Parallel Construction of Succinct Trees*

Leo Ferres', José Fuentes-Septilveda', Meng He?, and Norbert Zeh?

! Department of Computer Science, Universidad de Concepcién, Chile,
{1ferres, jfuentess}@udec.cl
2 Faculty of Computer Science, Dalhousie University, Canada,
{mhe,nzeh}0@cs.dal.ca

Abstract. Succinct representations of trees are an elegant solution to
make large trees fit in main memory while still supporting navigational
operations in constant time. However, their construction time remains a
bottleneck. We introduce a practical parallel algorithm that improves the
state of the art in succinct tree construction. Given a tree on n nodes stored
as a sequence of balanced parentheses, our algorithm builds a succinct tree
representation in O(n/p + lgp) time, where p is the number of available
cores. The constructed representation uses 2n + o(n) bits of space and
supports a rich set of operations in O(lgn) time. In experiments using up
to 64 cores and on inputs of different sizes, our algorithm achieved good
parallel speed-up. We also present an algorithm that takes O(n/p + 1gp)
time to construct the balanced parenthesis representation of the input
tree required by our succinct tree construction algorithm.

1 Introduction

Trees are ubiquitous in Computer Science. They have applications in every aspect
of computing from XML/HTML processing to abstract syntax trees (AST) in
compilers, phylogenetic trees in computational genomics or shortest path trees
in path planning. The ever increasing amounts of structured, hierarchical data
processed in many applications have turned the processing of the corresponding
large tree structures into a bottleneck, particularly when they do not fit in
memory. Succinct tree representations store trees using as few bits as possible
and thereby significantly increase the size of trees that fit in memory while still
supporting important primitive operations in constant time. There exist such
representations that use only 2n + o(n) bits to store the topology of a tree with
n nodes, which is close to the information-theoretic lower bound and much less
than the space used by traditional pointer-based representations.

Alas, the construction of succinct trees is quite slow compared to the construc-
tion of pointer-based representations. Multicore parallelism offers one possible
tool to speed up the construction of succinct trees, but little work has been
done in this direction so far. The only results we are aware of focus on the
construction of wavelet trees, which are used in representations of text indexes.

* This work was supported by the Emerging Leaders in the Americas scholarship
programme, NSERC, and the Canada Research Chairs programme.

2 Leo Ferres, José Fuentes-Sepilveda, Meng He, and Norbert Zeh

In [10], two practical multicore algorithms for wavelet tree construction were
introduced. Both algorithms perform O(nlgo)® work and have span O(n), where
n is the input size and o is the alphabet size. In [21], Shun introduced three new
algorithms to construct wavelet trees in parallel. Among these three algorithms,
the best algorithm in practice performs O(nlgo) work and has span O(lgnlgo).
Shun also explained how to parallelize the construction of rank/select structures
so that it requires O(n) work and O(1) span for rank structures, and O(n) work
and O(lgn) span for select structures.

In this paper, we provide a parallel algorithm that constructs the RMMT tree
representation of [19] in O(n/p + lgp) time using p cores. This structure uses
2n + o(n) bits to store an ordinal tree on n nodes and supports a rich set of basic
operations on these trees in O(lgn) time. While this query time is theoretically
suboptimal, the RMMT structure is simple enough to be practical and has been
verified experimentally to be very small and support fast queries in practice [1].
Combined with the fast parallel construction algorithm presented in this paper, it
provides an excellent tool for manipulating very large trees in many applications.

We implemented and tested our algorithm on a number of real-world input
trees having billions of nodes. Our experiments show that our algorithm run on
a single core is competitive with state-of-the-art sequential constructions of the
RMMT structure and achieves good speed-up on up to 64 cores and likely beyond.

2 Preliminaries

Succinct trees. Jacobson [15] was the first to propose the design of succinct
data structures. He showed how to represent an ordinal tree on n nodes using
2n + o(n) bits so that computing the first child, next sibling or parent of any
node takes O(lgn) time in the bit probe model. Clark and Munro [5] showed
how to support the same operations in constant time in the word RAM model
with word size @(lgn). Since then, much work has been done on succinct tree
representations, to support more operations, to achieve compression, to provide
support for updates, and so on [2,9,11,13,16-19]. See [20] for a thorough survey.

Navarro and Sadakane [19] recently proposed a succinct tree representation, re-
ferred to as NS-representation throughout this paper, which was the first to achieve
a redundancy of O(n/1g®n) bits for any positive constant c. The redundancy of
a data structure is the additional space it uses above the information-theoretic
lower bound. While all previous tree representations achieved a redundancy
of o(n) bits, their redundancy was 2(nlglgn/lgn) bits, that is, just slightly
sub-linear. The NS-representation also supports a large number of navigational
operations in constant time (see Appendix A); only the work in [9,13] supports
two additional operations. An experimental study of succinct trees [1] showed
that a simplified version of the NS-representation uses less space than other
existing representations in most cases and performs most operations faster. In
this paper, we provide a parallel algorithm for constructing this representation.

