/pw) and
O(1) span, where w is the word size of the architecture.

The extension takes O(n lg σ/p + bσ/p + lg p) time and O(n/b + lg(bσ)) span. No-
tice that this idea is similar to the dd algorithm and it can be applied on multiple
levels. For example, it can be used on distributed architectures, where the buffers
are processed by different machines, and one machine merges all the partial wtrees.
Additionally, observe that we can use the entire main memory as the buffer, storing
the partial wtrees and the L arrays on disk each time we finish the processing of a
buffer. We leave the implementation and empirical evaluation of these ideas as future
work.
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Huffman shaped wavelet trees. In [61], Grossi et al. introduced an improvement
for the wtree in order to reduce the costs of the queries, and in [93, 94], Mäkinen and
Navarro use the same improvement to reduce the space of the sequence. The im-
provement changes the shaped of the original wtree by adopting a Huffman prefix
tree shape. Thus, instead of using the original encoding of the symbols of Σ to con-
struct the bitmaps of the wtree, we use the Huffman codes of the symbols. We can
use both the pwt and the dd algorithms to construct the Huffman shaped wtree. First
of all, we need to compute the new encoding of the symbols in parallel. Edwards
and Vishkin [38] introduced a parallel algorithm to compute the Huffman codes of a
sequence of size n and alphabet size σ with O(n+σ) work and O(lg n+σ) span. As-
sume that the resulting Huffman codes and the length of each code are (temporarily)
stored in a table H of size O(σ lg n). With the table H, we can use the pwt algorithm
without changes. For all the levels at the same time, we count the number of bits
on each node of the wtree, using the input sequence S, the table H and bit shifting
operations. With the length of the Huffman code of each symbol, we can detect when
a symbol does not need to be represented in a particular level. After that, we traverse
the input sequence S again, writing the bits in their corresponding positions. Since
the dd algorithm is based on the pwt algorithm, the previous explanation is valid for
it. Finally, a Huffman shaped wtree of height h = O(lg n) can be constructed in paral-
lel with O(n lg n) work and O(n+σ) span using the pwt algorithm, and with O(n lg n)
work and O(lg n+ σ) span using the dd algorithm, by dividing S into k = O(p/ lg n)
segments.



Chapter 5

Parallel Construction of Succinct Trees

In this chapter, we describe our parallel algorithm for constructing the RMMT of a given
tree, called the Parallel Succinct Tree Algorithm (psta). Its input is the balanced
parenthesis sequence P of an n-node tree T . This is a tree representation commonly
used in practice, particularly in secondary storage. For trees whose folklore encoding is
not directly available, in Section 5.1 we describe a parallel algorithm that can compute
such an encoding in O(n/p + lg p) time. Our algorithms assume that manipulating
w bits takes constant time. Additionally, we assume the (time and space) overhead
of scheduling threads on cores is negligible. This is guaranteed by the results of [14],
and the number of available processing units in current systems is generally much
smaller than the input size n, so this cost is indeed negligible in practice.

5.1 Parallel Folklore Encoding Algorithm

The psta algorithm requires the balanced parentheses representation P of the input
tree T , but in some applications T may not be given in this form. Here, we present
a parallel algorithm that constructs the balanced parenthesis sequence of T from
a representation of T stored in adjacency list representation. Since the balanced
parenthesis sequence of T is also known as its folklore encoding, we call the algorithm
the Parallel Folklore Encoding Algorithm (pfea). The input tree is represented by an
array of nodes, VT , and an array of edges, ET . Each node v ∈ VT stores two indices
in ET , v.first and v.last, indicating the adjacency list of v, sorted counterclockwise
around v and starting with v’s parent edge. Notice that the number of children of
v is (v.last − v.first). Each edge e ∈ ET has three fields, e.src, which is a pointer
to the source vertex, e.tgt, which is a pointer to the target vertex and e.cmp, which
is the position in ET of the complement edge of e, ê, where the ê.src = e.tgt and
ê.tgt = e.src. For x ∈ {e.src, e.tgt}, we use next(e.x) and first(e.x) to denote the
indices in ET of e’s successor and of the first element (parent edge) in x’s adjacency
list, respectively. Both are easily computed in constant time by following pointers.
Figure 5.1 shows an example of the used representation.

The idea behind the construction is the following: Given an Euler tour of T
that visits the children of each node in left-to-right order, the balanced parenthesis
representation of T can be obtained by following the Euler tour, writing down an
open parenthesis for every edge traversed from parent to child (forward edge) and a
closed parenthesis for every edge traversed from child to parent (backward edge), and
finally enclosing the resulting sequence in a pair of parentheses representing the root
of T .

68
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Figure 5.1: Tree representation used as input to the pfea algorithm. The nodes are
represented in the array VT and the edges in the array ET . For e ∈ ET and
x ∈ {e.src, e.tgt}, we use next(x), first(x) and last(x) to denote the indices in ET of e’s
successor, of the first element (parent edge) and of the last element in x’s adjacency list,
respectively.

Algorithm 10 shows the pseudo-code of the construction. It creates two arrays,
one is an auxiliary array ET of length |ET | to store the Euler tour of T , and the other
is an array P of size |ET | + 2 to store the balanced parentheses representation of T
(lines 1–2). Each entry in ET represents the traversal of an edge of T and stores three
values: value is “(“ or “)” depending on whether the edge is traversed from parent to
child or from child to parent, that is, it is the corresponding parenthesis to be added
to P ; succ is the index in ET of the next edge in the Euler tour; and rank is the rank
in the Euler tour. Lines 4–16 of the algorithm populate ET with entries representing
the Euler tour, with the rank values initialized with 1. Line 17 computes the final
ranks using a parallel list ranking algorithm [68]. Given these ranks, the balanced
parentheses representation can be obtained by writing ET [i].value into P [ET [i].rank ].
Lines 18–22 do exactly this. The whole computation in Lines 4–20 and Lines 22–24
could have been formulated as a single parallel loop. However, in the interest of
limiting scheduling overhead, we create only as many parallel threads as necessary,
similar to the psta algorithm in Section 5.2

5.2 Parallel Succinct Tree Algorithm

Before describing the psta algorithm, we observe that the entries in e′ corresponding
to internal nodes of the RMMT need not to be stored explicitly. This is because the
entry of e′ corresponding to an internal node is equal to the entry that corresponds
to the last leaf descendant of this node; since the RMMT is complete, we can easily
locate this leaf in constant time. Thus, our algorithm treats e′ as an array of length
d2n/se with one entry per leaf. Our algorithm consists of three phases. In the
first phase (Algorithm 11), it computes the leaves of the RMMT, i.e., the array e′, as
well as the entries of m′, M ′ and n′ that correspond to leaves. In the second phase
(Algorithm 12), the algorithm computes the entries of m′, M ′ and n′ corresponding
to internal nodes of the RMMT. In the third phase (Algorithm 13), it computes the
universal lookup tables used to answer queries. The input to our algorithm consists
of the balanced parenthesis sequence, P , the size of each chunk, s, and the number
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Input : An adjacency list representation of T consisting of arrays VT and ET and
the number of threads, threads.

Output: The balanced parenthesis sequence P of T .

1 ET = an array of length |ET |
2 P = an array of length |ET |+ 2// equivalently to an array of length 2|VT |
3 chk = |ET |/threads
4 parfor t = 0 to threads − 1 do
5 for i = 0 to chk − 1 do
6 j = t ∗ chk + i
7 e = ET [j]
8 ET [j].rank = 1
9 if isRoot(e.src) OR first(e.src) 6= j then // Forward edge

10 ET [j].value = 1 // open parenthesis
11 if e.tgt is a leaf then
12 ET [j].succ = e.cmp
13 else
14 ET [j].succ = first(e.tgt) + 1

15 else
16 ET [j].value = 0 // closed parenthesis
17 if ET [j] is the last edge in the adjacency list of e.src then
18 ET [j].succ = first(e.tgt)
19 else
20 ET [j].succ = next(e.tgt)

21 ParListRanking(ET)

22 parfor t = 0 to threads − 1 do
23 for i = 0 to 2 ∗ chk − 1 do
24 P [ET [2 ∗ t ∗ chk + i+ 1].rank ] = ET [2 ∗ t ∗ chk + i+ 1].value

25 P [0] = 1
26 P [|ET |+ 1] = 0

Algorithm 10: Parallel Folklore Encoding Algorithm (pfea)

of available threads, threads .

To compute the entries of arrays e′, m′, M ′, and n′ corresponding to the leaves of
the RMMT (Algorithm 11), we first assign the same number of consecutive chunks, ct ,
to each thread (line 4). We call such a concatenation of chunks assigned to a single
thread a superchunk. For simplicity, we assume that the total number of chunks,
d2n/se, is divisible by threads . Each thread then computes the local excess value of
the last position in each of its assigned chunks, as well as the minimum and maximum
local excess in each chunk, and the number of times the minimum local excess occurs
in each chunk (lines 8–17). These values are stored in the entries of e′, m′, M ′, and
n′ corresponding to this chunk (lines 18–21). The local excess value of a position i
in P is defined to be sum(P, π, j, i), where j is the index of the first position of the
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superchunk containing position i. Note that the locations with minimum local excess
in each chunk are the same as the positions with minimum global excess because the
difference between local and global excess is exactly sum(P, π, 0, j − 1). Thus, the
entries in n′ corresponding to leaves store their final values at the end of the loop in
lines 5–21, while the corresponding entries of e′, m′, and M ′ store local excess values.
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Input : P , s, threads
Output : RMMT represented as arrays

e′,m′,M ′, n′ and universal
lookup tables

1 o = d2n/se − 1 // # internal nodes
2 e′ = array of size d2n/se
3 m′,M ′, n′ = arrays of size d2n/se+ o
4 ct = d2n/se/threads
5 parfor t = 0 to threads − 1 do
6 e′t,m

′
t,M

′
t , n
′
t = 0

7 for chk = 0 to ct − 1 do
8 low = (t ∗ ct + chk) ∗ s
9 up = low + s

10 for par = low to up − 1 do
11 e′t += 2 ∗ P [par ]− 1
12 if e′t < m′t then
13 m′t = e′t; n

′
t = 1

14 else if e′t = m′t then
15 n′t += 1
16 else if e′t > M ′t then
17 M ′t = e′t

18 e′[t ∗ ct + chk ] = e′t
19 m′[t ∗ ct + chk + o] = m′t
20 M ′[t ∗ ct + chk + o] = M ′t
21 n′[t ∗ ct + chk + o] = n′t

22 parPrefixSum(e′, ct)
23 parfor t = 1 to threads − 1 do
24 for chk = 0 to ct − 1 do
25 if chk < ct − 1 then
26 e′[t∗ct +chk ] += e′[t∗ct−1]

27 m′[t∗ct +chk +o] += e′[t∗ct−1]
28 M ′[t∗ct +chk +o] += e′[t∗ct−1]

Algorithm 11: Parallel Succinct Tree
Algorithm (psta), part I

1 lvl = dlg threadse
2 parfor st = 0 to 2lvl − 1 do
3 for l = dlg(2n/s)e − 1 downto lvl

do
4 for d = 0 to 2l−lvl − 1 do
5 i = d+ 2l − 1 + st ∗ 2l−lvl

6 concat(i,m′,M ′, n′)

7 for l = lvl − 1 to 0 do
8 parfor d = 0 to 2l − 1 do
9 i = d+ 2l − 1

10 concat(i,m′,M ′, n′)

Algorithm 12: Parallel Succinct Tree Al-
gorithm (psta), part II

1 parfor x = −w to w − 1 do

2 parfor y = 0 to
√

2w − 1 do
3 i = ((x+ w) << w) OR w;
4 near fwd pos[i] = w;
5 p, excess = 0;
6 repeat
7 excess +=

1− 2 ∗ ((y&(1 << p)) = 0);
8 if excess = x then
9 near fwd pos[i] = p;

10 break;

11 p += 1;

until p ≥ w;

Algorithm 13: Parallel Succinct Tree Al-
gorithm (psta), part III

Input: i, m′, M ′, n′

1 m′[i] = min(m′[2i+ 1],m′[2i+ 2]);
2 M ′[i] = max(M ′[2i+ 1],M ′[2i+ 2]);
3 if m′[2i+ 1] < m′[2i+ 2] then
4 n′[i] = n′[2i+ 1];
5 else if m′[2i+ 1] > m′[2i+ 2] then
6 n′[i] = n′[2i+ 2];
7 else
8 n′[i] = n′[2i+ 1] + n′[2i+ 2];

Function concat



73

To convert the entries in e′ into global excess values, observe that the global excess
at the end of each superchunk equals the sum of the local excess values at the end of
all superchunks up to and including this superchunk. Thus, we use a parallel prefix
sum algorithm [68] in line 22 to compute the global excess values at the end of all
superchunks and store these values in the corresponding entries of e′. The remaining
local excess values in e′, m′, and M ′ can now be converted into global excess values
by increasing each by the global excess at the end of the preceding superchunk. Lines
23–28 do exactly this.

The computation of entries of m′, M ′, and n′ (Algorithm 12) first chooses the
level closest to the root that contains at least threads nodes and creates one thread
for each such node v. The thread associated with node v calculates the m′, M ′, and
n′ values of all nodes in the subtree rooted at v, by applying the function concat
to the nodes in the subtree bottom up (lines 2–6). The invocation of this function
for a node computes its m′, M ′, and n′ values from the corresponding values of its
children. With a scheduler that balances the work, such as a work-stealing scheduler,
cores have a similar workload. Lines 7–10 apply a similar bottom-up strategy for
computing the m′, M ′, and n′ values of the nodes in the top lvl levels, but they do
this by processing these levels sequentially and, for each level, processing the nodes
on this level in parallel.

Algorithm 13 illustrates the construction of universal lookup tables using the
construction of the table near fwd pos for an example. This table is used to support
the fwd search operation (see Section 3.2.2). Other lookup tables can be constructed
analogously. As each entry in such a universal table can be computed independently,
we can easily compute them in parallel.

5.2.1 Theoretical analysis

In the pfea algorithm, lines 4–16 and 18–22 perform O(n) work and have Tp = O(n/p)
and span T∞ = O(1). Line 17 performs O(n) work and has Tp = O(n/p + lg p) and
span O(lg n). This gives a total work of T1 = O(n) and a span of T∞ = O(lg n). The
running time on p cores is Tp = O(n/p + lg p). The working space is O(n lg n) bits,
which is the space needed to store the array ET .

The analysis of the psta algorithm is done in three steps: Lines 1–21 of Algo-
rithm 11 require O(n) work and have span O(1). Line 22 requires O(p) work and has
span O(lg n) because we compute a prefix sum over only p values. Lines 23–28 require
O(n) work and have span O(1). Lines 1–6 of Algorithm 12 require O(n/s) work and
have span O(1). Lines 7–10 require O(p) work and have span O(lg n/s). Algorithm 13
requires O(

√
2wpoly(w)) work and has span O(1), where w is the machine word size.

