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Abstract—Succinct representations of trees are an elegant solution to
make large trees fit in main memory while still supporting navigational
operations in constant time. However, their construction time remains
a bottleneck. We introduce a practical parallel algorithm that improves
the state of the art in succinct tree construction. Given a tree on n
nodes stored as a sequence of balanced parentheses, our algorithm builds
a succinct tree representation in O(n/p + lg p) time, where p is the
number of available cores. The constructed representation uses 2n+o(n)
bits of space and supports a rich set of operations in O(lgn) time. In
experiments using up to 64 cores and on inputs of different sizes, our
algorithm achieved good parallel speed-up.

Index Terms—Succinct Tree, Multicore, Parallel Algorithms

I. INTRODUCTION

Trees are ubiquitous in Computer Science. The ever increasing
amounts of structured, hierarchical data processed in many appli-
cations have turned the processing of the corresponding large tree
structures into a bottleneck, particularly when they do not fit in
memory. Succinct tree representations store trees using as few bits
as possible and thereby significantly increase the size of trees that
fit in memory while still supporting important primitive operations in
constant time. There exist such representations that use only 2n+o(n)
bits to store the topology of a tree with n nodes, which is close to
the information-theoretic lower bound.

Alas, the construction of succinct trees is quite slow compared
to the construction of pointer-based representations. Multicore paral-
lelism offers one possible tool to speed up the construction of succinct
trees, but little work has been done in this direction so far [1], [2].

In this paper, we provide a parallel algorithm that constructs the
RMMT tree representation of [3] in O(n/p+lg p) time using p cores.
This structure uses 2n + o(n) bits to store an ordinal tree on n
nodes and supports a rich set of basic operations on these trees in
O(lgn) time. Combined with the fast parallel construction algorithm
presented in this paper, it provides an excellent tool for manipulating
very large trees in many applications.

We implemented and tested our algorithm on a number of real-
world input trees having billions of nodes. Our experiments show
that our algorithm run on a single core is competitive with state-of-
the-art sequential constructions and achieves good speed-up.

II. PRELIMINARIES

Jacobson [4] was the first to propose the design of succinct data
structures. He showed how to represent an ordinal tree on n nodes
using 2n+o(n) bits so that computing basic operations takes O(lgn)
time in the bit probe model. Clark and Munro [5] showed how to
support the same operations in constant time in the word RAM model
with word size Θ(lgn). See [6] for a thorough survey.

Navarro and Sadakane [3] proposed a succinct tree representation,
referred to as NS-representation throughout this paper, which was
the first to achieve a redundancy of O(n/ lgc n) bits for any positive
constant c. The NS-representation supports a large number of constant
time navigational operations (see Table 1 of [3]). An experimental
study of succinct trees [7] showed that a simplified version of the

NS-representation uses less space than other existing representations
in most cases and performs most operations faster. In this paper, we
provide a parallel algorithm for constructing this representation.

The NS-representation is based on the balanced parenthesis se-
quence P of the input tree T , which is obtained by performing a
preorder traversal of T and writing down an opening parenthesis
when visiting a node for the first time and a closing parenthesis
after visiting all its descendants. Thus, the length of P is 2n. The
main novelty of the NS-representation lies in its reduction of a large
set of operations on trees and balanced parenthesis sequences to a
small set of primitive operations (See [3] for more details). To do so,
Navarro and Sadakane designed a simple data structure called Range
Min-Max Tree (RMMT), which supports the primitive operations in
logarithmic time when used to represent the entire sequence P .
To achieve constant-time operations, P is partitioned into chunks.
Each chunk is represented using an RMMT, which supports primitive
operations inside the chunk in constant time if the chunk is small
enough. Additional data structures are used to support operations on
the entire sequence P in constant time.

To define the version of the RMMT we implemented, we partition
P into chunks of size s = w lgn, where w is the machine word size.
The RMMT is a complete binary tree over the sequence of chunks.
Each node u of the RMMT represents a subsequence Pu of P that is the
concatenation of the chunks corresponding to the descendant leaves
of u. The representation of the RMMT consists of four arrays e′, m′,
M ′, and n′ of size O(2n/s). The uth entry of each of these arrays
stores the excess at the last position in Pu (e′[u]), the minimum and
maximum excess at any position in Pu (m′[u] and M ′[u]) and the
number of positions in Pu that have the minimum excess value m′[u]
(n′[u]).Combined with a standard technique called table lookup, an
RMMT supports the primitive operations in O(lgn) time. The space
needed by the RMMT is 2n+O(n/ lgn) bits.