3 We use lgz to mean log, = throughout this paper.

Parallel Construction of Succinct Trees 3

The NS-representation is based on the balanced parenthesis sequence P of
the input tree T', which is obtained by performing a preorder traversal of 7" and
writing down an opening parenthesis when visiting a node for the first time and a
closing parenthesis after visiting all its descendants. Thus, the length of P is 2n.

The NS-representation is not the first structure to use balanced parentheses to
represent trees. Munro and Raman [18] used succinct representations of balanced
parentheses to represent ordinal trees and reduced a set of navigational operations
on trees to operations on their balanced parenthesis sequences. Their solution
supports only a subset of the operations supported by the NS-representation.
Additional operations can be supported using auxiliary data structures [17], but
supporting all operations in Appendix A requires many auxiliary structures,
which increases the size of the final data structure and makes it complex in
both theory and practice. The main novelty of the NS-representation lies in its
reduction of a large set of operations on trees and balanced parenthesis sequences
to a small set of primitive operations. Representing P as a bit vector storing a 1
for each opening parenthesis and a 0 for each closing parenthesis, these primitive
operations are the following, where g is an arbitrary function on {0,1}:

Si—; 9(P[k])
min{j | j > 4,sum(P, g,4,j) = d}

sun(P, g,i,j) =

fwd_search(P, g,i,d) =
bwd_search(P, g,i,d) = max{j | j < i,sum(P, g,7,4) = d}

()

(P,g,i,j) =

()

rmq(P, g,1,7) = min{sun(P, g,i, k) | i <k < j}
RMQ(P, g,1,7) = max{sum(P, g,i,k) | i < k < j}
rmqi(P,g,4,j) = argmin{sum(P, g,4,k)}
ke(i,g)
RMQi(P, g,4,j) = arg?nzﬁx{sum(P,g,i, k)}
keli,g

Most operations supported by the NS-representation reduce to these primitives
by choosing g to be one of the following three functions:

Tl 1 o:1—1 P:1—0
0— —1 0—0 0—1

For example, assuming the ith parenthesis in P is an opening parenthesis, the
matching closing parenthesis can be found using fwd_search(P,w,4,0). Thus, it
(almost)* suffices to support the primitive operations above for g € {m, ¢,}. To
do so, Navarro and Sadakane designed a simple data structure called Range Min-
Max Tree (RMMT), which supports the primitive operations above in logarithmic
time when used to represent the entire sequence P. To achieve constant-time
operations, P is partitioned into chunks. Each chunk is represented using an
RMMT, which supports primitive operations inside the chunk in constant time
if the chunk is small enough. Additional data structures are used to support
operations on the entire sequence P in constant time.

4 A few navigational operations cannot be expressed using these primitives. The
NS-representation includes additional structures to support these operations.

4 Leo Ferres, José Fuentes-Sepilveda, Meng He, and Norbert Zeh

e'/m'/M'/n'

(Internal Nodes) 4/1/4/2 0/0/5/1

e s [ar2/a1] e lor0/21
e P2321234343234345432121210]

values

P ccoence)y cayrne))

Fig. 1: Range min-max tree

Next we briefly review the RMMT structure and how it supports the primitive
operations for g = 7. Navarro and Sadakane [19] discussed how to make it support
these operations also for ¢ and ¢ while increasing its size by only O(n/lgn).
To define the version of the RMMT we implemented, we partition P into chunks
of size s = wlgn, where w is the machine word size. For simplicity, we assume
that the length of P is a multiple of s. The RMMT is a complete binary tree over
the sequence of chunks (see Figure 1). (If the number of chunks is not a power
of 2, we pad the sequence with chunks of zeroes to reach the closest power of 2.
These chunks are not stored explicitly.) Each node u of the RMMT represents a
subsequence P, of P that is the concatenation of the chunks corresponding to
the descendant leaves of u. Since the RMMT is a complete tree, we need not store
its structure explicitly. Instead, we index its nodes as in a binary heap and refer
to each node by its index. The representation of the RMMT consists of four arrays
e, m', M', and n/, each of length equal to the number of nodes in the RMMT. The
uth entry of each of these arrays stores some crucial information about P,: Let
the excess at position i of P be defined as sum(P,7,0,i) = >, _, 7(P[k]). €'[u]
stores the excess at the last position in P,. m’[u] and M'[u] store the minimum
and maximum excess, respectively, at any position in P, . n’[u] stores the number
of positions in P, that have the minimum excess value m/[u].