Thus, the total work of psta is T1 = O(n+lg p+
√

2wpoly(w)) and its span is O(lg n).
This gives a running time of Tp = O(T1/p + T∞) = O(n/p + lg p +

√
2wpoly(w)/p)

on p cores1. The speedup is T1/Tp = O
(

p(n+
√

2wpoly(w))

n+
√

2wpoly(w)+p lg p

)
. Under the assumption

1Notice that the term lg n of the span is implicit in the term n/p+lg p of Tp. When p ≤ n/ lg n→
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that p � n, the speedup approaches O(p). Moreover, the parallelism T1/T∞ (the

maximum theoretical speedup) of PSTA is n+
√

2wpoly(w)
lgn

.
The psta algorithm does not need any extra memory related to the use of threads.

Indeed, it just needs space proportional to the input size and the space needed to
schedule the threads. A work-stealing scheduler, like the one used by the DYM
model, exhibits at most a linear expansion space, that is, O(S1p), where S1 is the
minimum amount of space used by the scheduler for any execution of a multithreaded
computation using one core. This upper bound is optimal within a constant factor
[14]. In summary, the working space needed by our algorithm is O(n lg n + S1p)
bits. Since in our algorithm the scheduler does not need to consider the input size to
schedule threads, S1 = O(1). Thus, since in modern machines it is usual that p� n,
the scheduling space is negligible and the working space is dominated by O(n lg n).

Note that in the RAM model, it is common to adopt the assumption that w =
Θ(lg n), and when constructing lookup tables, consider all possible bit vectors of
length (lg n)/2 (instead of w/2). This guarantees that the universal lookup tables
occupy only o(n) bits. Adopting the same strategy, we can simplify our analysis and
obtain Tp = O(n/p+ lg p). Thus, we have the following theorem:

Theorem 1. A (2n + O(n/ lg n))-bit representation of an ordinal tree on n nodes
and its balanced parenthesis sequence can be computed with O(n) work, O(lg n) span
and O(n lg n) bits of working space. This representation can support the operations
in Table 3.1 in O(lg n) time.

5.3 Parallel Algorithm to Support Constant-Time Queries

In this section we show how to construct the 2d-Min-Heap and its ladders, the sparse
bitmap of Pǎtraşcu, fusion trees and range-minimum-query structure in parallel, plus
the computation of marked blocks. All of these structures are built over the minima,
maxima, excess and the number of minima values of the τ = d2n/wce RMMTs and are
used to support different operations over trees in constant time (see Section 3.2.2).

2d-min-heap and ladders: Let S = (x0, x1, . . . , xn = −∞) be a sequence of n
integers. Let the closest smaller successor of xi be the element xj such that j =
min{j′|j′ > i ∧ xj′ < xi}. Thus, xj is the parent of xi in the 2d-Min-Heap. The
2d-Min-Heap is then fully determined once we find the closest smaller successor of all
elements xi ∈ S.

Let C be the cartesian tree of S. Let the closest right ancestor of xi in C be the
closest ancestor xj of xi such that xi is in the left subtree of xj. Since xn = −∞, both
the closest smaller sucessor and the closest right ancestor are well-defined for all xi,
where 0 ≤ i ≤ n− 1. Observe that the closest smaller successor of xi and the closest
right ancestor are the same element.

n/p ≥ lg n. When p > n/ lg n→ lg p = Θ(lg n).
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(a) Cartesian tree of the sequence (1, 4, 9, 5, 10, 7, 3, 2, 5, 4,−∞). Dummy nodes are
represented with squares.

(b) Euler Tour ET of the cartesian tree in Figure 5.2a and the sequence δ(ET ). The
first ocurrence of each node of the cartesian tree is highlighted with a square. The
arrows show the closest right ancestor of each node.

Figure 5.2: Example of the proof of Lemma 1. The resulting 2d-Min-Heap corresponds
to the tree in Figure 3.4a.

Let ET = (y0, y1, . . . , ym) be the Euler tour of C that visits the children of each
node in right-to-left order. To ensure that each node in C has two children, we add
(virtual) dummy nodes. We assume that every node xi in C, and hence in ET , is
labelled with its index i in S. We also assume that for some xi in C, we know the
first ocurrence of xi in ET . These two assumptions can be obtained as part of the
construction of ET . We can obtain the closest right ancestor by performing a list
ranking of ET , computing the sequence δ(ET ) = (z0, z1, . . . , zm) defined as z0 = y0

and zi = δ(zi−1, yi), for all 1 ≤ i ≤ n, where δ(·, ·) is defined as

δ(x, yi) =

{
yi, if s(i) < i,where s(i) denotes the index of yi’s successor in ET
x, otherwise

See Figure 5.2b for an example of the Euler Tour ET of the tree in Figure 5.2a
and its corresponding sequence δ(ET ).

Lemma 1. If yi is the first occurrence of some element xj in ET , then the element
zi−1 in δ(ET ) is xj’s closest right ancestor in C.
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Figure 5.3: Computation of the ladders of a tree TB, with embedding B. The tree TB is
the result of applying the embedding B to the tree of Figure 3.4. In the tree, the depth of
each node is shown. For example, d : 3 means that the depth of a node is 3. In the Euler
Tour ETn, the dummy root is represented by the symbol r.

Proof. Since ET visits all the descendants of a node xk after the first occurrence of xk
in ET , the first occurrence of xj in ET comes after the first occurrence of xk if xk is
xj’s closest right ancestor. Now assume that yh is the last occurrence of xk before the
first occurrence yi of xj. Let (yh, yh+1, . . . , yi) be the subsequence of ET between yh
and yi, and let (k = jh, jh+1, . . . , ji = j) be the sequence of indices such that yt = xjt ,
for all h ≤ t ≤ i, where xjt is the jt-th element in ET .

To prove the lemma, we need to show that jh+1 < jh and jt+1 > jt for all h < t < i
because this implies that δ(x, yh) = yh = xk and δ(x, yt) = x for all h < t < i, that is,
zh = δ(zh−1, yh) = xk and δ(zt−1, yt) = zt−1 = zh = xk for all h < t < i; in particular,
zi−1 = xk, as claimed. The node yh+1 must be xk’s left child in C because the last
visit to xk by ET before visiting any node in xk’s left subtree happens immediately
before visiting xk’s left child. Thus, jh+1 < jh. All the nodes on the path from yh+1 to
xj in C are left ancestors of xj because xk is the closest right ancestor of xj. Thus, by
the definition of ET ,(yh+1, yh+2, . . . , yi) is the sequence of nodes in this path. Since
yt+1 is the right child of yt for all h < t < i, we have that jt+1 > jt.

See Figure 5.2 as an illustration of this proof.

We can parallelize this strategy using the results of [127] to obtain the cartesian
tree C of S with O(n) work, O(lg2 n) span and O(n) working space, our pfea algo-
rithm in Section 5.1 to compute the Euler tour ET with O(n) work, O(lg n) span and
O(n lg n) bits of working space, and the results of [68] to compute the list ranking
using the function δ(·, ·) with O(n) work, O(lg n) span and O(n) working space.

Next we compute δ(ET ) using list ranking (Lemma 1). Then, we assign one core
to every element zi ∈ δ(ET ). The core writes zi as the closest right ancestor of xj if
and only if yi is the first occurrence of xj in ET . This is done in O(1) time.

Thus, the complexity of constructing the 2d-Min-Heap in parallel is O(n) work,
O(lg2 n) span and O(n lg n) working space.
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After constructing the 2d-Min-Heap, the tree is decomposed into ladders. The
ladders are constructed by recursively extracting the longest path of the tree. This
gives us a set of paths. Then, each path of length l is extended by adding at most l
nodes towards the root. Those extended paths are called ladders. To construct the
ladders in parallel, assume that we have a tree TB with a particular embedding B:
For each node v of TB, the children of v are ordered by their height, with the highest
child in the leftmost position.

Lemma 2. Given a tree TB with embedding B and n nodes, the ladders of TB can be
constructed in parallel with O(n lg n) work, O(lg n) span and O(n lg n) working space.

Proof. To prove the lemma, we need to compute the depth of each node of the tree.
This can be done in parallel by using the pfea algorithm of Section 5.1, adding 1 for
each forward edge and subtracting 1 for each backward edge. It takes O(n) work,
O(lg n) span and O(n lg n) working space. Now, let ETn = (v0, . . . , vm) be the Euler
tour of TB that visits the children of each node in left-to-right order and writes the
index of each node. Let ETd = (v′0, . . . , v

′
m) be the Euler tour of TB that visits the

children of each node in left-to-right order and writes the depth of each node. We can
decompose the tree into paths by finding contiguous increasing subsequences in ETd.
By the definition of the embedding B, the resulting paths are the same ones obtained
by recursively extracting the longest path of the tree. For the path represented by
the subsequence ETd[a..b], ETd[b] corresponds to the depth of the leaf of this path
and the length of ETd[a..b] is b− a+ 1.

To compute the ladders, we need to extend each subsequence in ETd. For a
subsequence ETd[a..b], if ETn[a] is the root of the tree, then the subsequence does
not need to be extended. Otherwise, the subsequence need to be extended by adding
up to x = (b−a−1) extra nodes. If x = 0, then the subsequence does not need to be
extended. The extra nodes that we need to add correspond to ancestors of the leaf
ETn[b] at depths ETd[a]−i, i ∈ (1, . . . , x). We use the operation level anc(ETn[a], i),
i ∈ (1, . . . , x), of the simplified NS-representation (see Table 3.1, operation 5) to
obtain all the ancestors and the ladders.

The Euler Tours ETn and ETd can be found using the pfea algorithm. The
bounds of all increasing subsequences can be found in parallel by finding each index
i, such that ETd[i] < ETd[i − 1] or ETd[i] > ETd[i + 1]. This can be done with
O(n) work, O(1) span and O(n lg n) working space. The simplified NS-representation
can be constructed with O(n) work, O(lg n) span and O(n lg n) working space. The
level anc operation of the simplified NS-representation takes O(lg n) time to be
answered. Since the total length of all the ladders is 2n [109], the amount of operations
that we need to perform is O(n). We can perform all the operations independently,
so the O(n) level anc operations can be answered in parallel with O(n lg n) work
and O(lg n) span.

Figure 5.3 shows an example of the Lemma 2.
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Alternatively, observe that we can extend a subsequence ETd[a..b] using wavelet
trees. Since the extra nodes that we need to add correspond to the ancestors of the
leaf ETn[b], they appear before ETn[b] in the Euler Tours, with depths ETd[a] − i,
i ∈ (1, . . . , x). Given a node v at position j in ETd, we know that the parent of v is
at position k in ETd, where k = max{k′|k′ < j,ETd[k

′] = ETd[j] − 1}. In general,
to extend the subsequence ETd[a..b], we need the nodes at positions max{k′|k′ <
a,ETd[k

′] = ETd[a] − i}, with i ∈ (1, . . . , x). Those positions can be found by using
rank/select operations over ETd. To answer the rank/select operations efficiently,
we could construct a wavelet tree over ETd, considering the contiguous alphabet
Σ = {0, dlg |ETd|e − 1}. For example, to extend the subsequence ETd[a..b] with
a node with depth d′, we need to perform selectd′(ETd, rankd′(ETd, a)). Finally,
once we find the position of all the nodes, we use ETn to obtain their indexes. To
construct the wavelet trees in parallel, we can use the pwt algorithm, with O(n lg n)
work, O(n) span and O(n lg n) working space, or the dd algorithm, with O(n lg n)
work, O(lg n) span and O(n2 lg n) working space. Observe that if there are p < lg n
available threads, the working space of the dd algorithm is reduced to O(n lg2 n).
The rank/select operations over the wavelet tree take O(lg n). We can perform all
the operations independently, so the O(n) rank/select operations can be answered in
parallel in O(lg n) time.

The following lemma presents an extension of the Lemma 2 for trees with arbitrary
embeddings.

Lemma 3. Given a tree TA with an arbitrary embedding A and n nodes, the ladders
of TA can be constructed in parallel with O(n lg n) work, O(lg n) span and O(n lg n)
working space.

Proof. To prove this lemma, we need to map the embedding A of TA to B. To
compute the embedding B, we need to order all the children of the nodes of TA

by height with the highest in the leftmost position. To do this, we use the PFEA

algorithm to compute the folklore encoding of T and then construct its simplified
NS-representation to use the height operation to obtain the height of all the nodes.
Both the folklore enconding and the simplified NS-representation can be computed
with O(n) work, O(lg n) span and O(n lg n) working space. The height operation
takes O(lg n) and there are n operations, and therefore all the operations can be
done with O(n lg n) work and O(lg n) span. After that, we can use a parallel stable
sorting algorithm over the children of the nodes of TA. Raman [118] sorts an array
of n integers each in the domain [1, . . . ,m], for m = nO(1), with O(n lg lgm) work,
O(lg n/ lg lg n + lg lgm) span and O(n lgm) working space. In our case, the total
number of children in T is n − 1 or 2(n − 1) by using bidirectional edges, and the
height of any node is less than n. Therefore, we can sort the children of all the nodes
of T with O(n lg lg n) work, O(lg n/ lg lg n) span and O(n lg n) space.

With the new embedding B, we use Lemma 2 to finish the proof.
In the NS-representation, the 2d-Min-Heap has τ nodes, and therefore, the 2d-

Min-Heap and its ladders can be computed with O(τ lg τ) work, O(lg2 τ) span and
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O(τ lg τ) working space.

Pǎtraşcu’s bitmap: Navarro and Sadakane use the sparse bitmap of Pǎtraşcu [115]
to represent a bitmap with 2τ 1’s and 2τwc 0’s using O(τ lgwc + τwctt

lgt(τwc)
+ (τwc)3/4)

bits and supporting rank/select queries in O(t) time. Pǎtraşcu demostrated how
to use recursion to achieve a better redundancy. Given a sparse bitmap A of size
n, the succinct representation of A is constructed as follows: Choose B ≥ 2 such
that B lgB = ε lgn

t
, and r = Bt = ( lgn

t
)Θ(t). We first divide the bitmap A into n/r

segments of size r. Each segment is stored in a succinct aB-tree. Each succinct aB-
tree is constructed by dividing the bitmap into B independent segments. On each
small segment, the author applies Lemma 3 of [115] recursively t times. In order
to reduce the redundancy, on each application of the lemma, M memory bits are
extracted from the values of the independent segments and stored, and the rest of
the unextracted bits, called spill, are passed to the next iteration. Then, Lemma 5
of [115] is applied in each succinct aB-tree, storing the last spill and memory bits
in the root of each aB-tree. For each segment of size r, the index in memory of the
segment’s memory bits are stored. Additionally, the number of ones of each segment
are stored in a partial sums vector and a predecessor structure to support rank and
select operations, respectively.