III. OUR PARALLEL ALGORITHM

In this section, we describe our new parallel algorithm called the
Parallel Succinct Tree Algorithm (PSTA). Its input is the balanced
parenthesis sequence P of an n-node tree T , known as the “folklore
encoding”. Our algorithms assume that manipulating w bits takes
constant time. Additionally, we assume the (time and space) overhead
of scheduling threads on cores is negligible. This is guaranteed by
the results of [8], and the number of available processing units in
current systems is generally much smaller than the input size n, so
this cost is indeed negligible in practice.

We observe that the entries in e′ corresponding to internal nodes
of the RMMT need not be stored explicitly. This is because the entry
of e′ corresponding to an internal node is equal to the entry that
corresponds to the last leaf descendant of this node; since the RMMT
is complete, we can easily locate this leaf in constant time. Thus,
our algorithm treats e′ as an array of length d2n/se with one entry
per leaf. Our algorithmm (Algorithm 1) consists of three phases. In
the first phase (lines 1–27), it computes the leaves of the RMMT, i.e.,



the array e′, as well as the entries of m′, M ′ and n′ that correspond
to leaves. In the second phase (lines 28–35), the algorithm computes
the entries of m′, M ′ and n′ corresponding to internal nodes of the
RMMT. In the third phase (lines 36–47), it computes the universal
lookup tables used to answer queries. The input to our algorithm
consists of the balanced parenthesis sequence, P , the size of each
chunk, s, and the number of available threads, threads .

To compute the entries of arrays e′, m′, M ′, and n′ corresponding
to the leaves of the RMMT, we first assign the same number of
consecutive chunks, ct , to each thread (line 4). We call such a
concatenation of chunks assigned to a single thread a superchunk.
For simplicity, we assume that the total number of chunks, d2n/se,
is divisible by threads . Each thread then computes the local excess
value of the last position in each of its assigned chunks, as well
as the minimum and maximum local excess in each chunk, and the
number of times the minimum local excess occurs in each chunk
(lines 8–17). These values are stored in the entries of e′, m′, M ′,
and n′ corresponding to this chunk (lines 18–21). The local excess
value of a position i in P is defined to be sum(P, π, j, i), where j is
the index of the first position of the superchunk containing position
i. Note that the locations with minimum local excess in each chunk
are the same as the positions with minimum global excess. Thus, the
entries in n′ corresponding to leaves store their final values at the
end of the loop in lines 5–21, while the corresponding entries of e′,
m′, and M ′ store local excess values.

To convert the entries in e′ into global excess values, observe that
the global excess at the end of each superchunk equals the sum of the
local excess values at the ends of all superchunks up to and including
this superchunk. Thus, we use a parallel prefix sum algorithm [9]
in line 22 to compute the global excess values at the ends of all
superchunks and store these values in the corresponding entries of
e′. The remaining local excess values in e′, m′, and M ′ can now be
converted into global excess values by increasing each by the global
excess at the end of the preceding superchunk (lines 23–27).

The computation of entries of m′, M ′, and n′ first chooses the level
closest to the root that contains at least threads nodes and creates
one thread for each such node v. The thread associated with node
v calculates the m′, M ′, and n′ values of all nodes in the subtree
with root v, by applying the function concat to the nodes in the
subtree bottom up (lines 28–32). The invocation of this function for
a node computes its m′, M ′, and n′ values from the corresponding
values of its children. With a scheduler that balances the work, such
as a work-stealing scheduler, cores have a similar workload. Lines
33–35 apply a similar bottom-up strategy for computing the m′, M ′,
and n′ values of the nodes in the top lvl levels, but they do this by
processing these levels sequentially and, for each level, processing
the nodes on this level in parallel.

Lines 36–47 illustrate the construction of universal lookup tables
using the construction of the table near fwd pos as an example.
This table is used to support the primitive operation fwd search.
Other lookup tables can be constructed analogously. As each entry
in such a universal table can be computed independently, we can
easily compute them in parallel.

Theoretical analysis.