Combined with a standard technique called table lookup, an RMMT supports
the primitive operations for 7 in O(lgn) time. Consider fwd_search(P, r,1,d)
for example. We first check the chunk containing PJi] to see if the answer is
inside this chunk. This takes O(lgn) time by dividing the chunk into portions
of length w/2 and testing for each portion in turn whether it contains the
answer. Using a lookup table whose content does not depend on P, the test for
each portion of length w/2 takes constant time: For each possible bit vector of
length w/2 and each of the w/2 positions in it, the table stores the answer of
fwd_search(P,7,i,d) if it can be found inside this bit vector, or —1 otherwise.
As there are 2/2 bit vectors of length w/2, this table uses 2"/?poly(w) bits. If
we find the answer inside the chunk containing P[i], we report it. Otherwise, let
u be the leaf corresponding to this chunk. If u has a right sibling, we inspect the
sibling’s m’ and M’ values to determine whether it contains the answer. If so,
we let v be this right sibling. Otherwise, we move up the tree from w until we
find a right sibling v of an ancestor of u whose corresponding subsequence P,
contains the query answer. Then we use a similar procedure to descend down the

Parallel Construction of Succinct Trees 5

tree starting from v to look for the leaf descendant of v containing the answer
and spend another O(lgn) time to determine the position of the answer inside
its chunk. Since we spend O(lgn) time for each of the two leaves we inspect and
the tests for any other node in the tree take constant time, the cost is O(lgn).

Supporting operations on the leaves, such as finding the ith leaf from the left,
reduces to rank and select operations over a bit vector P;[1..2n] where P;[i] =1
iff P[i] =1 and P[i + 1] = 0. rank and select operations over P; in turn reduce
to sum and fwd_search operations over P; and can thus be supported by an RMMT
for P;. P; does not need to be stored explicitly because any consecutive O(w)
bits of P; can be computed from the corresponding bits of P using table lookup.

To analyze the space usage, observe that storing P requires 2n bits, while the
space needed to store the vectors €/, m’, M’ and n’ is 2(n/s)lgn = 2n/w. The
space needed to store the same vectors for the RMMT of P is the same. Since we
can assume that w = 2(lgn), the total size of the RMMT is thus 2n 4+ O(n/lgn)
bits.

Dynamic multithreading (DyM) model. In the DyM model [7, Chapter 27],
a multithreaded computation is modelled as a directed acyclic graph G = (V, E)
whose vertices are instructions and where (u,v) € E if v must be executed
before v. The time T}, needed to execute the computation on p cores depends on
two parameters of the computation: its work Ty and its span To,. The work is
the running time on a single core, that is, the number of nodes (i.e., instructions)
in G, assuming each instruction takes constant time. Since p cores can execute
only p instructions at a time, we have T}, = 2(T1/p). The span is the length of
the longest path in G. Since the instructions on this path need to be executed
in order, we also have T, = 2(Tw,). Together, these two lower bounds give
T, = (T +T1 /p). Work-stealing schedulers match the optimal bound to within
a factor of 2 [4]. The degree to which an algorithm can take advantage of the
presence of p > 1 cores is captured by its speed-up T1/T, and its parallelism
T} /Two. In the absence of cache effects, the best possible speed-up is p, known as
linear speed-up. Parallelism provides an upper bound on the achievable speed-up.

To describe parallel algorithms in the DyM model, we augment sequential
pseudocode with three keywords. The spawn keyword, followed by a procedure
call, indicates that the procedure should run in its own thread and may thus be
executed in parallel to the thread that spawned it. The sync keyword indicates
that the current thread must wait for the termination of all threads it has
spawned. It thus provides a simple barrier-style synchronization mechanism.
Finally, parfor is “syntactic sugar” for spawning one thread per iteration in a
for loop, thereby allowing these iterations to run in parallel, followed by a sync
operation that waits for all iterations to complete. In practice, the overhead is
logarithmic in the number of iterations. When a procedure exits, it implicitly
performs a sync to ensure all threads it spawned finish first.

6 Leo Ferres, José Fuentes-Sepilveda, Meng He, and Norbert Zeh

3 A Parallel Algorithm for Succinct Tree Construction

In this section, we describe our new parallel algorithm for constructing the
RMMT of a given tree, called the Parallel Succinct Tree Algorithm (PSTA). Its
input is the balanced parenthesis sequence P of an n-node tree T'. This is a tree
representation commonly used in practice, particularly in secondary storage, and
known as the “folklore encoding”. For trees whose folklore encoding is not directly
available, Appendix B describes a parallel algorithm that can compute such an
encoding in O(n/p+1gp) time. Our algorithms assume that manipulating w bits
takes constant time. Additionally, we assume the (time and space) overhead of
scheduling threads on cores is negligible. This is guaranteed by the results of [4],
and the number of available processing units in current systems is generally much
smaller than the input size n, so this cost is indeed negligible in practice.

Before describing the PSTA algorithm, we observe that the entries in €’
corresponding to internal nodes of the RMMT need not be stored explicitly. This is
because the entry of ¢’ corresponding to an internal node is equal to the entry that
corresponds to the last leaf descendant of this node; since the RMMT is complete,
we can easily locate this leaf in constant time. Thus, our algorithm treats e’
as an array of length [2n/s] with one entry per leaf. Our algorithm consists
of three phases. In the first phase (Algorithm 1), it computes the leaves of the
RMMT, i.e., the array €', as well as the entries of m’, M’ and n’ that correspond
to leaves. In the second phase (Algorithm 2), the algorithm computes the entries
of m’, M’ and n’ corresponding to internal nodes of the RMMT. In the third phase
(Algorithm 3), it computes the universal lookup tables used to answer queries.
The input to our algorithm consists of the balanced parenthesis sequence, P, the
size of each chunk, s, and the number of available threads, threads.