The parallel algorithm to construct the Pǎtraşcu’s bitmap is similar to the parallel
algorithm we used to construct the RMMT in Section 5.2. First, we construct the n/r
succinct aB-trees in parallel. On each aB-tree, we divide the bitmap on B independent
bitmaps of size r/B, similar to the psta algorithm. We apply Lemma 3 of [115]
recursively on each small bitmap, t times. Then, we apply Lemma 5 of [115] in each
succinct aB-tree, storing the final spill and memory bits in the root of each aB-tree.
After that, all the n/r succinct aB-trees are built with O(n) work and O(t) span. The
next step consists of storing the values of the roots of each aB-tree. To support the
rank operation, we compute in parallel the partial sum vector of these values with
O(n/r) work and O(lg(n/r)) span using a parallel prefix sum algorithm. To support
select operation, we can use a fusion tree. Below, we will explain how to construct a
fusion tree in parallel with O(n/r) work and O(lg lg(n/r)) time. Finally, Pǎtraşcu’s
sparse bitmap can be computed in parallel, with r = ( lgn

t
)Θ(t), in O(n + ntt

lgt n
) work,

O(t + lg( ntt

lgt n
)) span and O(n) working space. In the context of succinct trees, the

work is O(τwc+ τwctt

lgt τwc ), the span is O(t+lg( τwctt

lgt(τwc)
)) and the working space is O(τwc).

Fusion tree: A fusion tree stores an array A of size n of w-bit integers, supporting
predecessor/successor queries in O(lgw n) time. A fusion tree is essentially a B-tree
with branching factor w1/5, and therefore, if we can construct a B-tree over the array
A in parallel, we also obtain a parallel algorithm to construct fusion trees. In [136],
Wang and Chen present a parallel algorithm to construct B-trees in O(lg lg n) time,
for a sorted list. Since the lg τ values of the sequence of accumulated weights used



80

to answer fwd search queries are always increasing, we can apply the algorithm
described in [136] to construct the B-tree. Henceforth, we will consider the array A
as a sorted list of n keys. Although the algorithm of Wang and Chen is based on the
EREW model, it can be applied in SMP systems without any modifications. If there
are p available cores, the complexity of the algorithm is O(n/p).

Given the sorted list A, the algorithm of Wang and Chen constructs a uniquely
defined B-tree with branching factor m and the following properties:

• The B-tree has the minimal height h = dlgm(n+ 1)e+ 1

• The root owns d(n+ 1)/mh − 1e keys

• There exists an integer c, 1 < c ≤ h + 1, such that all the nodes of the B-tree
above the c-th level contain m−1 keys and all the non-leaf node below the c-th
level contain dm/2e − 1 keys.

• The leftmost leaf of the B-tree contains s keys, dm/2e ≤ s ≤ m − 1. The rest
of the leaves may contain s or s− 1 keys, but may not own more keys than the
leaf node on its left.

With this well-defined B-tree, the parallel algorithm computes the position of each
key of A in the B-tree. Each node of the B-tree is identified by its order in a BFS
traversal. The details of how to assign a position to each key of A are shown in [136].

Once we have the B-tree, we apply the sketch algorithm [48] in parallel on each
node of the tree, in O(1) time. Hence, the fusion tree can be computed with O(n)
work, O(lg lg n) span and O(n) working space.

In the NS-representation, to support fwd search and bwd search operations, τ
fusion trees are constructed over τ sorted arrays of O(lg τ) integers. Considering the
previous parallel bounds, the τ fusion trees can be constructed with O(τ lg τ) work,
O(lg lg τ) span and O(τ lg τ) working space.

Range-minimum-query: In [46], Fisher and Heun present a data structure to
answer range minimum/maximum queries in constant-time using O(n) bits over an
array A of n elements. The array A is preprocessed by dividing it into dn/se blocks,
B1, . . . , Bdn/se, of size s = d lgn

4
e. A query from i to j, RMQ(A, i, j), is divided into

at most three subqueries: One in-block query over the block Bbi/sc, one out-of-block
query over the blocks Bdi/se, . . . , Bbj/sc−1 and one in-block query over the block Bbj/sc.
If i and j belong to the same block, then only one in-block query it is necessary. The
in-block queries allow us to obtain the minimum/maximum element inside a block.
On the other hand, out-of-block queries allow us to obtain a minimum/maximum
element from consecutive blocks.

To answer in-block queries, authors use the fact that each block Bx can be rep-
resented by an unique canonical cartesian tree Ccan

Bx
. The canonical cartesian tree

of Bx is a cartesian tree with a total order ≺ defined as follows: Bx[i] ≺ Bx[j] iff
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Bx[i] < Bx[j], or Bx[i] = Bx[j] and i < j. The idea is to precompute all the answers
for all Cs possible canonical cartesian trees, where Cs = 1

s+1

(
2s
s

)
is the number of the

rooted trees on s nodes. Thus, all the answers are stored in a table P [1, Cs][1, s][1, s].
The first dimension of the table P corresponds to a descriptor of the blocks of size s.
For all dn/se blocks of A, their descriptors are stored in an array T , requiring O(s)
time to compute each one [46].

To answer out-of-block queries, the minimum/maximum element of each block is
stored in an array A′[1, n′], where n′ = dn/se. The array A′ is divided into dn′/se
blocks, B′1, . . . , B

′
dn′/se. A RMQ query over A′ is answered as before: One out-of-block

query and two in-block queries. The in-block queries can be answered by computing
the descriptor of each block of A′, storing them in an array T ′ and reusing the lookup
table P . To answer the out-of-block queries of A′, a two-level storage scheme is used.
s contiguous blocks of A′ are grouped into a superblock consisting of s′ = s2 elements.
We precompute all the answers in A′ that cover at least one such superblock and store
them into a table M . Similarly, we precompute all the answers in A′ that cover at
least one block, but not over a superblock and store them into a table M ′, Thus, to
find the minimum/maximum element inside a superblock, we need to use the table M
twice. Summarizing, an out-of-block query of A can be decomposed into two in-block
queries in A′ (using T ′ and P ), two out-of-block queries in A′ (using M ′) and one
out-of-superblock query in A′ (using M).

Finally, the solution of Fisher and Heun has O(n) construction time, O(lg3 n)
construction space (over the O(n) space of the structure) and O(1) query time.

Since the minimum/maximum operation is associative, we can use a domain de-
composition strategy to parallelize the construction of the solution of Fisher and
Heun. Thus, we can obtain a parallel solution with T1 = O(n) work, T∞ = O(lg n)
span and the same space complexity. The term O(lg n) is due to the traversal of the
blocks of size s = d lgn

4
e, which is done sequentially.

In the context NS-representation, we need to answer queries over the root of the
τ RMMTs. Therefore, to answer range minimum/maximum queries we can construct
the solution in [46] with O(τ) work, O(lg τ) span and O(τ + lg3 τ) working space.

Degree, Child and Childrank operations: To support degree, child and
child rank, we need to compute marked blocks. Remember that pioneers are the
tighest matching pairs of parentheses (i, j), with j = find close(i), such that i and
j belong to different blocks. A marked block is a block that has the opening paren-
thesis of a pionner (i, j) such i and j do not belong to consecutive blocks. To compute
such marked blocks, we need to apply the find close operation over all the τ blocks.
Since the find close operation can be computed in constant time, all marked blocks
can be computed with O(τ) work and O(1) span. The child and child rank opera-
tions additionally need to construct a sparse bitmap C for each marked block, which
encodes the number of children of the marked block, in left-to-right order, as gaps of
0’s between 1’s. Therefore, to construct each bitmap it is enough to find the position
of each 1 in the bitmap. To do so, we perform a parallel prefix sum over the blocks



82

fully contained in a marked block. Let j be a marked block. The bitmap Cj of j can
be constructed as follows: For each block j′ fully contained in j, if j′ has at least one
child of j, we obtain the number of children of j′. If j′ is not a marked block, then
the number of children corresponds to nj′ (the number of minima of block j′); if j′

is a marked node, the number of children is 1. Notice that if j′ is marked, then the
blocks contained in j′ do not have any children of j and they will not be considered
for the rest of the computation of Cj. After that, we perform a parallel prefix sum
over the blocks that do have some children of j, considering their left-to-right order.
The result of the prefix sum corresponds to the position of all the 1’s in Cj. The
final step is to write, in parallel, all the 1’s where they correspond. Following the
same idea, we can compute a bitmap C that represents the concatenation of all the
bitmaps of the marked nodes. The parallel prefix sum is the most expensive step
of this algorithm, and its work is O(τ), its span is O(lg τ) and its working space is
O(τ lgwc) bits, which is dominated by the array of size O(τ) used in the prefix sum,
where each element uses O(lgwc) bits.

Thus, with w = Θ(lg n) we have the following theorem:

Theorem 2. A (2n + O(n/ lgc n))-bit representation of an ordinal tree on n nodes
and its balanced parenthesis sequence can be computed with O(n + n

lgc n
lg( n

lgc n
) + cc)

work, O(c + lg( ncc

lgc n
)) span and O(n lg n) bits of working space. This representation

supports the operations in Table 3.1 in O(c) time, with c > 3/2.

Proof. Each of the τ RMMTs can be constructed with O(lgc n) work, O(lg lgc n) span
and O(lgc n lg lgc n) bits of working space using Theorem 2. All the τ RMMTs can be
constructed with O(n) work, O(lg lgc n) span and O(n lg n) working space. Using the
results of this section, with t = c, the additional data structures can be constructred
with O(n + n

lgc n
lg( n

lgc n
) + cc) work, O(c + lg( ncc

lgc n
)) span and O(n + n

lgc−1 n
) working

space. Thus, total work is O(n+ n
lgc n

lg( n
lgc n

)+cc), the maximun span is O(c+lg( ncc

lgc n
))

and the total working space is O(n lg n) bits.

5.4 Experimental Results

In this section we present the experimental results of the implementations of our
algorithms psta and pfea.

5.4.1 Experimental setup

We implemented the psta and pfea algorithms in C and compiled it using GCC
4.9 with optimization level -O2 and using the -ffast-math flag. All parallel code was
compiled using the GCC Cilk branch. The same flags were used to compile libcds

and sdsl, the state-of-the-art implementations of the RMMT, which were written in
C++.

Table 5.1 shows the six inputs that we used in our experiments. The first two
were suffix trees of the DNA (dna) and protein (prot) data from the Pizza & Chili
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Dataset Number of nodes (n) Depth Max fan-out

ctree25 33,554,432 25 2
wiki 249,376,958 5 15,206,668
prot 335,360,503 26 26
dna 577,241,094 305 16
ctree 1,073,741,823 30 2
osm 2,337,888,180 3 2,042,126,001

Table 5.1: Datasets used in the experiments of succinct trees.

corpus2. These suffix trees were constructed using code from http://www.daimi.

au.dk/~mailund/suffix_tree.html. The next two inputs were XML trees of the
Wikipedia dump (wiki)3 and OpenStreetMap dump (osm)4. The last two inputs were
complete binary trees of depths 25 (ctree25) and 30 (ctree).

The experiments were carried out on the machine B.

5.4.2 Experimental Results of the psta algorithm

To evaluate the performance of our psta algorithm, we compare it against libcds [26]
and sdsl [55], which are state-of-the-art implementations of the RMMT. Both assume
that the input tree is given as a parenthesis sequence, as we do here. Our implemen-
tation of the psta algorithm deviates from the description in Section 5.2 in that we do
not store the array n′, since libcds and sdsl do not store it and that the prefix sum
computation in line 22 of the algorithm is done sequentially in our implementation.
This changes the running time to O(n/p+p) but simplifies the implementation. Since
p � n/p for the input sizes we are interested in and the numbers of cores available
on current multicore systems, the impact on the running time is insignificant. In the
experiments, the chunk size s was fixed at 256.

Running time and speed-up

Table 5.2 shows the wall clock times achieved by psta, the sequential version of
psta, called seq, libcds, and sdsl on different inputs. Each time corresponds to
the median achieved over five non-consecutive runs, reflecting our assumption that
slightly increased running times are the result of “noise” from external processes such
as operating system and networking tasks. Figure 5.4 shows the speed-up compared
to the running times of seq, and Figure 5.5 shows the speed-up compared to sdsl.

2http://pizzachili.dcc.uchile.cl
3http://dumps.wikimedia.org/enwiki/20150112/enwiki-20150112-pages-articles.xml.

bz2 (January 12, 2015)
4http://wiki.openstreetmap.org/wiki/Planet.osm (January 10, 2015)

http://www.daimi.au.dk/~mailund/suffix_tree.html
http://www.daimi.au.dk/~mailund/suffix_tree.html
http://pizzachili.dcc.uchile.cl
http://dumps.wikimedia.org/enwiki/20150112/enwiki-20150112-pages-articles.xml.bz2
http://dumps.wikimedia.org/enwiki/20150112/enwiki-20150112-pages-articles.xml.bz2
http://wiki.openstreetmap.org/wiki/Planet.osm
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p wiki prot dna ctree osm

libcds 33.17 44.27 75.93 140.71 339.43
sdsl 1.94 2.67 4.57 8.35 18.10
seq 2.81 4.10 7.25 12.14 28.00

1 2.81 4.10 7.15 12.17 28.05
4 .72 1.05 1.86 3.05 7.07
8 .40 .58 .95 1.57 3.55
12 .31 .43 .72 1.12 2.55
16 .24 .32 .55 .85 1.89
20 .19 .29 .49 .74 1.58
24 .19 .26 .42 .68 1.45
28 .16 .25 .43 .62 1.30
32 .18 .25 .38 .62 1.16
36 .20 .21 .36 .52 1.08
40 .21 .23 .35 .50 1.04
44 .22 .25 .34 .51 .97
48 .21 .26 .37 .49 .99
52 .27 .30 .36 .50 .93
56 .30 .36 .42 .50 .93
60 .27 .40 .39 .50 .93
64 .30 .33 .38 .54 .90

Table 5.2: Running times of the algorithms libcds, sdsl, and psta, in seconds. seq
corresponds to the sequential execution of psta.

The differences in running times of the psta algorithm on one core and seq are
insignificant. This implies that the overhead of the scheduler is negligible. The psta

algorithm on a single core and sdsl outperformed libcds by an order of magnitude.
One of the reasons for this is that libcds implements a different version of RMMT

including rank and select structures, while psta and sdsl do not. Constructing these
structures is costly. On a single core, sdsl was about 1.5 times faster than psta,
but neither sdsl nor libcds were able to take advantage of multiple cores, so psta

outperformed both of them starting at p = 2. The advantage of sdsl over psta on a
single core, in spite of implementing essentially the same algorithm, can be attributed
to the lack of tuning of psta.