The theoretical analysis is done under the Dynamic Multithread-
ing Model (DyM) [10]. Lines 1–21 require O(n) work and have
span O(n/p). Line 22 requires O(p) work and has span O(lg p)
because we compute a prefix sum over only p values. Lines 23–28
require O(n/s) work and have span O(n/sp). Lines 28–32 require
O(n/s) work and have span O(n/sp). Lines 33–35 require O(p)

Input : P , s, threads
Output : RMMT represented as arrays e′,m′,M ′, n′ and universal

lookup tables

1 o := d2n/se − 1 // # internal nodes
2 e′ := array of size d2n/se
3 m′,M ′, n′ := arrays of size d2n/se+ o

4 ct := d2n/se/threads

5 parfor t := 0 to threads − 1 do
6 e′t,m

′
t,M

′
t, n
′
t := 0

7 for chk := 0 to ct − 1 do
8 low := (t ∗ ct + chk) ∗ s; up := low + s
9 for par := low to up − 1 do

10 e′t += 2 ∗ P [par ]− 1

11 if e′t < m′t then
12 m′t := e′t; n

′
t := 1

13 else if e′t = m′t then
14 n′t += 1
15 else if e′t > M ′t then
16 M ′t := e′t
17 e′[t ∗ ct + chk ] := e′t
18 m′[t ∗ ct + chk + o] := m′t
19 M ′[t ∗ ct + chk + o] := M ′t
20 n′[t ∗ ct + chk + o] := n′t
21 parallel prefix sum(e′, ct)

22 parfor t := 1 to threads − 1 do
23 for chk := 0 to ct − 1 do
24 if chk < ct − 1 then
25 e′[t ∗ ct + chk ] += e′[t ∗ ct − 1]

26 m′[t ∗ ct + chk + o] += e′[t ∗ ct − 1]

27 M ′[t ∗ ct + chk + o] += e′[t ∗ ct − 1]

28 parfor st := 0 to 2dlg threadse − 1 do
29 for l := dlg(2n/s)e − 1 downto dlg threadse do
30 for d := 0 to 2l−dlg threadse − 1 do
31 i := d+ 2l − 1 + st ∗ 2l−dlg threadse

32 concat(i,m′,M ′, n′)

33 for l := dlg threadse − 1 to 0 do
34 parfor d := 0 to 2l − 1 do
35 concat(d+ 2l − 1,m′,M ′, n′)

36 parfor x := −w to w − 1 do
37 parfor y := 0 to

√
2w − 1 do

38 i := ((x+ w) << w) OR w

39 near fwd pos[i] := w

40 p, excess := 0
41 repeat
42 excess += 1− 2 ∗ ((yAND(1 << p)) = 0)
43 if excess = x then
44 near fwd pos[i] := p

45 break
46 p += 1

47 until p ≥ w

Algorithm 1: PSTA

work and have span O(lg p). Third phase requires O(
√

2wpoly(w))
work and has span O(

√
2wpoly(w)/p), with w the machine word

size. Thus, the total work of PSTA is T1 = O(n + lg p +√
2wpoly(w)) and its span is O(n/p + lg p +

√
2wpoly(w)/p).

For p→∞, we get a span of T∞ = O(lgn). This gives a running
time of Tp = O(T1/p+T∞) = O(n/p+lg p+

√
2wpoly(w)/p) on

p cores. The speedup is T1/Tp = O
(

p(n+
√
2wpoly(w))

n+
√
2wpoly(w)+p lg p

)
. Under

the assumption that p� n, the speedup approaches O(p).
The PSTA algorithm needs space proportional to the input size

and the space needed to schedule the threads. A work-stealing
scheduler, like the one used by the DyM model, exhibits at most
a linear expansion space which is optimal within a constant factor



[8]. In summary, the working space needed by our algorithm is
O(n lgn+ S1p) bits. Since in our algorithm the scheduler does not
need to consider the input size to schedule threads, S1 = O(1). Thus,
since in modern machines it is usual that p� n, the scheduling space
is negligible and the working space is dominated by O(n lgn). Thus,
we have the following theorem:

Theorem 1: A (2n+ o(n))-bit representation of an ordinal tree on
n nodes and its balanced parenthesis sequence can be computed in
O(n/p+lg p) time using O(n lgn) bits of working space, where p is
the number of cores. This representation can support the operations
in Table 1 of [3] in O(lgn) time.

IV. EXPERIMENTAL RESULTS

To evaluate the performance of our PSTA algorithm, we compare
it against libcds [11] and sdsl [12], which are state-of-the-art
implementations of the RMMT. Both assume that the input tree is
given as a parenthesis sequence, as we do here. Our implementation
of the PSTA algorithm deviates from the description in Section III in
that the prefix sum computation in line 21 of the algorithm is done
sequentially in our implementation. Since p� n/p for the input sizes
we are interested in and the numbers of cores available on current
multicore systems, the impact on the running time is insignificant.

We implemented the PSTA algorithm in C and compiled it using
GCC 4.9 with optimization level -O2 and using the -ffast-math flag.
All parallel code was compiled using the GCC Cilk branch. (See [13]
for to replicate our results).