To compute the entries of arrays e/, m’, M’, and n/ corresponding to the leaves
of the RMMT (Algorithm 1), we first assign the same number of consecutive chunks,
ct, to each thread (line 4). We call such a concatenation of chunks assigned to
a single thread a superchunk. For simplicity, we assume that the total number
of chunks, [2n/s], is divisible by threads. Each thread then computes the local
excess value of the last position in each of its assigned chunks, as well as the
minimum and maximum local excess in each chunk, and the number of times the
minimum local excess occurs in each chunk (lines 8-17). These values are stored
in the entries of €', m’, M’, and n’ corresponding to this chunk (lines 18-21).
The local excess value of a position 4 in P is defined to be sum(P, 7, j,1), where j
is the index of the first position of the superchunk containing position i. Note
that the locations with minimum local excess in each chunk are the same as the
positions with minimum global excess because the difference between local and
global excess is exactly sum(P, 7,0, — 1). Thus, the entries in n’ corresponding
to leaves store their final values at the end of the loop in lines 5-21, while the
corresponding entries of €', m’, and M’ store local excess values.

To convert the entries in €’ into global excess values, observe that the global
excess at the end of each superchunk equals the sum of the local excess values at
the ends of all superchunks up to and including this superchunk. Thus, we use a
parallel prefix sum algorithm [14] in line 22 to compute the global excess values

© 00 N0 A W N

I T S e
N0 A W N RO

18
19
20
21

22
23
24
25
26

27

28

Parallel Construction of Succinct Trees 7

Input :P, s, threads

Output : RMMT represented as arrays
e',m’, M’ n' and universal
lookup tables

0:=[2n/s] —1 // # internal nodes

e’ := array of size [2n/s]

m’, M',n’ ;= arrays of size [2n/s] + o0

ct := [2n/s]/threads

parfor ¢ := 0 to threads — 1 do

ey, my, M{,n; =0

for chk :=0to ct —1 do

low := (t x ct + chk) * s

up = low + s

for par := low to up — 1 do

et += 2 x Plpar] — 1
if e, < mj} then
‘ myi=ep; ny =1
else if e; = m; then
‘ ny +=1
else if ¢; > M/ then
L M, = e}

e'lt x ct + chk] := e}

m/[t * ct + chk + o] := m;
M'[t x ct + chk + o] := M{
n'[t * ct + chk + o] := n}

parallel _prefiz_sum(e’, ct)
parfor ¢t := 1 to threads — 1 do
for chk :=0to ct — 1 do
if chk < ct — 1 then
€[t * ct + chk] +=
L et xct —1]
m/[t* ct + chk + o] +=
et xct —1]
M'[t x ct + chk + o] +=
e[t *ct —1]

Algorithm 1: PSTA (part I)

1 vl := [lg threads]
2 parfor st :=0 to 2" — 1 do

[3L

10

N0 Ok WwN

10
11
12

® N O Uk W N

for [:= [lg(2n/s)] — 1 downto

ll do

for d:=0to 2" — 1 do
i=d+ 2" — 1+ stx270
concat(i,m', M',n')

for [:=lvl—1 to 0 do

parfor d :=0 to 2' — 1 do

i=d+2' -1
concat(i,m', M',n')

Algorithm 2: PSTA (part II)

parfor z := —w to w—1 do
parfor y := 0 to v2¥ — 1 do
i:=((z+w) << w) ORw
near_fwd_pos[i] := w
p, excess := 0
repeat
excess +=1—2x
((y AND(1 << p)) =0)
if excess = x then
near_fwd_pos[i] := p
L break
p+=1
until p > w

Algorithm 3: PSTA (part III)

Input:i, m’, M’', n/

m’[i] := min(m/[2i + 1], m’[2i + 2])
M'[i] := max(M'[2i + 1], M'[2i + 2])
if m/[2¢ + 1] < m/[2i + 2] then
| n'[i] :=n'[2i 4+ 1]
else if m'[2i + 1] > m’[2i + 2] then
| n'[i] :==n'[2i + 2]
else if m/[2i + 1] = m/[2i + 2] then
| n/fi] :=n/[2i + 1] + n'[2i + 2]

Function concat

at the ends of all superchunks and store these values in the corresponding entries
of ¢’. The remaining local excess values in e/, m’, and M’ can now be converted
into global excess values by increasing each by the global excess at the end of
the preceding superchunk. Lines 23-28 do exactly this.

8 Leo Ferres, José Fuentes-Sepilveda, Meng He, and Norbert Zeh

The computation of entries of m’, M’, and n’ (Algorithm 2) first chooses
the level closest to the root that contains at least threads nodes and creates
one thread for each such node v. The thread associated with node v calculates
the m’, M’, and n’ values of all nodes in the subtree with root v, by applying
the function concat to the nodes in the subtree bottom up (lines 2-6). The
invocation of this function for a node computes its m’, M’, and n’ values from
the corresponding values of its children. With a scheduler that balances the work,
such as a work-stealing scheduler, cores have a similar workload. Lines 7-10 apply
a similar bottom-up strategy for computing the m/, M’, and n’ values of the
nodes in the top vl levels, but they do this by processing these levels sequentially
and, for each level, processing the nodes on this level in parallel.