Up to 16 cores, the speed-up of psta with ctree and osm datasets is almost linear
whenever p is a power of 2 and the efficiency (speed-up/p) is 70% or higher with
respect to seq and 60% with respect to sdsl, except for ctree on 32 cores. This
is very good for a multicore architecture. When p is not a power of 2, speed-up is
slightly worse. The reason is that, when p is a power of 2, psta can assign exactly
one subtree to each thread (see Algorithm 12), distributing the work homogeneously
across cores without any work stealing. When the number of threads is not a power
of two, some threads have to process more than one subtree and other threads process
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Figure 5.4: Speed-up of psta compared
to seq.

Figure 5.5: Speed-up of psta compared
to sdsl.

only one, which degrades performance due to the overhead of work stealing.
There were two other factors that limited the performance of psta in our experi-

ments: Input size and resource contention with the OS.

Input size. For the two largest inputs we tested, osm and ctree, speed-up kept
increasing as we added more cores. For wiki, prot and dna, however, the best speed-
up were achieved with 28, 36 and 44 cores, respectively. Beyond this, the amount of
work to be done per thread was small enough that the scheduling overhead caused
by additional threads started to outweigh the benefit of reducing the processing time
per thread further.

Resource contention. For p < 64, at least one core on our machine was available
to OS processes, which allowed the remaining cores to be used exclusively by psta.
For p = 64, psta competed with the OS for available cores. This had a detrimental
effect on the efficiency of psta for p = 64.

The network topology of our machine may also impact in the performance of our
algorithm. In Chapter 7 we will discuss about the relationship of the topology of
multicore machines and the performance of parallel algorithms.

Memory usage

We measured the amount of working memory (i.e., memory not occupied by the raw
parenthesis sequence) used by psta, libcds, and sdsl. We did this by monitoring
how much memory was allocated/released with malloc/free and recording the peak
usage. For psta, we only measured the memory usage for p = 1. The extra memory
needed for thread scheduling when p > 1 was negligible. The results are shown in
the Figure 5.6. Even though psta uses more memory than both libcds and sdsl,
the difference between psta and sdsl is a factor of less than 1.3. The difference
between psta and libcds is no more than a factor of three and is outweighed by
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Figure 5.6: Memory consumption of the algorithms psta, libcds and sdsl.

the substantially worse performance of libcds. The reduced working space used by
libcds is due to the fact that its implementation does not store the array of excess
values. Instead, libcds stores rank/select structures over the input bit vector P ,
computing excess values with excess(i) = 2× rank1(P, i)− i, where rank1(P, i) gives
the number of 1s on P up to the index i. Part of the higher memory usage of psta
stems from the allocation of e′, m′ and M ′ arrays, which store the partial excess
values in the algorithm. Storing these values, however, is a key factor that helps psta
achieves very good performance. The space used by our algorithm can be reduced by
storing local excess values in the array e′, instead of global values. However, reducing
the space in such way will complicate the implementation of the queries over the
RMMT.

5.4.3 Experimental Results of the PFEA algorithm

Table 5.3 shows the running times of the pfea algorithm with the datasets ctree25,
prot and dna. To compute the speedups, we used times obtained by seq. The best
parallel times are identified using a bold typeface.

Figure 5.7 shows the corresponding speedup of the pfea algorithm. Up to 16
threads, the speedup is almost linear, obtaining at least 49% of efficiency (speedup/p)
for the ctree25 dataset, that is, our algorithm reaches at least 49% of the linear
speedup (the ideal). With more than 16 threads, the performance of our algorithm is
poor, reaching at most 16% of efficiency for the prot algorithm and 64 threads. The
poor efficiency of our algorithm is not explained by the DYM model. We think that
it can be explained by its low workload. Algorithms with a low workload do not scale
properly since the workload of their parallel tasks is not enough to pay the overhead
of thread scheduling and memory transfers. In the case of the pfea algorithm, each
edge takes part of only a few comparisons and assignments. Therefore, the workload
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p ctree25 prot dna ctree25+16 prot+16 dna+16 ctree25+32 prot+32 dna+32

seq 5.67 52.87 31.33 55.04 473.92 275.06 102.94 887.61 514.73

1 6.07 34.83 57.29 54.99 275.23 474.07 102.80 514.09 886.01
4 1.68 9.35 15.62 14.22 70.84 121.92 26.15 130.30 224.86
8 1.05 5.77 9.80 7.33 36.39 62.79 13.32 66.35 114.42
12 0.87 3.99 6.90 5.02 25.18 43.23 8.99 45.02 77.49
16 0.73 3.66 5.57 3.91 19.59 33.50 6.86 34.37 59.15
20 0.76 3.42 5.53 3.21 16.06 27.61 5.58 28.16 48.26
24 0.76 3.41 5.25 2.77 13.91 24.03 4.73 23.96 41.04
28 0.66 3.28 5.36 2.47 12.40 21.23 4.16 20.87 36.05
32 0.67 3.37 5.71 2.30 12.52 19.49 4.08 18.62 35.22
36 0.68 3.23 5.57 2.27 11.61 19.95 3.71 18.70 32.29
40 0.68 3.15 5.48 2.16 10.91 18.75 3.38 17.17 29.59
44 0.68 3.16 5.44 2.04 10.20 17.70 3.19 15.98 27.56
48 0.69 2.97 5.19 1.92 9.67 16.79 3.00 15.02 25.82
52 0.64 3.05 5.37 1.84 9.23 16.01 2.83 14.12 24.33
56 0.65 3.01 5.33 1.79 8.83 15.18 2.71 13.37 22.87
60 0.61 3.19 5.35 1.72 8.46 14.75 2.58 12.63 21.82
64 0.71 3.05 5.18 1.80 8.29 15.13 2.55 12.32 20.90

Table 5.3: Running times of pfea algorithm, in seconds. seq corresponds to the
sequential execution of pfea. Columns with the superscript +16 and +32 represent the
running times of pfea algorithm by artificially increasing the workload with 16 and 32 CAS

operations per edge, respectively. The best parallel times are shown using bold typeface.

for each parallel task is not enough to take advantage of the 64 threads, even when
we create Θ(p) parallel tasks. To demostrate that the low workload is the reason
of the low efficiency, we increased artificially the workload of our implementation.
Between the lines 5 and 9, we added 16 and 32 CAS operations. A CAS operation
is non-blocking primitive that supports concurrency in shared structures. On each
iteration of the loop of line 5, each CAS operation was executed over ET [i], increasing
the workload for each edge. The complexity and correctness of our algorithm do not
change with the addition of these extra operations. Columns 5–10 of Table 5.3 show
the resulting running times after adding 16 and 32 extra operations. Figures 5.8 and
5.9 show the corresponding speedup. With 16 extra operations, the efficiency was
at least 48% for the ctree25 dataset and 64 threads. For 16 threads, the efficiency
increased, reaching a 88% for the ctree25 dataset. With 32 extra operations, the
efficiency was at least 63% up to 64 threads and 94% up to 16 threads.

Another factor that, we think, limited the performance of the pfea algorithm
was the topology of the experiment. As was mentioned before, our machine has four
processors connected in a grid topology, which involves communication costs among
processors. Each processor executes up to 16 threads. We observe that in the Figure
5.7, the algorithm scales up to 16 threads. With more threads, the comunication costs
may affect the scalability. With more workload, Figure 5.8 shows a linear scalability
up to 32 threads. After 32 threads, the efficiency of the algorithm decreases. For the
experiment with 32 extra operations, Figure 5.9 shows a similar behavior, with the
difference that after 32 threads, the efficiency is better than in Figure 5.8. For 64
threads, all the speedups have a slowdown, since the pfea algorithm has to compete
with the OS for the available cores. In Chapter 7 we will discuss more about the
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effects of the machine topology in the performance of the PFEA algorithm.

5.4.4 Discussion

For domains where trees have billions of nodes, the psta algorithm exhibits a good
speed-up up to 64 cores. The speed-up is degraded for trees with fewer nodes. How-
ever, even in such cases, our algorithm reaches good speed-up up to 32 cores. Addi-
tionally, our algorithm outperforms the state-of-the-art implementations using only
p = 2 threads. Considering all of this, the psta algorithm is a good option to con-
struction succinct trees in commodity multicore architectures.

With respect to the working space, our psta algorithm is competitive with sdsl

and it does not use more than three times the memory used by libcds, which is the
slowest algorithm. Despite our algorithm using more memory than sdsl and libcds,
it is up to 20 times and 376 times faster with 64 cores, respectively.

The scalability of the pfea algorithm up to 16 threads is good in practice (nearly
50% efficiency). However, the lack of workload of our algorithm prevents it from
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obtaining a good practical scalability with more threads. In this kind of algorithms, we
cannot expect a better scalability when adding more threads. Nevertheless, this poses
an interesting problem: For a given algorithm, find the maximum number of threads
that achieve at least a 50% efficiency. Once we find such number, the rest of the
threads may be used potentially in other procedures. The implementation of multicore
algorithms is non-trivial, since it needs to take care about the communication costs,
memory hierarchy, cache coherency, etc, which may affect the performance. Therefore,
we consider a parallel algorithm with a 50% efficiency a good parallel implementation.



Chapter 6

Parallel Construction of Succinct Triangulated Plane Graphs

In this chapter we study the parallel construction of succinct representations of trian-
gulated plane graphs. In Section 6.1 we present and discuss the parallel construction
of a succinct representation based on canonical orderings. In Sections 6.1.1 and 6.1.2
we introduce our parallel algorithms to compute the parentheses representation of
a triangulated plane graph, given a canonical ordering. In Section 6.1.3 we discuss
the challenges of computing canonical orderings of triangulated plane graph on SMP
systems. In Section 6.2 we discuss how to extend the results of Section 6.1 to succinct
representations based on realizers.

6.1 Succinct representation of triangulated plane graphs via canonical
ordering

Let G = (V,E) be a triangulated plane graph, with |V | = n > 3, |E| = m, with a
canonical ordering Π and canonical spanning tree Tco (see Sections 6.1.3 and 6.1.1,
where we discuss how to compute the canonical ordering and the canonical spanning
tree in parallel, respectively). We compute a succinct representation of G by obtaining
in parallel its parentheses representation based on the canonical ordering and then,
again in parallel, the succinct representation of such parentheses representation.

6.1.1 Parallel computation of the multiple parentheses representation Sco

In Section 3.2.3 we described how to compute the string of two types of parentheses,
Sco, based on the work of [22, 23, 67]. The definition of the construction of Sco,
introduced before in Section 3.2.3, is:

• Sco = FE(Tco).

• For each vertex vi of Tco, count the number of lower-numbered neighbors, li,
and higher-numbered neighbors, hi, of vi in G \ Tco.

• For each vertex vi of Tco, write li “]”s right after (i and hi “[”s right after )i.

Considering this definition, we can adapt the PFEA algorithm (Algorithm 10) to
compute the string Sco in parallel (see Algorithm 14). We call this algorithm the
Parallel graph encoding algorithm (PGEA). The input spanning tree Tco is represented
by an array of vertices, VT , and an array of edges, ET . Each vertex v ∈ VT stores
two indices, v.first and v.last, to ET , indicating the adjacency list of v, sorted
counterclockwise around v, starting with v’s parent edge. Note that (v.last−v.first+

90
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1) is the degree of v. Each edge e ∈ ET has three fields, e.src which is a pointer to
the source vertex, e.tgt which is a pointer to the target vertex and e.cmp which is the
position in ET of the complement edge, e′, of e, where e′.src = e.tgt and e′.tgt = e.src.
For x ∈ {e.src, e.tgt}, we use next(x), first(x) and last(x) to denote the indices in
ET of e’s successor, of the first element (parent edge) and of the last element in x’s
adjacency list, respectively. The three of them are easily computed in constant time
by following pointers, see Figure 5.1 for an example of the representation. We also
use co(v) to denote the canonical ordering of the vertex v. The representation of the
graph G is similar.

Given the canonical ordering, the input canonical spanning tree can be computed
easily in parallel using Algorithm 15. Intuitively, the parent of each vertex in G is its
leftmost neighbor with lower canonical ordering. Formally, for each vertex v ∈ VG,
the parent of v is given as follows (lines 4-7 Algorithm 15): Let nv1, n

v
2, . . . be the

neighbors of v in counterclockwise order. The parent of v is its neighbor at the j-th
position, such that co(v) < co(nvj−1) and co(v) > co(nvj ). Since the number of edges
of G is 3n− 6, the work of Algorithm 15 is O(n/p) and its span is O(1).

Algorithm PGEA creates three arrays, an auxiliar array C to store the lower-
numbered and higher-numbered neighbors of each vertex of G, an auxiliar array LE to
store the Euler Tour of Tco and the array Sco to store the parentheses representation
induced by G \ Tco and Tco. The first step of Algorithm 14 is, for each vertex v of G,
to count the number of lower and higher neighbors of v in G\Tco (see the definition at
the beginning of this section), considering the canonical ordering of G. The values of
lower-numbered and higher-numbered neighbors of v are stored in C[v].l and C[v].h,
respectively (lines 5 and 6). Counting lower and higher neighbors can be done using
a parallel prefix sum algorithm. The second step is to traverse Tco. Each entry in
LE represents the traversal of an edge of Tco and stores three variables: value is “(”
followed by C[v].l closed brackets, or “)” followed by C[v].h open brackets, depending
on whether the edge is a forward or a backward edge. Variable succ stores the index
in LE of the next edge in the Euler tour. Finally, variable rank is the number of
parentheses and brackets in value, used to compute the rank of each symbol in Sco.

In a canonical spanning tree, the canonical ordering of a vertex is lower than
the canonical ordering of its children. So, for an edge e of Tco, if co(e.src) is lower
than co(e.tgt), then e is a forward edge. Otherwise, e is a backward edge. For a
forward edge e ∈ ET , we write a “(”, representing the open parenthesis of e.tgt,
followed by C[e.tgt].l “]”s, representing the lower-numbered neighbors of e.tgt. This
is done in line 11, where ⊕ represents a concatenation function and “]”∗C[ET [j].tgt].l
represents the string composed by C[ET [j].tgt].l symbols “]”. Line 12 sets the rank,
while lines 13 to 16 set the next edge of e in the Euler tour. For backward edges,
the procedure is similar (lines 17 to 23). The whole computation could have been
formulated as a single parallel loop. However, in the interest of limiting scheduling
overhead, we create only as many parallel threads as necessary. Line 24 computes
ranks using a parallel list ranking algorithm [68]. Given these ranks, the parentheses
and brackets representation can be obtained by writing LE[i].value into the range
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Input : An adjacency list representation of the canonical spanning tree Tco
consisting of arrays VT and ET , an adjacency list representation of the
plane graph G consisting of arrays VG and EG and the number of threads,
threads.