We tested our algorithm on five inputs. The first two were suffix
trees of the DNA (dna, 1,154,482,174 parentheses), and protein
(prot, 670,721,006 parentheses) data from the Pizza & Chili corpus.
These suffix trees were constructed using code from http://www.
daimi.au.dk/∼mailund/suffix tree.html. The next two inputs were
XML trees of the Wikipedia dump (wiki, 498,753,914 parenthe-
ses) and OpenStreetMap dump (osm, 4,675,776,358 parentheses).
The final input was a complete binary tree of depth 30 (ctree,
2,147,483,644 parentheses).

The experiments were carried out on a machine with four 16-core
AMD OpteronTM 6278 processors clocked at 2.4GHz, with 64KB of
L1 cache per core, 2MB of L2 cache shared between two cores, and
6MB of L3 cache shared between 8 cores. The machine had 189GB
of DDR3 RAM, clocked at 1333MHz.

Running times were measured using the high-resolution (nanosec-
ond) C functions in <time.h>, taking the minimum achieved over
three non-consecutive runs. Memory usage was measured using the
tools provided by malloc_count [14]. In our experiments, the
chunk size s was fixed at 256.

Figure 1 shows the speed-up for the ctree and osm inputs
compared to the running times of psta on a single core and of
sdsl. The psta algorithm on a single core and sdsl outperformed
libcds by an order of magnitude. One of the reasons for this is that
libcds implements a different version of RMMT including rank and
select structures, which is costly. On a single core, sdsl was about
1.5 times faster than psta, but neither sdsl nor libcds were able
to take advantage of multiple cores, so psta outperformed both of
them starting at p = 2.

Up to 16 cores, the speed-up of psta is almost linear whenever
p is a power of 2 and the efficiency (speed-up/p) is 70% or higher,
except for ctree on 32 cores. This is very good for a multicore
architecture. When p is not a power of 2, speed-up is slightly worse.
The reason is that, when p is a power of 2, psta can assign exactly
one subtree to each thread (lines 28–35 of Algorithm 1), distributing
the work homogeneously across cores without any work stealing.
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Fig. 1. Speed-up on ctree and osm data sets.

When the number of threads is not a power of two, some threads
have to process more than one subtree and other threads process
only one, which degrades the performance.

The four processors on our machine were connected in a grid
topology [15]. Up to 32 threads, all threads can be run on a single
processor or on two adjacent processors in the grid, which keeps
the cost of communication between threads low. Beyond 32 threads,
at least three processor are needed and at least two of them are
not adjacent in the grid. This increases the cost of communication
between threads on these processors noticeably.

For the two largest inputs we tested, osm and ctree, speed-up
kept increasing as we added more cores. For wiki, however, the
best speed-up was achieved with 36 cores. Beyond this, the amount
of work to be done per thread was small enough that the scheduling
overhead caused by additional threads started to outweigh the benefit
of reducing the processing time per thread further.

For p < 64, at least one core on our machine was available to OS
processes, which allowed the remaining cores to be used exclusively
by psta. For p = 64, psta competed with the OS for available
cores, which had a detrimental effect on the efficiency of psta.

We measured the amount of working memory (i.e., memory not
occupied by the raw parenthesis sequence) used by psta, libcds,
and sdsl. We did this by monitoring how much memory was
allocated/released with malloc/free and recording the peak usage.
Due to lack of space, we report the results only for the two largest
inputs, ctree and osm. For the ctree input, psta, libcds,
and sdsl used 112MB, 38MB, and 76MB of memory, respectively.
For osm, they used 331MB, 85MB, and 194MB, respectively. Even
though psta uses more memory than both libcds and sdsl, the
difference between psta and sdsl is a factor of less than two. The
difference between psta and libcds is no more than a factor of
four and is outweighed by the worse performance of libcds.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we demonstrated that it is possible to improve the
construction time of succinct trees using multicore parallelism. We
introduced a practical algorithm that takes O(n/p + lg p) time to
construct a succinct representation of a tree with n nodes using
p threads. This representation supports a rich set of operations in
O(lgn) time. Our algorithm substantially outperformed state-of-the-
art sequential constructions of this data structure, achieved very good
speed-up up to 64 cores, and is to the best of our knowledge the first
parallel construction algorithm of a succinct ordinal trees.

While we focused on representing static trees succinctly, the
approach we have taken may also extend to the construction of
dynamic succinct trees, of succinct representations of labelled trees,
and of other succinct data structures that use succinct trees as building
blocks (e.g., the succinct representation of planar graphs).
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