Algorithm 3 illustrates the construction of universal lookup tables using the
construction of the table near_fwd_pos as an example. This table is used to
support the fwd_search operation (see Section 2). Other lookup tables can be
constructed analogously. As each entry in such a universal table can be computed
independently, we can easily compute them in parallel.

Theoretical analysis. Lines 1-21 of Algorithm 1 require O(n) work and have
span O(n/p). Line 22 requires O(p) work and has span O(lgp) because we
compute a prefix sum over only p values. Lines 23-28 require O(n/s) work and
have span O(n/sp). Lines 1-6 of Algorithm 2 require O(n/s) work and have
span O(n/sp). Lines 7-10 require O(p) work and have span O(lgp). Algorithm 3
requires O(v/2%poly(w)) work and has span O(v/2¥poly(w)/p). As was defined
in Section 2, w is the machine word size. Thus, the total work of PSTA is
Ty = O(n +lgp+ v2¥poly(w)) and its span is O(n/p + lgp + v2¥poly(w)/p).
For p — oo, we get a span of T, = O(lgn). This gives a running time of
T, = O(T1/p+Tx) = O(n/p+lgp+v2¥poly(w)/p) on p cores. The speedup is

_ p(n++v2¥poly(w)) ;
/T, =0 (n+\/27poly(w)+p 1gp>‘ Under the assumption that p < n, the speedup
approaches O(p). Moreover, the parallelism T7 /T, (the maximum theoretical

of PSTA is n+v2%poly(w)
Ign :

speedup)

The PSTA algorithm does not need any extra memory related to the use of
threads. Indeed, it just needs space proportional to the input size and the space
needed to schedule the threads. A work-stealing scheduler, like the one used by
the DyM model, exhibits at most a linear expansion space, that is, O(S1p), where
S1 is the minimum amount of space used by the scheduler for any execution of a
multithreaded computation using one core. This upper bound is optimal within
a constant factor [4]. In summary, the working space needed by our algorithm
is O(nlgn + S1p) bits. Since in our algorithm the scheduler does not need to
consider the input size to schedule threads, S; = O(1). Thus, since in modern
machines it is usual that p < n, the scheduling space is negligible and the working
space is dominated by O(nlgn).

Note that in succinct data structure design, it is common to adopt the
assumption that w = ©(lgn), and when constructing lookup tables, consider
all possible bit vectors of length (Ign)/2 (instead of w/2). This guarantees that

Parallel Construction of Succinct Trees 9

the universal lookup tables occupy only o(n) bits. Adopting the same strategy,
we can simplify our analysis and obtain T, = O(n/p + lg p). Thus, we have the
following theorem:

Theorem 1. A (2n+ o(n))-bit representation of an ordinal tree on n nodes and
its balanced parenthesis sequence can be computed in O(n/p + lgp) time using
O(nlgn) bits of working space, where p is the number of cores. This representation
can support the operations in Appendiz A in O(lgn) time.

4 Experimental Results

To evaluate the performance of our PSTA algorithm, we compare it against
libcds [6] and sdsl [12], which are state-of-the-art implementations of the RMMT.
Both assume that the input tree is given as a parenthesis sequence, as we do
here. Our implementation of the PSTA algorithm deviates from the description in
Section 3 in that the prefix sum computation in line 22 of the algorithm is done
sequentially in our implementation. This changes the running time to O(n/p + p)
but simplifies the implementation. Since p < n/p for the input sizes we are
interested in and the numbers of cores available on current multicore systems, the
impact on the running time is insignificant. We implemented the PSTA algorithm
in C and compiled it using GCC 4.9 with optimization level -O2 and using the
-ffast-math flag.> All parallel code was compiled using the GCC Cilk branch. The
same flags were used to compile 1ibcds and sdsl, which were written in C++.
We tested our algorithm on five inputs. The first two were suffix trees of the
DNA (dna, 1,154,482,174 parentheses), and protein (prot, 670,721,006 parenthe-
ses) data from the Pizza & Chili corpus®. These suffix trees were constructed using
code from http://www.daimi.au.dk/~mailund/suffix_tree.html. The next
two inputs were XML trees of the Wikipedia dump” (wiki, 498,753,914 paren-
theses) and OpenStreetMap dump® (osm, 4,675,776,358 parentheses). The final
input was a complete binary tree of depth 30 (ctree, 2,147,483,644 parentheses).
The experiments were carried out on a machine with four 16-core AMD
Opteron™ 6278 processors clocked at 2.4GHz, with 64KB of L1 cache per core,
2MB of L2 cache shared between two cores, and 6MB of L3 cache shared between
8 cores. The machine had 189GB of DDR3 RAM, clocked at 1333MHz.
Running times were measured using the high-resolution (nanosecond) C
functions in <time.h>. Memory usage was measured using the tools provided by
malloc_count [3]. In our experiments, the chunk size s was fixed at 256.