Output: A two-type parentheses sequence Sco induced by G \ Tco and Tco.

1 C = an array of length |VG|
2 LE = an array of length |ET |
3 Sco = an array of length |EG|+ 2
4 chk = |ET |/threads
5 parfor i = 0 to |VG| − 1 do
6 [C[i].l, C[i].h] = parallelCount(VG, EG, VT , i)

7 parfor t = 0 to threads − 1 do
8 for i = 0 to chk − 1 do
9 j = t ∗ chk + i

10 if co(ET [j].src) < co(ET [j].tgt) then // forward edge
11 LE [j].value = ⊕(“(”,“]”∗C[ET [j].tgt].l)
12 LE [j].rank = C[ET [j].tgt].l + 1
13 if ET [j].tgt is a leaf then
14 LE [j].succ = ET [j].cmp
15 else
16 LE [j].succ = first(ET [j].tgt) + 1

17 else // backward edge
18 LE [j].value = ⊕(“)”,“[”∗C[ET [j].src].h)
19 LE [j].rank = C[ET [j].src].h+ 1
20 if ET [j] is the last edge in the adjacency list of ET [j].src then
21 LE [j].succ = first(ET [j].tgt)
22 else
23 LE [j].succ = next(ET [j].tgt)

24 parallel list ranking(LE )
25 parfor t = 0 to threads − 1 do
26 for i = 0 to chk − 1 do
27 j = t ∗ chk + i
28 Sco[LE [j].rank . . .LE [j + 1].rank − 1] = LE [j].value

29 Sco[0] =“(”
30 Sco[|EG|+ 1] =“)”

Algorithm 14: Parallel graph encoding algorithm (PGEA)

S[LE[i].rank . . . LE[i + 1].rank − 1]. Lines 25 to 28 do exactly this. Finally, open
and closed parentheses are written in the first and last position of Sco, respectively,
representing the root of Tco (lines 29 and 30).

The theoretical analysis of the PGEA algorithm is similar to the analysis of the
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Input : An adjacency list representation of the plane graph G consisting of arrays
VG and EG, with a canonical ordering, and the number of threads, threads.

Output: An adjacency list representation of the canonical spanning tree Tco
consisting of arrays VT and ET .

1 VT = VG
2 parfor i = 0 to |VG| − 1 do
3 parfor j = first(VG[i]) + 1 to last(VG[i]) do
4 n1 = Eg[j − 1].tgt // neighbor 1
5 n2 = Eg[j].tgt // neighbor 2
6 if co(VG[i]) < co(VG[n1])) AND co(VG[i]) > co(VG[n2])) then
7 addEdge(ET , VG[i], n2)

Algorithm 15: Parallel canonical spanning tree algorithm (PCoST)

PFEA algorithm. In the PGEA algorithm, the parallel counting (lines 5–6) of lower-
numbered and higher-numbered neighbors of all vertices of G can be done with O(n)
work, Tp = O(n/p + lg p) and T∞ = O(lg n). Lines 7–23 perform O(n) work, have
Tp = O(n/p) and span T∞ = O(1). Line 24 performs a parallel list ranking with
O(n) work, Tp = O(n/p + lg p) time and O(lg n) span. Since we previously compute
the position of each parenthesis and bracket, we can make the assignment of line 28
in constant time. Therefore, lines 25–28 perform O(n) work, Tp = O(n/p) and span
T∞ = O(1). Thus, the total work is T1 = O(n) and the span is T∞ = O(lg n). The
running time on p cores is Tp = O(n/p+ lg p).

To encode Sco using the bit-vectors S1, S2 and S3, we can use the PGEA algorithm
as follows:

• S1 can be obtained by writing “1” instead of “(” and “)”, and “0” instead of
“[” and “]”, in the field value.

• S2 can be obtained by writing always 1 in the field rank (lines 12 and 19), by
writing “1” in the field value for forward edges and “0” for backward edges.
Notice that S2 corresponds to the folklore encoding of Tco, so, we also can use
the PFEA algorithm to compute it.

• Finally, to obtain S3, for forward edges we assign to the field rank the number of
lower-numbered neighbors and to the field value a “0”, and for backward edges
we assign to the field rank the number of higher-numbered neighbors and “1”
to the field value.

Therefore, S1, S2 and S3 can be computed with the same complexities as Sco. Indeed,
S1, S2 and S3 can be computed at the same time, by reusing the array C and defining
different LE1 and LE2 arrays for S1 and S2. S3 can be computed by using LE1 and
LE2 arrays.
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6.1.2 Parallel construction of the succinct representation of the multiple
parentheses sequence Sco

As was discussed in Section 3.2.3, operations over the sequence Sco can be reduced to
rank, select and enclose operations over the bit-vectors S1, S2 and S3. Since all of
these operations are supported by the solution proposed in [109], based on the Range
Min-Max Tree, we can construct succinct representations of S1, S2 and S3 in parallel
by using our results in Chapter 5. Thus, the construction of the succinct represen-
tation of bit-vectors S1, S2 and S3 can be done with O(n) work, O(lg n) span and
O(n lg n) working space, supporting operations in logarithmic time. Alternatively,
the succinct representation of S1, S2 and S3 can be done with O(n+ n

lgc n
lg( n

lgc n
)+cc)

work, O(c+lg( ncc

lgc n
)) span and O(n lg n) working space, supporting operations in O(c)

time, where c > 3/2.

6.1.3 Two approaches to compute canonical orderings in parallel

The problem of computing the canonical ordering of G in Tp = O(n/p) for SMP sys-
tems is still open. In this section, we discuss two approaches to compute the canonical
ordering in parallel: One approach is based on graph decomposition, where a parallel
algorithm to compute the decomposition is still pending, and other approach is based
on parallel breadth-first traversal, with the problem that its theoretical speedup is
low.

Parallel computation of canonical ordering based on graph decomposition

The idea behind this solution is the following: Decompose the set of vertices V
of G into disjoint subsets and then compute the canonical ordering of the subgraphs
induced for each subset, at the same time. If the subgraphs are enumerated according
to their topology, the composition of the canonical orderings of each subgraph is a
canonical ordering of G.

Let V0, V1, . . . , Vk, with k = O(p), be a decomposition of V with the following
properties:

(a) ∀i ∈ {0, . . . , k}, |Vi| = O(n/p)

(b) ∀i, j ∈ {0, . . . , k}, i 6= j, Vi ∩ Vj = ∅

(c) V = V0 ∪ . . . ∪ Vk.

(d) Let Gi be the subgraph induced by V0 ∪ . . . ∪ Vi, with i ∈ {0, . . . , k}. Gi is
2-connected.

(e) ∀v ∈ V , all neighbors of v that belongs to the same subset Vi appear consecu-
tively on the adjacency list of v.
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(a) Graph decomposition that violates
property (e).

(b) Graph decomposition that violates
property (f).

Figure 6.1: Example of graph decompositions that do not meet the properties.

(f) Let G̃i be the subgraph induced by Vi and let C̃i be the contour of G̃i. The
neighbors of C̃i do not belong to the same subgraph.

The properties (a) and (b) imply that the subgraphs G̃i have a similar amount of
vertices and that they do not share vertices. Property (c) implies that all the vertices
belong to a subgraph G̃i. Property (d) implies that a subgraph Gi−1 has at least two
vertices incident to the edges of the consecutive subgraph G̃i. Property (e) allows us
to prove the next Proposition 2. Finally, property (f) implies that any subgraph Gi

cannot be wrapped by other subgraph. These properties induce an order between the
subgraphs.

For example, Figure 6.2 shows an example of a decomposition that follows all the
properties. Figure 6.1 shows two examples that violate the properties.

Proposition 2. Let G̃i be the subgraph induced by Vi, with i ∈ {0, . . . , k}. Let Πi be
a canonical ordering of the subgraph G̃i. It is possible to obtain a canonical ordering
of G considering the canonical ordering of each subgraph of G̃.

Proof. Without loss of generality, assume that vertices v1 and v2 and are in subgraph
G̃0 and vn is in the subgraph G̃k.

The canonical ordering Πi of each subgraph G̃i can be computed using a variation
of the sequential algorithm introduced in Section 3.2.3. The main difference is that
this new algorithm does not start labelling all the vertices with −1. Instead, we
distinguish between two kind of vertices: Marked vertices and unmarked vertices. For
a vertex u ∈ Vi, u is marked if it is incident to two vertices v ∈ Vj and w ∈ Vk such
that i > j and i > k; otherwise, u is unmarked. In Figure 6.2, gray vertices are
marked. In the array of labels of each partition, all unmarked vertices will be labelled
with −1 and marked vertices with 1. The vertices of the first partition, G̃0, will be
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Figure 6.2: Decomposition of a triangulated plane graph.

labelled with −1, except for vertices v1 and v2. After that, the sequential algorithm
is applied to each partition. Observe that this algorithm can be parallelized easily:
Finding all the marked nodes and processing each partition in parallel.

Once we have the canonical orderings Π0,Π1, . . . ,Πk, we can define the canonical
ordering of G, Π, as follows:

• Π must begin with the paths in the canonical ordering of G̃0, i.e. Π = (Π0).

• Subsequently, add the canonical ordering of G̃1, Π = (Π0,Π1) and repeat the
same process until the last subgraph.

As Π0 is a canonical ordering and the first vertex in Π1, v, is incident to Π0, Π0∪v
is a canonical ordering of G0∪v. At the same time, v is part of the canonical ordering
Π1, then (Π0 ∪Π1) is a canonical ordering of G1. Therefore, following this procedure,
we can obtain the canonical ordering of Gk = G.

Graph decomposition algorithms based on the decomposition of the spanning tree
of the graph cannot be used to compute the decomposition introduced in this section.
If we cut the paths of a spanning tree only based in the number of nodes per path,
then we cannot ensure the properties (e) and (f). The design of the algorithm to
compute such decomposition is left as an open problem.

Parallel computation of canonical ordering based on breadth-first search

An alternative to compute the canonical ordering of a maximal plane graph G, with
external vertices v1, v2 and vn, is to parallelize the sequential algorithm explained in
3.2.3. Notice that the sequential algorithm uses labels to identify the vertices that
can be included in the canonical ordering and more than one vertex may be ready
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(a) Step 0. (b) Step 1.

(c) Step 2. (d) Step 3.

(e) Step 4. (f) Step 5.
Figure 6.3: Parallel computation of canonical orderings based on dual graphs and BFS
traversal.
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to be included. In the parallel version of this algorithm, all the vertices that are
ready to be part of the canonical ordering will be added, no matter if we have more
than one. To improve the identification of the vertices that are ready, we propose
to use the dual graph of G. Once we have the dual graph, we perform a parallel
breadth-first search (BFS) over the dual, with the following conditions: (1) An edge
e will be traversed if and only if it is at distance 1 (the traditional condition of the
BFS) and (2) the target vertex of e is ready to be added. When a vertex v is ready,
all its neighbors that have been processed are consecutive in the adjacency list of v.
Each time we traverse a new edge during the BFS, we are discovering a new face f
of G. This face f has a useful property: It contains one vertex that has at least two
consecutive edges incident to previous discovered faces. With this property, we can
compute a canonical ordering of G by adding at most one vertex to the canonical
ordering for each discovered face. Figure 6.3 shows an illustration of the idea. In
Figures 6.3a and 6.3b, the dual graph is computed. Then, in step 2, the traversal
starts from the vertex that represents the external face of G. To obtain a correct
algorithm, we choose, arbitrarily, one outgoing edge of the initial vertex. The other
two edges will not be considered in the traversal (white vertices in the figure). In
the same step, we discover the first face, adding vertices a, b and c to the canonical
ordering. Then, in step 3, we discover two new faces, adding at the same time vertices
d and f to the canonical ordering. In the next step, we add vertex e. Observe that
using a traditional BFS algorithm, we should traverse the edges associated with the
edges (a, d) and (b, f) of G. However, we do not traverse such edges, because the
target vertex h is not ready to be added. Finally, in step 5 we add the last vertex h,
discovering four new faces. Thus, we obtain canonical ordering Π = {a, b, c, d, f, e, h}.
At some point, it is possible to discover new faces that do not add new vertices to
the canonical ordering, but it does not affect the correctness of the algorithm.

The dual graph GD = (VGD
, EGD

) of a maximal plane graph G = (VG, EG), can
be computed in parallel using Algorithm 16, called Parallel dual graph algorithm
(PDGA). The algorithm is based on the property that each vertex of GD has degree
3, since G is a maximal plane graph and the number of edges of GD is the same as
the number of edges in G. The PDGA algorithm assumes that the input graph will
be represented in its adjacency list representation, where the indices of the vertices
are unique and consecutive. Since each vertex of GD will have degree 3, lines 4–6 of
the algorithm sets the first and last fields of each vertex. Thus, the adjacency list
of a vertex vdi of the dual graph, with index i, will be stored in EGD

at indices 3i,
3i + 1 and 3i + 2. For the rest of the algorithm, we need a more precise definition
of a face and the concept of ownership. A face f : 〈e1, e2, e3〉 corresponds to three
edges, ordered in counterclockwise order, where e1.tgt = e2.src, e2.tgt = e3.src,
e3.tgt = e1.src, e1.src < e2.src and e1.src < e3.src. An edge e of G is the owner of a
face f = 〈e1, e2, e3〉 if e = e1. For example, in Figure 6.3a, assuming a lexicographic
order in the vertices, the edge (c, f) is the owner of the face 〈(c, f), (f, e), (e, c)〉 and
the edge (c, e) is the owner of the face 〈(c, e), (e, d), (d, c)〉. In lines 7–9 of the PDGA

algorithm and in the Function ownership, the ownership of each face in G is tested.
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Each time an owner edge is found, the algorithm marks the index of such an edge
in an array A with a 1. Then, with all the owner edges detected – one per vertex
in GD – the algorithm performs a prefix sum over A to determine the final position
of each face in VGD

. The final step (lines 11–16) is to connect the edges of the dual
graph with the corresponding nodes in VGD

. Given an edge e of G, we say that its
associated edge in GD is the one that connects the faces where e and its complement,
e.cmp, belong. For a vertex vdi of GD, associated with the face f = 〈e1, e2, e3〉, the
associated edge of e1 is stored at position 3i, the associated edge of e2 is stored at
position 3i + 1 and the associated edge of e3 is stored at position 3i + 2, respecting
the relative position of the edges e1, e2 and e3 in f . Such relative position is given by
the Function newIndex. This algorithm has O(n) work and O(lg n) span.