® The code and data needed to replicate our results are available at http://www.inf .
udec.cl/~josefuentes/sea2015.
S http://pizzachili.dcc.uchile.cl

" http://dumps.wikimedia.org/enwiki/20150112/enwiki-20150112-pages-articles.

xml.bz2 (January 12, 2015)
® http://wiki.openstreetmap.org/wiki/Planet.osm (January 10, 2015)

10 Leo Ferres, José Fuentes-Sepilveda, Meng He, and Norbert Zeh

p wiki prot dna ctree osm
psta-ctree —*%—
libcds 33.16 44.24 75.87 140.41 339.21 O pyfaosm e
sdsl 1.93 266 4.57 8.35 18.10 25 [sdslosm &
1 2.89 4.22 7.21 12.16 30.60 % 20
2 1.44 2.13 3.64 6.15 15.43 % 15
4 .73 1.10 1.87 3.18 7.98 0
8 37 .57 98 159 4.14
16 25 .35 .58 86 2.21 S x.
32 18 25 .39 .63 1.33 0%
64 97 99 39 48 1.01 1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64
of cores
Table 1: Running times of PSTA, Fig. 2: Speed-up on ctree and osm data
libcds, and sdsl in seconds. sets.

Running time and speed-up. Table 1 shows the wall clock times achieved by
psta, libeds, and sdsl on different inputs. Each time is the minimum achieved
over three non-consecutive runs, reflecting our assumption that slightly increased
running times are the result of “noise” from external processes such as operating
system and networking tasks. Figure 2 shows the speed-up for the ctree and
osm inputs compared to the running times of psta on a single core and of sdsl.

The psta algorithm on a single core and sdsl outperformed libcds by an
order of magnitude. One of the reasons for this is that 1libcds implements a
different version of RMMT including rank and select structures, while psta and
sdsl do not. Constructing these structures is costly. On a single core, sdsl was
about 1.5 times faster than psta, but neither sdsl nor libcds were able to
take advantage of multiple cores, so psta outperformed both of them starting at
p = 2. The advantage of sdsl over psta on a single core, in spite of implementing
essentially the same algorithm, can be attributed to (1) lack of tuning of psta
and (2) some overhead with running parallel code on a single core.

Up to 16 cores, the speed-up of psta is almost linear whenever p is a power
of 2 and the efficiency (speed-up/p) is 70% or higher, except for ctree on 32
cores. This is very good for a multicore architecture. When p is not a power of 2,
speed-up is slightly worse. The reason is that, when p is a power of 2, psta can
assign exactly one subtree to each thread (see Algorithm 2), distributing the
work homogeneously across cores without any work stealing. When the number
of threads is not a power of two, some threads have to process more than one
subtree and other threads process only one, which degrades performance due to
the overhead of work stealing.

There were three other factors that limited the performance of psta in our
experiments: network topology, input size, and resource contention with the OS.
Topology. The four processors on our machine were connected in a grid
topology [8]. Up to 32 threads, all threads can be run on a single processor or
on two adjacent processors in the grid, which keeps the cost of communication
between threads low. Beyond 32 threads, at least three processor are needed

Parallel Construction of Succinct Trees 11

and at least two of them are not adjacent in the grid. This increases the cost of
communication between threads on these processors noticeably.

Input size. For the two largest inputs we tested, osm and ctree, speed-up kept
increasing as we added more cores. For wiki, however, the best speed-up was
achieved with 36 cores. Beyond this, the amount of work to be done per thread
was small enough that the scheduling overhead caused by additional threads
started to outweigh the benefit of reducing the processing time per thread further.

Resource contention. For p < 64, at least one core on our machine was available
to OS processes, which allowed the remaining cores to be used exclusively by
psta. For p = 64, psta competed with the OS for available cores. This had a
detrimental effect on the efficiency of psta for p = 64.

Memory usage. We measured the amount of working memory (i.e., memory
not occupied by the raw parenthesis sequence) used by psta, libeds, and sdsl.
We did this by monitoring how much memory was allocated/released with
malloc/free and recording the peak usage. For psta, we only measured the
memory usage for p = 1. The extra memory needed for thread scheduling when
p > 1 was negligible. Due to lack of space, we report the results only for the
two largest inputs, ctree and osm. For the ctree input, psta, 1libcds, and sdsl
used 112MB, 38MB, and 76MB of memory, respectively. For osm, they used
331MB, 85MB, and 194MB, respectively. Even though psta uses more memory
than both libcds and sdsl, the difference between psta and sdsl is a factor of
less than two. The difference between psta and 1ibcds is no more than a factor
of four and is outweighed by the substantially worse performance of 1ibcds.
Part of the higher memory usage of psta stems from the allocation of €', m’,
M’ and n’ arrays to store the partial excess values in the algorithm. Storing these
values, however, is a key factor that helps psta to achieve very good performance.