Leiserson and Schardl introduced in [91] a parallel algorithm to compute the BFS
traversal of a graph, called PBFS. The authors proposed to replace the traditional
FIFO data structure, used in the most classical BFS algorithm, by a thread-safe data
structure called bag, which supports insert, union and split operations in parallel. The
algorithm PBFS is iterative. In the i-th iteration, the algorithm inserts, at the same
time, all the vertices at distance i from v0 into the bag, where v0 is the source vertex
of the algorithm. After all the vertices at distance i are inserted, the bag is recursively
split into two new bags, until reaching bags with only a few elements. The maximum
number of elements of the final bags are defined a priori. Then, each bag is processed
in parallel. The neighbors of each vertex in a bag are examined to find unvisited
vertices. Those unvisited vertices are added to a new bag, which will be the input
of the next iteration. The PBFS algorithm has O(n+m) work, O(d lg(n/d) + d lg ∆)
span and Tp = O((n+m)/p+ d lg3(n/d)), where d is the diameter of the input graph
and ∆ is the maximum out-degree of any vertex.

If we perform atomic operations to update the array of labels of the sequential
algorithm to compute the canonical ordering and use that array in the PBFS algorithm
to choose the vertices that will be inserted in the bag, we can compute the canonical
ordering of a maximal plane graph with the same bounds of the PBFS algorithm.

The main problem with this idea is that the diameter of a maximal plane graph
is O(n), and therefore, the span will be O(n). However, in practice, a machine with
a limited amount of cores could exhibit a good speedup. The implementation and
evaluation of this idea is left as future work.

6.2 Succinct representation of triangulated plane graphs via realizers

In this section we discuss how to compute, in parallel, a succinct representation of
a triangulated plane graph G, based on a realizer T1, T2, T3 of G. In Section 6.2.1
we discuss how to adapt the algorithm PGEA to compute the succinct representation
S
′
rz of G. In Section 6.2.2 we discuss how to construct the succinct representation

of the bit-vectors derived from S
′
rz. Finally, in Section 6.2.3 we discuss the parallel

computation of the realizers of G.
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6.2.1 Parallel computation of the multiple parentheses representation S
′
rz

In this section we show how to compute the string S
′
rz, introduced in Section 3.2.3.

The definition of the construction of S
′
rz (see Section 3.2.3) is given as follows:

• Classify all the edges of G as part of T1, T2 or T3. At the end of this stage, we
will have the three spanning trees.

• Perform an Euler tour over T1 to define a new order among the vertices of G.

• For each vertex vi of G, count its number of neighbors in T2 that are lower, lT2i ,
and higher, hT2i , numbered. The same is done for the neighbors in T3.

• Perform a new Euler tour over T1. Each time we visit a forward edge, write a
“(” followed by lT2i “]”s and lT3i “}”s. Each time we visit a backward edge, write
hT3i “{”s followed by hT2i “[”s and a “)”. The resulting parentheses sequence is
S
′
rz.

Input : An adjacency list representation of a plane graph G consisting of arrays VG
and EG.

Output: An adjacency list representation of the dual graph, GD of G consisting of
arrays VGD

and EGD
.

1 VGD
= an array of vertices of length 2|VG|− 4// 2|VG|− 4 is the number of faces of G

2 EGD
= an array of edges of length |EG|// Number of edges of G and GD is the same

3 A = an array of length |EGD
|

4 parfor i = 0 to |VGD
| − 1 do

5 V [i].first = 3× i // Each node of GD has 3 neighbors
6 V [i].last = 3× i+ 2

7 parfor i = 0 to |EGD
| − 1 do

8 if i = ownership(EG, i) then
9 A[i] = 1

10 parallel prefix sum(A)

11 parfor i = 0 to |EGD
| − 1 do

12 c = EG[i].cmp
13 idx = 3× (A[ownership(EG, i)])+newIndex(EG, i)
14 EGD

[idx].src = A[ownership(EG, i)]
15 EGD

[idx].tgt = A[ownership(EG, c)]
16 EGD

[idx].cmp = 3× EGD
[idx].tgt+ newIndex(EG, c)

17 return VGD
,EGD

Algorithm 16: Parallel dual graph algorithm (PDGA)
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Input : An array of edges EG and
the index of an edge in EG, i.

Output : The index of the edge that is
owner of the face where the
edge EG[i] is involved.

1 owner = i
2 next = prev(EG[owner].cmp)
3 if EG[owner].src > EG[next].src then
4 owner = next

5 next = prev(EG[next].cmp)
6 if EG[owner].src > EG[next].src then
7 owner = next

8 return owner
Function ownership

Input : An array of edges EG and the
index of an edge in EG, i.

Output : The position of the edge EG[i]
in the face where it is
involved, starting from the
owner of the face.

1 owner = ownership(EG, i)
2 if i = owner then
3 return 0

4 next = prev(EG[i].cmp)
5 if next = owner then
6 return 2

7 return 1
Function newIndex

This definition is similar to the alternative definition given for the parallel con-
struction based on canonical ordering. Therefore, we can adapt the PGEA algorithm
(Algorithm 14) to compute S

′
rz in parallel. Algorithm 17 does this. We call this

algorithm Parallel graph encoding algorithm - realizers version (PGEA-rz). The rep-
resentation of the input graph G is the same representation used in Section 6.1.1.

The algorithm creates four arrays, two auxiliar arrays CT2 and CT3 to store the
lower-numbered and higher-numbered neighbors of each vertex of G, with respect
to T2 and T3, an auxiliar array LE to store the Euler Tour of T1 and the array
S
′
rz to store the parentheses representation induced by T1, T2 and T3. The first

step of the algorithm is to build the realizers T1, T2 and T3, through the function
buildRealizers. The explanation of this function will be done in Section 6.2.3. The
second step is to compute the new order of the vertices of G through the function
newOrder. Remember that this new order corresponds to the counterclock-wise order
of the nodes of T1, which is a canonical ordering of G. The tree T1 can be obtained
using Algorithm 15 and the new order can be obtained using a variation of the PFEA

algorithm (see Section 5.1). The variation of the PFEA algorithm can be seen in
Algorithm 18. The idea behind Algorithm 18 is to increase rank just for forward
edges, perform a parallel prefix sum algorithm and finally obtain the new order of
each vertex in the first ocurrence of this vertex in the implicit Euler tour. The
next step of Algorithm PGEA-rz is to count the number of lower and higher adjacent
vertices of v in T2 and T3, considering the new ordering of the vertices of G. The
values of lower-numbered and higher-numbered neighbors of v are stored in CT2 [v].l
and CT2 [v].h for T2 and in CT3 [v].l and CT3 [v].h for T3, respectively (lines 6 and 7).
It can be done using a parallel prefix sum algorithm. The next step is to traverse T1.
Each entry in LE represents the traversal of an edge of T1 and stores three values:
value is “(” followed by CT2 [v].l “]” and CT3 [v].l “}”, or “)” preceded by CT3 [v].h “{”
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Input : An adjacency list representation of the plane graph G consisting of arrays
VG and EG and the number of threads, threads. Vertices in graph G have
their position in the canonical ordering of G.

Output: A three-type parentheses sequence S
′
rz induced by the realizer T1, T2 and

T3 of G.

1 CT2 = an array of length |VG|
2 CT3 = an array of length |VG|
3 S

′
rz = an array of length |EG|+ 2

4 [T1, T2, T3] = buildRealizers(VG, EG, threads)
5 newOrder(VG, EG)
6 parfor i = 0 to |VG| do
7 [CT2 [i].l, CT2 [i].h, CT3 [i].l, CT3 [i].h] = parallelCount(VG, EG, i)

8 LE = an array of length |ET1 | // ET1 is the array of edges of realizer T1

9 chk = |ET1 |/threads
10 parfor t = 0 to threads − 1 do
11 for i = 0 to chk − 1 do
12 j = t ∗ chk + i
13 if co(ET1 [j].src) < co(ET1 [j].tgt) then // forward edge
14 LE [j].value = ⊕(“(”,“]”∗CT2 [ET1 [j].tgt].l,“}”∗CT3 [ET1 [j].tgt].l)
15 LE [j].rank = CT2 [ET1 [j].tgt].l + CT3 [ET1 [j].tgt].l + 1
16 if ET1 [j].tgt is a leaf then
17 LE [j].succ = ET1 [j].cmp
18 else
19 LE [j].succ = first(ET1 [j].tgt) + 1

20 else // backward edge
21 LE [j].value = ⊕(“{”∗CT3 [ET1 [j].tgt].h,“[”∗CT2 [ET1 [j].tgt].h,“)”)
22 LE [j].rank = CT2 [ET1 [j].src].h+ CT3 [ET1 [j].src].h+ 1
23 if ET1 [j] is the last edge in the adjacency list of ET1 [j].src then
24 LE [j].succ = first(ET1 [j].tgt)
25 else
26 LE [j].succ = next(ET1 [j].tgt)

27 parallel list ranking(LE )
28 parfor t = 0 to threads − 1 do
29 for i = 0 to chk − 1 do
30 j = t ∗ chk + i

31 S
′
rz[LE [j].rank . . .LE [j + 1].rank − 1] = LE [j].value

32 S
′
rz[0] = “(”

33 S
′
rz[|EG|+ 1] = “)”

Algorithm 17: Parallel graph encoding algorithm - realizers version(PGEA-rz)

and CT2 [v].h “[”, depending on whether the edge is a forward or a backward edge;
succ is the index in LE of the next edge in the Euler tour; and rank is the number
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Input : An adjacency list representation of a tree T consisting of arrays V and E
and the number of threads, threads.

Output: The tree T with a new ordering.

1 ET = an array of length |E|
2 chk = |E|/threads
3 parfor t = 0 to threads − 1 do
4 for i = 0 to chk − 1 do
5 j = t ∗ chk + i
6 if co(ET [j].src) < co(ET [j].tgt) then // forward edge
7 ET [j].rank = 1
8 if E[j].chld is a leaf then
9 ET [j].succ = ET [j].cmp

10 else
11 ET [j].succ = first(E[j].tgt) + 1

12 else
13 ET [j].rank = 0
14 if E[j] is the last edge in the adjacency list of E[j].src then
15 ET [j].succ = first(E[j].tgt)
16 else
17 ET [j].succ = next(E[j].tgt)

18 parallel list ranking(ET )
19 parfor t = 0 to threads − 1 do
20 for i = 0 to 2 ∗ chk − 1 do
21 j = t ∗ chk + i
22 if first(E[j].src) = j then // First ocurrence of the node E[j].src
23 V [E [j ].src].co = ET [j].rank

Algorithm 18: Parallel algorithm newOrder to define a new order of the nodes in
a maximal plane graph

of parentheses in value, used to compute the rank of each symbol in S
′
rz.

The rest of the explanation of the PGEA-rz algorithm is the same as the PGEA

algorithm.

The theoretical analysis of the PGEA-rz algorithm is given by the complexity of
the functions buildRealizers and newOrder, and the complexity of the rest of the
algorithm, which is, essentially, the complexity of the PGEA algorithm. Algorithm
newOrder has the same complexity of the PFEA algorithm, O(n) work, O(lg n) span
and Tp = O(n/p+lg p). The complexity of the function buildRealizers is also O(n)
work, O(lg n) span and Tp = O(n/p + lg p). Thus, the complexity of the PGEA-rz

algorithm is T1 = O(n) work, T∞ = O(lg n) span and Tp = O(n/p+ lg p).

Similar to Algorithm PGEA, we can use Algorithm PGEA-rz to encode S
′
rz using

the parenthesis sequences S
′
1, S

′
2, S

′
3 and the bit-vectors B1 and B2 as follows:
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• S ′1 can be obtained by writing just the parentheses “(” and “)”, without the
other two kind of parentheses, and setting the corresponding rank to 1 (Lines
14-15 and 21-22 of the PGEA-rz algorithm).

• S ′2 can be obtained by writing just the CT2 [ET1 [j].tgt].l “]”s and the
CT2 [ET1 [j].tgt].h “[”s parentheses, without the other two kinds of parentheses,
and setting the corresponding rank to CT2 [ET1 [j].tgt].l or CT2 [ET1 [j].tgt].h, as
appropriate (Lines 14-15 and 21-22 of the PGEA-rz algorithm).

• Similarly, S
′
3 can be obtained by writing just CT3 [ET1 [j].tgt].l “}”s and the

CT3 [ET1 [j].tgt].h “{”s parentheses, without the other two kinds of parentheses,
and setting the corresponding rank to CT3 [ET1 [j].tgt].l or CT3 [ET1 [j].tgt].h, as
appropriate (Lines 14-15 and 21-22 of the PGEA-rz algorithm).

• B1 can be obtained by writing a “1” followed by CT2 [ET1 [j].tgt].l+CT3 [ET1 [j].tgt].l
“0”s for forward edges or CT2 [ET1 [j].tgt].h + CT3 [ET1 [j].tgt].h “0”s followed by
a “1” for backward edges (Lines 14 and 21).

• Finally, B2 can be obtained by writing CT2 [ET1 [j].tgt].l “1”s followed by
CT3 [ET1 [j].tgt].l “0”s, and setting the rank value to CT2 [ET1 [j].tgt].l+
CT3 [ET1 [j].tgt].l, for forward edges or by writing CT3 [ET1 [j].tgt].h “0”s followed
by CT2 [ET1 [j].tgt].h “1”s, setting the rank value to CT2 [ET1 [j].tgt].h+
CT3 [ET1 [j].tgt].h, for backward edges (Lines 14 and 21).

Thus, the parenthesis sequences S
′
1, S

′
2, S

′
3 and the bit-vectors B1 and B2 can be

computed within the same bounds of S
′
rz. Observe that if we define an array LE

for each parentheses sequence and bit-vectors, we can use the Algorithm PGEA-rz to
compute S

′
1, S

′
2, S

′
3, B1 and B2 at the same time, with just one parallel algorithm

and the same bounds of constructing just one parenthesis sequence or bit-vector.

6.2.2 Parallel construction of the succinct representation of the multiple
parenthesis sequence S

′
rz

In Section 3.2.3 we showed that to support operations over maximal plane graphs,
parenthesis sequences S

′
1, S

′
2 and S

′
3 must support rank, select, match, first and

last operations and bit-vectors B1 and B2 must support rank and select opera-
tions. All operations over parenthesis sequences and bit-vectors are supported by
the solution in [109], which can be constructed in parallel with O(n + lg p) work,
Tp = O(n/p+ lg p) time, O(lg n) span and O(n lg n) working space, supporting oper-
ations in logarithmic time; or with O(n+ n

lgc n
lg( n

lgc n
)+ cc) work, O(c+lg( ncc

lgc n
)) span

and O(n lg n) working space, supporting operations in O(c) time, where c > 3/2 (see
Chapter 5). Alternatively, bit-vectors B1 and B2 can be constructed with O(n) work,
O(lg n) span and O(n lg n) working space, using the results of [126] (see Section 3.3
for more details).
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Input : An adjacency list representation of the plane graph G consisting of arrays
VG and EG, with a canonical ordering, and the number of threads, threads.