5 Conclusions and Future Work

In this paper, we demonstrated that it is possible to improve the construction
time of succinct trees using multicore parallelism. We introduced a practical
algorithm that takes O(n/p + lgp) time to construct a succinct representation
of a tree with n nodes using p threads. This representation supports a rich set
of operations in O(lgn) time. Our algorithm substantially outperformed state-
of-the-art sequential constructions of this data structure, achieved very good
speed-up up to 64 cores, and is to the best of our knowledge the first parallel
construction algorithm of a succinct representation of ordinal trees.

While we focused on representing static trees succinctly in this paper, the
approach we have taken may also extend to the construction of dynamic succinct
trees (e.g., [19]), of succinct representations of labelled trees, and of other succinct
data structures that use succinct trees as building blocks (e.g., the succinect
representation of planar graphs).

12

Leo Ferres, José Fuentes-Sepilveda, Meng He, and Norbert Zeh

Acknowledgements. We would like to thank Diego Arroyuelo, Roberto Asin,
and Rodrigo Canovas for their time and making resources available to us.

References

10.

11.

12.
13.

14.

15.
16.

17.

18.

19.

20.

21.

Arroyuelo, D., Cénovas, R., Navarro, G., Sadakane, K.: Succinct trees in practice.
In: ALENEX. pp. 84-97. STAM Press, Austin, Texas, USA (2010)

Benoit, D., Demaine, E.D., Munro, J.I., Raman, V.: Representing trees of higher
degree. In: WADS. pp. 169-180. Springer-Verlag LNCS 1663 (1999)

Bingmann, T.: malloc_count - tools for runtime memory usage analysis and profiling,
last accessed: January 17, 2015

Blumofe, R.D., Leiserson, C.E.: Scheduling multithreaded computations by work
stealing. J. ACM 46(5), 720-748 (1999)

Clark, D.R., Munro, J.I.: Efficient suffix trees on secondary storage. In: SODA. pp.
383-391 (1996)

Claude, F.: A compressed data structure library, last accessed: January 17, 2015
Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
chap. Multithreaded Algorithms, pp. 772-812. The MIT Press, third edn. (2009)
Drepper, U.: What every programmer should know about memory (2007)

Farzan, A., Munro, J.I.: A uniform paradigm to succinctly encode various families
of trees. Algorithmica 68(1), 16-40 (2014)

Fuentes-Sepilveda, J., Elejalde, E., Ferres, L., Seco, D.: Efficient wavelet tree con-
struction and querying for multicore architectures. In: SEA. pp. 150-161. Springer
International Publishing (2014)

Geary, R.F., Raman, R., Raman, V.: Succinct ordinal trees with level-ancestor
queries. In: SODA. pp. 1-10 (2004)

Gog, S.: Succinct data structure library 2.0, last accessed: January 17, 2015

He, M., Munro, J.I., Satti, S.R.: Succinct ordinal trees based on tree covering. ACM
Trans. Algorithms 8(4), 42 (2012)

Helman, D.R., JaJ4, J.: Prefix computations on symmetric multiprocessors. J. Par.
Dist. Comput. 61(2), 265 — 278 (2001)

Jacobson, G.: Space-efficient static trees and graphs. In: FOCS. pp. 549-554 (1989)
Jansson, J., Sadakane, K., Sung, W.K.: Ultra-succinct representation of ordered
trees. In: SODA (2007)

Lu, H.I., Yeh, C.C.: Balanced parentheses strike back. ACM Trans. Algorithms 4,
28:1-28:13 (July 2008)

Munro, J.I., Raman, V.: Succinct representation of balanced parentheses, static
trees and planar graphs. In: FOCS. pp. 118-126 (1997)

Navarro, G., Sadakane, K.: Fully functional static and dynamic succinct trees. ACM
Trans. Algorithms 10(3), 16:1-16:39 (May 2014)

Raman, R., Rao, S.S.: Succinct representations of ordinal trees. In: Space-Efficient
Data Structures, Streams, and Algorithms. pp. 319-332 (2013)

Shun, J.: Parallel wavelet tree construction. CoRR abs/1407.8142 (2014)

Parallel Construction of Succinct Trees 13

Appendices

A Operations supported by the NS-representation

Operation Description

child(z,1) Find the ith child of node =

child_rank(zx) Report the number of left siblings of node x
degree(z) Report the degree of node z

depth(z) Report the depth of node z

level_anc(z,1)
subtree_size(x)

height(z)
deepest_node(z)

LCA(z,y)
lmost_leaf(z) /rmost_leaf(x)

leaf rank(zx)

leaf _select(7)
pre_rank(z)/post_select(z)

pre_select/post_select(7)
level lmost(i)/level rmost(7)

level_succ(z)/level_pred(z)

Find the ancestor of node z that is i levels above
node x

Report the number of nodes in the subtree rooted
at node x

Report the height of the subtree rooted at x

Find the deepest node in the subtree rooted at
node x

Find the lowest common ancestor of nodes z and y
Find the leftmost/rightmost leaf of the subtree
rooted at node x

Report the number of leaves before node z in
preorder

Find the ith leaf from left to right

Report the number of nodes preceding node z in
preorder/postorder

Find the ith node in preorder/postorder

Find the leftmost/rightmost node among all nodes
at depth ¢

Find the node immediately to the left/right of
node x among all nodes at depth ¢

access(1)
find_open(i)/find_close(i)
enclose(7)

rank_open(i)/rank_close(?)

select_open(i)/select_close(7)

Report Pli]

Find The matching parenthesis of P[]

Find the closest enclosing matching parenthesis
pair for P[i]

Report the number of opening/closing parentheses
in P[1..4)

Find the ith opening/closing parenthesis

Table 2: Operations supported by the NS-representation [19], including operations
over the corresponding balanced parenthesis sequence.