Output: Adjacency list representation of the realizers of G, T1, T2 and T3. The
representation of the tree T1 consists of arrays VT1 and ET1 . The
representation of T2 and T3 is similar.

1 VT1 = VG
2 VT2 = VG \ {v1} // v1 is the vertex with canonical ordering 1
3 VT3 = VG \ {v1, v2} // v2 is the vertex with canonical ordering 2
4 L = an array of length |VG|

// Stage 1
5 parfor i = 0 to |VG| do
6 parfor j = first(VG[i]) to last(VG[i])− 1 do
7 n1 = Eg[j].tgt // neighbor 1
8 n2 = Eg[j + 1].tgt // neighbor 2
9 if co(VG[i]) < co(VG[n1])) AND co(VG[i]) > co(VG[n2])) then

10 L[i].p = j + 1
11 else if co(VG[i]) > co(VG[n1])) AND co(VG[i]) < co(VG[n2])) then
12 L[i].q = j

// Stage 2
13 parfor i = 0 to |VG| do
14 addEdge(ET1 , EG[L[i].p].tgt, EG[L[i].p].src)
15 addEdge(ET2 , EG[L[i].q].tgt, EG[L[i].q].src)
16 parfor j = L[i].p+ 1 to L[i].q − 1 do
17 addEdge(ET3 , EG[j].src, EG[j].tgt)

Algorithm 19: Parallel computation of realizers (buildRealizers)

6.2.3 Realizers in parallel

As was shown in Section 3.2.3, the realizers of a maximal plane graph G can be
computed given a canonical ordering of G. The sequential algorithm introduced in
[23, 108] can be parallelized in two stages: First, finding, in parallel, the limits p and
q of the neighbors of vk in Ck−1, with p < q, for each vk, 3 6 k 6 n. Second, adding
to T1 the edge at position p, to T2 the edge at position q and all the edges at positions
p + 1, . . . , q − 1 to T3. This idea is shown in Algorithm 19. In the algorithm, the
array L is used to store the limits of each vertex: L.p stores the lower limit and L.q
stores the upper limit. In the algorithm, each edge of G is visited independently once
and only once. Therefore the complexity of both stages is O(n) work, O(1) span and
Tp = O(n/p) time. Finally, the setting of the limits of the adjacency lists of each node
of T1, T2 and T3 can be done with O(n) work, O(lg n) span and Tp = O(n/p + lg p)
time, using a parallel prefix sum algorithm over the lengths of the adyacency list of
the tree spanning trees. Therefore, the complexity of the Algorithm 19 is O(n) work,
O(lg n) span and Tp = O(n/p+ lg p) time.
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Dataset Nodes (n) Edges (m) Min fan-out Max fan-out

1 worldcities 2,243,467 6,730,395 3 36
2 rand-1M 1,000,000 2,999,994 3 20
3 rand-2M 2,000,000 5,999,994 3 14
4 rand-4M 4,000,000 11,999,994 3 18
5 rand-8M 8,000,000 23,999,994 3 17
6 rand-10M 10,000,000 29,999,994 3 24

Table 6.1: Datasets used in the experiments of succinct maximal plane graphs.

6.3 Experiments

In this section, we study the scalability of our algorithms. As discussed, the PGEA-rz

algorithm is similar to the PGEA algorithm. Therefore, we based all our experiments
on the PGEA algorithm, extending our conclusions to both the PGEA and PGEA-rz

algorithms. The experiments were carried out on machine B.

6.3.1 Experimental setup

We implemented the PGEA algorithm to compute the bit-vectors S1, S2 and S3 and
the PSTA algorithm of Chapter 5 to construct the succinct representations of the
three bit-vectors. All the algorithm were implemented in C and compiled using GCC
4.9 with optimization level -O2 and using the -ffast-math flag. All parallel code was
compiled using the GCC Cilk branch.

The experimental trials consisted in running the algorithm on artificial datasets
of different number of nodes and cores. The datasets are shown in Table 6.1. Each
dataset was generated in four stages: In the first stage, we used the function rnorm

of R to generate random coordinates (x, y)1. The only exception was the dataset
worldcities, which corresponds to the coordinates of 2, 243, 467 uniques cities in
the world.2 In the second stage, we generated the Delaunay Triangulation of the
coordinates generated in the first stage. The triangulations were generated using
Triangle, a piece of software dedicated to the generation of meshes and triangulations3.
In the third stage, we generated the maximal plane graph and the canonical ordering
of the Delaunay triangulation computed in the second stage. Both the graph and

1The rnorm function generates random numbers for the normal distribution given a mean and
a standard deviation. In our case, the x component was generated using mean 0 and standard
deviation 45 and the y component was generated using mean 0 and standard deviation 90. For more
information about the rnorm function, please visit https://stat.ethz.ch/R-manual/R-devel/

library/stats/html/Normal.html
2The dataset containing the coordinates was created by MaxMind, available from https:

//www.maxmind.com/en/free-world-cities-database. The original dataset contains 3, 173, 959
cities, but some of them have the same coordinates. We selected the 2, 243, 467 cities with unique
coordinates to build our dataset worldcities.

3The software is available at http://www.cs.cmu.edu/~quake/triangle.html. Our triangula-
tions were generated using the options -cezCBVPNE.

https://stat.ethz.ch/R-manual/R-devel/library/stats/html/Normal.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/Normal.html
https://www.maxmind.com/en/free-world-cities-database
https://www.maxmind.com/en/free-world-cities-database
 http://www.cs.cmu.edu/~quake/triangle.html
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(a) Random coordinates. (b) Delaunay triangulation. (c) Maximal plane graph.
Figure 6.4: An example of a generated dataset to test the PGEA algorithm. Figure 6.4a
shows the initial random coordinates. Figure 6.4b shows the Delaunay triangulation of the
coordinates. Figure 6.4c shows the final maximal plane graph. The thick edge in Figure
6.4c represents the edge that was added to convert the graph in Figure 6.4b into a
maximal plane graph.

the canonical ordering were computed using the Boost Library [32]. The graph was
generated with the function make maximal planar and the canonical ordering was
computed with the function planar canonical ordering4. Finally, in the fourth
stage, we generated the canonical spanning tree of each maximal plane graph. See
Figure 6.4 for an example of the stages. We repeated each trial five times and recorded
the median time [132].

6.3.2 Running times and speedup

Table 6.2 shows the sequential and parallel running times of the implemented algo-
rithm. To compute the speedups, we used times obtained by seq. The best parallel
times are identified using a bold typeface.

Figure 6.5 shows speedups for all the datasets in Table 6.1. Up to 16 threads, the
speedup is almost linear, with an efficiency (speedup/p) of at least 56%, i.e., up to 16
threads, our algorithm reaches at least a 56% of the ideal speedup. With 16 or more
threads, the speedup that our implementation exhibits is poor, reaching at most a
38% efficiency with rand-10M dataset and 64 threads, i.e., the obtained speedup is
low with respect to the number of available threads. The reason of the low efficiency
of our algorithm is its low workload. For each edge, the PGEA algorithm performs few
comparisons and assignments. Therefore, the workload for each parallel task is not
enough to take advantage of the 64 threads in machine B, even when we create Θ(p)
parallel tasks. To demostrate that the low workload is the reason of the low efficiency,

4For more details on the function make maximal planar, please visit http://www.boost.org/

doc/libs/1_49_0/libs/graph/doc/make_maximal_planar.html. For more details of the func-
tion planar canonical ordering, please visit http://www.boost.org/doc/libs/1_49_0/libs/

graph/doc/planar_canonical_ordering.html

http://www.boost.org/doc/libs/1_49_0/libs/graph/doc/make_maximal_planar.html
http://www.boost.org/doc/libs/1_49_0/libs/graph/doc/make_maximal_planar.html
http://www.boost.org/doc/libs/1_49_0/libs/graph/doc/planar_canonical_ordering.html
http://www.boost.org/doc/libs/1_49_0/libs/graph/doc/planar_canonical_ordering.html
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p rand-1M rand-2M worldcities rand-4M rand-8M rand-10M

seq 1.80 4.29 4.89 9.63 20.79 25.82

1 1.35 4.46 3.46 6.63 19.61 17.99
4 0.57 1.23 1.45 2.61 5.59 7.24
8 0.34 0.71 0.82 1.51 3.17 3.94
12 0.26 0.51 0.59 1.07 2.11 2.76
16 0.20 0.41 0.48 0.82 1.69 2.18
20 0.20 0.39 0.37 0.76 1.54 1.78
24 0.17 0.36 0.39 0.67 1.19 1.58
28 0.15 0.37 0.41 0.64 1.24 1.47
32 0.18 0.32 0.34 0.64 1.17 1.51
36 0.17 0.32 0.33 0.54 1.09 1.53
40 0.16 0.31 0.35 0.52 1.04 1.29
44 0.18 0.30 0.32 0.57 1.12 1.14
48 0.14 0.28 0.33 0.56 1.02 1.30
52 0.15 0.30 0.30 0.46 0.99 1.19
56 0.26 0.35 0.34 0.47 1.10 1.27
60 0.19 0.36 0.32 0.58 0.99 1.10
64 0.27 0.33 0.34 0.52 0.92 1.06

Table 6.2: Running times, in seconds, of the PGEA and PSTA algorithms, aggregated, to
construct the succinct representation of S1, S2 and S3. seq represents the algorithms
running sequentially. The best parallel times are shown using bold typeface.

we increased artificially the workload of our implementation of the PGEA algorithm.
Between the lines 8-9 and 26-27 we added x CAS operations, with x ∈ {16, 32, 128}.
On each iteration of the loops of lines 8 and 26, each CAS operation was executed over
ET [i], increasing the workload per each edge. Observe that these extra operations
do not change the complexity or the correctness of our algorithm. Figures 6.6, 6.7
and 6.8 show the speedups for all the datasets, with 16, 32 and 128 extra operations,
respectively. As we increase the amount of artificial workload, efficiency is increased.
For 16, 32 and 128 extra operations, we reached at least 50% of efficiency with up to
36, 40 and 56 threads. With rand-10M dataset and 64 threads, we reached at most
57%, 63% and 100% of efficiency with 16, 32 and 128 extra operations. Therefore, by
increasing the workload, the speedup of our algorithm was close to the ideal speedup,
i.e, the linear speedup. Since the real workload of our algorithm is less than the
workload used in the experiments of Figures 6.6, 6.7 and 6.8, we cannot expect a
good efficiency with an arbitrary number of threads. However, if we have to use few
threads, we still can expect good efficiency (nearly 50% efficiency). The running times
of the PGEA algorithm with extra operations are shown in the Appendix A.

The running time is directly dependent of the number of nodes, no matter if we
consider extra operations or not. This can be seen in Figure 6.9.
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Figure 6.5: Speedup of the PGEA and
PSTA algorithms with all the datasets.

Figure 6.6: Speedup of the PGEA and
PSTA algorithms with all the datasets,
artificially increasing the workload with 16
CAS operations per edge.
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Figure 6.8: Speedup of the PGEA and
PSTA algorithms with all the datasets,
artificially increasing the workload with
128 CAS operations per edge.

T
im

e
(s
e
c
s)

0
0
.5

1
1
.5

2
2
.5

3

ran
d−
1M

ran
d−
2M

wo
rld
cit
ies

ran
d−
4M

ran
d−
8M

ran
d−
10
M

PGEA/PSTA

PGEA/PSTA+16

PGEA/PSTA+32

PGEA/PSTA+128

Datasets Datasets

P
e
a
k
(M

B
)

ran
d.1

M

ran
d.2

M

wo
rld
cit
ies

ran
d.4

M

ran
d.8

M

ran
d.1

0M

0
1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

Figure 6.9: Time over the number of
vertices (n), with 64 threads. PGEA/PSTA
corresponds to the execution of PGEA and
PSTA without extra operations. For the
other lines, the superscript indicates the
number of extra CAS operations.

Figure 6.10: Memory consumption sorted
by the number of vertices (n).



110

6.3.3 Memory consumption

Figure 6.10 shows the memory consumption of our algorithm. We measured the
memory allocated with malloc and released with free, reporting the peak of memory
allocation and only considering memory allocated during construction, not memory
allocated to store the input graph. The datasets are ordered incrementally by n and
we only measured the memory usage for p = 1, since the extra memory needed for
thread scheduling when p > 1 was negligible (See 2.2.1). The memory consumption
is directly proportional to the number of vertices and it is composed by the allocation
of the arrays C, LE and Sco. In particular, the array LE is the one with the biggest
memory allocation, because it stores three number per edge.

6.3.4 Discussion

The main drawback of our algorithm is its poor scalability. However, its scalability
with few threads (< 16 threads) is good in practice (over 50% of efficiency). Since
this scalability problem is due to the lack of workload of the algorithm, we cannot
expect to get a better scalability by adding more threads. An interesting research
problem is to find the number of threads needed to obtain at least 50% of efficiency.
Finding the correct number of threads, we may use the rest of the threads in other
procedures.

With respect to the memory consumption, our algorithm is efficient, since it uses
an amount of memory proportional to the size of the input graph.

Another factor that may affect the performance of our algorithm is the topology
of our machine. We will discuss this point in the Chapter 7.



Chapter 7

Discussions and Future Work

In this chapter we provide a more general discussion of the experiments, the model
and the algorithms introduced in previous chapters. We also present some open
problems and potential new research avenues related to this thesis.

It is important to emphasize that this thesis involves what we think are important
contributions to practical implementations of parallel algorithms in commodity archi-
tectures. In a way, then, topology has become important again, though thankfully not
a show-stopper. For example, in the experiments of Sections 5.4 and 6.3, we observed
that algorithms had a slowdown of the speedup at 16, 32, 48 and 64 threads. We
hypothesize that the factor that generated the slowdown of the speedups of the al-
gorithms had to do with the topology of the machine where we ran our experiments.
The four processors on our machine were connected in a grid topology [37]. Each
processor executes up to 16 threads. Up to 32 threads, all threads can be run on a
single processor or on two adjacent processors in the grid, which keeps the cost of
communication between threads low. Beyond 32 threads, at least three processors are
needed and at least two of them are not adjacent in the grid. This increases the cost
of communication between threads on these processors noticeably. Additionally, there
exist other factors of the architecture that can impact the performance of multicore
algorithms to construct succinct data structures, such as cache inclusion policy which
may vary for each new architecture, special wiring among cores and among caches,
and cache coherency protocol. The impact of all these factors in the implementation
of multicore construction algorithms need to be studied in more detail.