14 Leo Ferres, José Fuentes-Sepilveda, Meng He, and Norbert Zeh

B Parallel Folklore Encoding Algorithm

The PSTA algorithm requires the input tree T to be given in the form of a
balanced parenthesis sequence P, but in many applications 7" may not be given
in this form. Here, we present a parallel algorithm that constructs the balanced
parenthesis sequence of T' from a representation of T' stored in adjacency list
representation. Since the balanced parenthesis sequence of T is also known as
its “folklore encoding”, we call the algorithm the Parallel Folklore Encoding
Algorithm (PFEA). The input tree is represented by an array of nodes, V', and an
array of edges, F. Each node v in V stores a pointer to an adjacency list with
one entry per edge incident to v, sorted counterclockwise around v, starting with
v’s parent edge. Each entry in this adjacency list points to v and to the edge in
E it represents. Each edge e = (u,v) in E points to its corresponding entries in
the adjacency lists of u and v. Edges are assumed to be directed from parents to
children. Thus, for an edge e = (u, v), we refer to u and v as e.parent and e.child,
respectively. For z € {u, v}, we use next(e.x) and first(e.x) to denote the indices
in E of e’s successor and of the first element in x’s adjacency list, respectively.
Both are easily computed in constant time by following pointers.

Input :An adjacency list representation of T consisting of arrays V and E and
the number of threads, threads.
Output: The balanced parenthesis sequence P of T

1 ET := an array of length 2|F|
2 P := an array of length 2|E| 4 2
3 chk := |E|/threads
4 parfor t := 0 to threads — 1 do
5 for i :=0 to chk — 1 do
6 ji=txchk+1i
7 ETI2 x j].value :== 1 // forward edge, opening parenthesis
8 ET[2 % j 4 1].value := 0 // backward edge, closing parenthesis
9 if E[j].child is a leaf then
10 ‘ ET[2 % j].succ :=2%j+ 1
11 else
12 L ET|2 * j].succ := 2 * next(E[j].child)
13 if E[j] is the last edge in the adjacency list of E[j].parent then
14 | ET[2xj + 1].succ := 2 * first(E[j].parent) + 1
15 else
16 L ET[2* j + 1].succ := 2 * next(E[j].parent)
17 parallel_list_ranking(ET)
18 parfor ¢t := 0 to threads — 1 do
19 for i :=0to 2x*chk —1 do
20 | PIET[2%tx chk + i+ 1].rank] := ET[2 x t % chk + i + 1].value
21 P[0]:=1

22 P2|E|+1]:=0
Algorithm 4: PFEA

Parallel Construction of Succinct Trees 15

The idea behind the construction is the following: Given an Euler tour of
T that visits the children of each node in left-to-right order, then the balanced
parenthesis representation of 7' can be obtained by following the Euler tour,
writing down an opening parenthesis for every edge traversed from parent to
child and a closing parenthesis for every edge traversed from child to parent, and
finally enclosing the resulting sequence in a pair of parentheses representing the
root of T.

Algorithm 4 shows the pseudo-code of the construction. It creates two arrays,
one an auxiliary array ET of length 2|E| to store the Euler tour of T', the other
an array P of size 2|E| 4+ 2 to store the balanced parenthesis representation of
T (lines 1-2). Each entry in ET represents the traversal of an edge of T' and
stores three values: value is “(“ or “)” depending on whether the edge is traversed
from parent to child or from child to parent, that is, it’s the corresponding
parenthesis to be added to P; succ is the index in ET of the next edge in the
Euler tour; and rank is the rank in the Euler tour. Lines 4-16 of the algorithm
populate E'T with entries representing the Euler tour but leaving the rank values
uninitialized. Line 17 computes ranks using a parallel list ranking algorithm [14].
Given these ranks, the balanced parenthesis representation can be obtained by
writing ET[i].value into P[ET][i].rank]. Lines 18-22 do exactly this.

Lines 4-16 and 18-22 perform O(n) work and have span O(n/p). The whole
computation here (and in Lines 18-22) could have been formulated as a single
parallel loop. However, in the interest of limiting scheduling overhead, we create
only as many parallel threads as necessary, similar to the PSTA algorithm in
Section 3. Line 17 performs O(n) work and has span O(lgp + n/p). This gives
a total work of 77 = O(n) and a span of T, = O(lgn). The running time on p
cores is T, = O(n/p + 1gp).