Another factor that may impact the performance of the algorithms is the cache
misses generated by the succinct representations. In order to obtain succinct repre-
sentations, the data is reordered, which can impact negatively in the cache locality.
For example, in the case of wtree, each level corresponds to a reordering of the bit
representation of the input sequence. A study of the trade off of succinct represen-
tations and structures with better cache locality is needed. Unfortunately, there are
only a few models that take into account cache coherence, cache topology and more
complicated memory models.

During the empirical evaluation of the PFEA and PGEA algorithms (see Algorithms
10 and 14, respectively), we observed a discrepancy between the practical results
and the theoretical complexities. As was discussed in Sections 5.4.3 and 6.3.2, the
discrepancy was due to the lack of workload for the parallel tasks. We think that
it is interesting to find the maximum number of threads that achieves a good per-
formance, where good performance means at least a 50% of efficiency. To find that
number of threads, we believe it is necessary to complement the theoretical analysis
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with a more empirical measure We: For example, total amount of CPU operations.
With such measure, we can obtain an estimation of the amount of work per parallel
task in practice. If we can ensure that the maximum amount of practical work per
parallel task is bounded by O(We/p), then we can expect better efficiency and use any
remaining computational power for other processes. With some extra computational
power to run other parallel processes, one interesting problem is the simultaneous
execution of parallel algorithms desgined under the DYM model.

Although PFEA and PGEA algorithms exhibit an almost linear speedup up to only
16 cores, there are current architectures where that amount of threads are enough.
Currently, mobile devices, such as cellphones, tablets, among others, have multicore
processors with at most 10 cores. If we can design and implement algorithms that
scale up to 16 cores, then we can use those algorithms in such mobile device. In
particular, parallel algorithms that construct succinct data structures and scale up
to 16 cores are suitable for mobile devices that have a limited memory capacity.

One open problem is the parallel computation of the canonical ordering of a tri-
angulated plane graph. In Section 6.1.3, we present two approaches to try to solve
it. In the first approach, we present the definition of a decomposition of the input
graph. By computing that decomposition, we could apply a sequential algorithm in
each non-overlapping subgraph to compute the canonical ordering of the complete
graph. Currently, we do not have a parallel algorithm to compute the decomposi-
tion described in Section 6.1.3. Notice that decompositions based on the depth-first
traversal of the graph should not be used, since they do not ensure the properties of
the required decomposition. We think that the design of a parallel algorithm to com-
pute such decomposition is of special interest, since it allows us to compute canonical
orderings. With the canonical ordering, we can design parallel algorithms to compute
succinct representation of triangulated plane graphs and to compute the straight-line
embedding of plane graphs.

The second approach involves parallelizing the breadth-first traversal of the dual
graph of the input graph. This approach takes advantages of the fact that, during the
sequential computation of the canonical ordering, more than one vertex may be added
to the canonical ordering (see Section 3.2.3). Therefore, we can add, in parallel, all
the eligible vertices. The main problem with this approach is that its work and span
are O(n). However, we believe it is worthwhile to evaluate this idea in practice, since
a parallel algorithm to compute the breadth-first traversal has shown good practical
speedups [91].

There may be other succinct data structures that could benefit from a paral-
lelization of their construction step. In the construction of succinct representation
of trees, new parallel algorithms can be designed, based on a different parentheses
representation. In Chapter 5, we construct a succinct representation based on a bal-
anced parentheses representation of a tree. Instead, succinct representations based
on depth-first unary degree sequence (DFUDS) representation [10, 82] or level-ordered
unary degree sequence LOUDS representation [10, 80, 36] can be studied. Succinct
representations of two-dimensional point sets are another interesting domain where
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we can construct succinct data structures in parallel. In particular, two succinct data
structures that have good practical behavior, both in time and space, are compressed
quadtrees [52] and K2-trees [17]. Another interesting succinct data structure to con-
struct in parallel is the succinct representation of permutations based on the shortcut
method of Munro et al. [103]. Using ideas of parallel list ranking algorithms [68],
we can detect the cycles of a permutation, in parallel. With the cycles, applying
the shortcut method in parallel is straightforward. With the parallel construction of
succinct representation of permutations, we can construct data structures like that of
Golynski et al. [57].

In this thesis, we focused on the parallel construction of static succinct data struc-
tures. The parallel construction of dynamic versions of those structures is still open.
There are dynamic versions of succinct data structures with sequential construction
algorithms for wavelet trees [96] and succinct ordinal trees [109] that can be studied.
In particular, we will study how we can adapt our solutions for static succinct data
structures to dynamic succinct data structures. Another interesting future work is the
design of thread-safe succinct data structures: succinct data structures which support
queries and updates concurrently.

The DYM model is a good model to study the parallel construction of succinct data
structures, since it is closely related to practical platforms, such as Cilk-Plus. How-
ever, there are other models to design parallel algorithms that do consider variants of
the architecture that DYM does not and are interesting to study for the construction
of succinct data structures. For example, the Multi-BPS model proposed by Valiant
[133] considers the size of the cache memories, the number of cores, communication
costs and synchronization costs between caches. The Message-passing parallel pro-
gramming model [89] considers a distributed environment and network capabilities.
The transactional memory model [70] allows us to define customized atomic opera-
tions that may involve reading or writing several words of memory. A few years ago,
the transactional memory model was considered in the design of the multicore pro-
cessor called Haswell [78], improving the speed of the customized atomic operations.
The study of succinct data structures under these models is left as future work.



Chapter 8

Conclusions

Today, the amount of available data that need to be stored, read and processed is
more than ever. It is imperative to find approaches that combine both the advances
of modern architectures and software solutions to improve data manipulation, both in
construction space and time, supporting queries efficiently. In this thesis, we improve
the construction time of succinct data structures by using multicore architectures.
Thus, we can design succinct data structures with competitive query time, efficient
space usage and fast/scalable construction time.

We have introduced and implemented two parallel algorithms, pwt and dd, for
the parallel construction of wavelet trees. pwt algorithm constructs all the levels of
the wavelet tree at the same time, reaching a work of O(n lg σ) and a span of O(n),
where n is the size of the input sequence and σ is the size of the alphabet. The dd

algorithm constructs the wavelet tree in a domain-decomposition fashion, using pwt

in each segment. The dd algorithm reaches a work of O(n lg σ) and a span of O(lg n).
For both algorithms we performed experiments with real-world and artificial datasets,
reaching competitive speedups in a machine with 32 cores/64 running threads. We
also faced the problem of answering queries in parallel. By grouping queries in batches,
we obtained a parallel query algorithm with O(q lg σ) work and O(lg σ) span, where
q is the number of branch queries. In the experiments, our query algorithm reaches
a linear throughput with an increasing number of threads.

For succinct ordinal trees, we presented a parallel algorithm to construct the
structure of Navarro and Sadakane [109]. We presented a practical version with O(n)
work, O(lg n) span and O(lg n) query time, where n is the number of nodes of the
input tree. We also presented a second version which supports queries in O(c) time,
with O(n+ n

lgc n
lg( n

lgc n
)+cc) work and O(c+lg( ncc

lgc n
)) span. The practical version was

tested with several datasets, reaching competitive speedups in a multicore machine.
As far as we know, our algorithm is the first one to construct the structure of Navarro
and Sadakane in parallel.

For succinct triangulated plane graphs, we presented an algorithm to construct
succinct representations based on canonical orderings. Given a triangulated plane
graph with a canonical ordering, our algorithm construct its succinct representation
with O(n) work and O(lg n) span, supporting queries in O(lg n) time, where n is the
number of vertices of the input graph. Alternatively, we can construct a succinct
representation that supports queries in O(c) time, with O(n+ n

lgc n
lg( n

lgc n
) + cc) work

and O(c + lg( ncc

lgc n
)) span. We also explained how to construct the succinct repre-

sentation based on realizers, using a similar algorithm with the same complexities.
In our experiments, our algorithm to construct the succinct representation based on
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canonical orderings reaches competitive speedups up to 16 threads. With more than
16 threads, our algorithm has a degradation of its speedup due to its lack of workload.

In this thesis we show how to construct some succinct data structures in parallel
and obtain competitive speedups in multicore machines. With the introducction of
such parallel algorithms we have made the succinct data structures more competitive
in the multicore environment. We hope that this thesis can help to strengthen the
research of practical succinct data structures in multicore systems.



Appendix A

Running times of the PGEA algorithm with extra operations

In this Appendix we show the running time of the PGEA algorithm when we increase
the workload artificially. Table A.1 shows the running time by increasing the workload
with 16 extra CAS operations per edge. Similarly, Tables A.2 and A.3 show the running
times for 32 and 128 extra CAS operations per edge, respectively.

p rand-1M+16 rand-2M+16 worldcities+16 rand-4M+16 rand-8M+16 rand-10M+16

seq 3.85 8.74 9.77 18.49 38.82 47.19

1 3.14 6.70 7.56 17.19 29.03 47.31
4 1.08 2.22 2.28 4.96 9.39 12.07
8 0.56 1.23 1.36 2.54 5.30 6.59
12 0.41 0.83 0.96 1.77 3.55 4.54
16 0.33 0.66 0.74 1.37 2.74 3.44
20 0.28 0.55 0.62 1.13 2.30 2.84
24 0.25 0.51 0.59 0.94 1.89 2.41
28 0.27 0.46 0.52 0.87 1.74 2.16
32 0.23 0.44 0.50 0.84 1.57 1.99
36 0.20 0.41 0.45 0.77 1.60 1.94
40 0.22 0.40 0.42 0.70 1.42 1.75
44 0.24 0.38 0.41 0.67 1.42 1.61
48 0.22 0.35 0.42 0.67 1.30 1.63
52 0.26 0.34 0.43 0.60 1.21 1.52
56 0.28 0.34 0.42 0.60 1.24 1.49
60 0.30 0.38 0.40 0.56 1.17 1.40
64 0.37 0.38 0.42 0.59 1.04 1.29

Table A.1: Running times, in seconds, of the PGEA algorithm by artificially increasing
the workload with 16 CAS operations per edge.
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p rand-1M+32 rand-2M+32 worldcities+32 rand-4M+32 rand-8M+32 rand-10M+32

seq 5.27 11.55 13.04 24.24 50.13 61.34

1 4.58 9.56 10.76 19.75 47.59 60.13
4 1.44 2.94 3.24 6.12 12.33 16.37
8 0.76 1.59 1.76 3.25 6.59 8.42
12 0.54 1.08 1.22 2.23 4.52 5.73
16 0.43 0.84 0.93 1.71 3.44 4.30
20 0.35 0.71 0.79 1.41 2.79 3.58
24 0.32 0.62 0.71 1.28 2.46 3.01
28 0.29 0.56 0.64 1.07 2.14 2.61
32 0.28 0.50 0.58 1.05 1.96 2.50
36 0.32 0.50 0.56 0.97 1.88 2.37
40 0.24 0.47 0.53 0.87 1.76 2.14
44 0.27 0.40 0.46 0.81 1.66 1.99
48 0.29 0.41 0.45 0.79 1.54 1.96
52 0.29 0.43 0.53 0.78 1.50 1.78
56 0.29 0.45 0.42 0.70 1.44 1.73
60 0.30 0.42 0.57 0.71 1.35 1.72
64 0.30 0.44 0.49 0.73 1.27 1.51

Table A.2: Running times, in seconds, of the PGEA algorithm by artificially increasing
the workload with 32 CAS operations per edge.

p rand-1M+128 rand-2M+128 worldcities+128 rand-4M+128 rand-8M+128 rand-10M+128

seq 13.89 28.41 32.19 57.90 117.14 145.80

1 13.14 26.67 32.15 57.16 109.21 145.74
4 3.56 7.24 8.15 14.90 29.71 37.76
8 1.82 3.72 4.17 7.55 15.20 19.07
12 1.23 2.51 2.84 5.12 10.19 12.84
16 0.96 1.92 2.17 3.84 7.76 9.68
20 0.79 1.57 1.77 3.06 6.29 7.87
24 0.67 1.33 1.50 2.65 5.27 6.57
28 0.61 1.18 1.32 2.33 4.55 5.70
32 0.56 1.10 1.22 2.10 4.13 5.02
36 0.53 0.98 1.13 1.98 3.97 4.95
40 0.47 0.92 1.04 1.78 3.58 4.47
44 0.49 0.82 0.94 1.66 3.31 4.10
48 0.47 0.82 0.94 1.55 3.13 3.89
52 0.43 0.73 0.88 1.46 2.87 3.56
56 0.45 0.75 0.80 1.38 2.77 3.33
60 0.52 0.71 0.78 1.28 2.64 3.18
64 0.39 0.74 0.85 1.27 2.42 2.94

Table A.3: Running times, in seconds, of the PGEA algorithm by artificially increasing
the workload with 128 CAS operations per edge.



Appendix B

Topology of the machines used in the experiments

Topology of the machines used in the experiments. Figure B.1 shows the topology of
the machine A and Figure B.2 shows the topology of the machine B. The topology
was obtained using the command lstopo with options “–no-io –of pdf > output.pdf”

Figure B.1: Topology of machine A.
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Figure B.2: Topology of machine B.
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[94] Veli Mäkinen and Gonzalo Navarro. Succinct Suffix Arrays Based on Run-
Length Encoding, pages 45–56. Springer Berlin Heidelberg, Berlin, Heidelberg,
2005.

[95] Veli Mäkinen and Gonzalo Navarro. Rank and select revisited and extended.
Theoretical Computer Science, 387(3):332–347, November 2007.

[96] Christos Makris. Wavelet trees: A survey. Comput. Sci. Inf. Syst., 9(2):585–625,
2012.



128

[97] Makoto Matsumoto and Takuji Nishimura. Mersenne twister: a 623-
dimensionally equidistributed uniform pseudo-random number generator. ACM
Trans. Model. Comput. Simul., 8(1):3–30, 1998.

[98] Dinesh P. Mehta and Sartaj Sahni. Handbook Of Data Structures And Ap-
plications (Chapman & Hall/Crc Computer and Information Science Series.),
chapter Succinct representation of data structures. Chapman & Hall/CRC,
2004.

[99] Kazuyuki Miura, Machiko Azuma, and Takao Nishizeki. Canonical decomposi-
tion, realizer, Schnyder labeling and orderly spanning trees of plane graphs. In-
ternational Journal of Foundations of Computer Science, 16(01):117–141, 2005.

[100] Daniel Molka, Daniel Hackenberg, and Robert Schöne. Main memory and cache
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