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ABSTRACT
Motivated by the needs of mining and advanced analysis of
large Web graphs and social networks, we study graph pat-
terns that simultaneously provide compression and query
opportunities, so that the compressed representation pro-
vides efficient support for search and mining queries. We
first analyze patterns used for Web graph compression while
supporting neighbor queries. Our results show that com-
posing edge-reducing patterns with other methods achieves
new space/time tradeoffs, in particular breaking the smallest
known space barrier for Web graphs when supporting neigh-
bor queries. Second, we propose a novel graph compression
method based on representing communities with compact
data structures. These offer competitive support for neigh-
bor queries, but excel especially at answering community
queries. As far as we know, ours is the first graph compres-
sion method supporting such a wide range of community
queries.

Categories and Subject Descriptors
H.2.8 [Data Representation]: Data Mining

General Terms
Algorithms, Experimentation, Theory

Keywords
Compression, Web Graphs, Social Networks, Compact Data
Structures

1. INTRODUCTION
Much information on the structure, meaning and usage

of the Web can be extracted by analyzing its graph. Web
graphs are crucial for ranking algorithms, such as PageR-
ank [7] and HITS [22], as well as for spam detection [3]. On
the other hand, as never before, much information on social
behavior is digitally available thanks to technologically sup-
ported social networks such as Facebook, Flickr, and many
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others. Current research on social networks includes detect-
ing relevant communities, discovering important actors and
understanding how the information flows in the network [21,
12, 27]. Web graphs and social networks are expanding in
size. In 2008, Google reported more than 1 trillion unique
URLs1 on the Web, and Facebook reached 500 million active
users in July 20102. The scale of these networks has brought
new challenges for analyzing and mining large graphs.

The research community has proposed compressed struc-
tures with direct access capabilities to facilitate mining and
analysis of these large graphs. Compression rate is typically
expressed as total number of bits per edge (bpe). The We-
bGraph framework [5, 4] is usually used as a reference on
Web graph compression. Frequently, queries are reduced to
the most basic one of listing the out-neighbors of a node,
but in some cases in-neighbors are considered as well. Only
recently, compression of social networks has been proposed,
with out-neighbor [13] and with out/in-neighbor query sup-
port [26]. Even though out/in-neighbor queries may be used
to build more complex operations such as community and
outlier detection, we are not aware of any work studying the
implementation and space/time requirements of such com-
plex operations.

In this paper, we first analyze different graph patterns
used for compressing Web graphs while supporting neighbor
queries. We are particularly interested in analyzing whether
the use of edge-reducing patterns [15, 11] might be combined
with node ordering methods [5, 4, 2], and still take advan-
tage of the similarity and locality found in graphs [5, 4, 2].
This combination has not been considered before. Our re-
sults show that it is possible to combine these methods to
improve upon the best known results in space/time efficiency
for compressing and supporting queries on Web graphs. In
particular, we improve significantly upon the smallest spaces
reported in the literature for Web graphs.

Our second contribution is a novel graph compression
method based on finding communities and representing
them with compact data structures. The resulting represen-
tation answers out/in-neighbor queries. However, the most
interesting aspect is that it is very efficient at answering
various community queries, which are useful for mining Web
and social network graphs. The communities we consider are
bicliques, which model node-centric communities based on
complete mutuality [1] and have shown to be meaningful for
mining [11]. Bicliques have already been used for Web graph

1http://googleblog.blogspot.com/2008/07/we-knew-
web-was-big.html
2http://blog.facebook.com/blog.php?post=409753352130



compression [11], but we introduce a different representation
that permits querying those communities efficiently. Some
of the queries we consider are: “enumerate the communities
where entity X participates”, “get the members that belong
to a community Y ”, and “enumerate the communities with
their sizes and densities”. Querying over communities might
be of great interest for discovering relevant actors based on
positions and community sizes and densities where actors
participate. Several measures consider prestige and central-
ity based on position and node degree [21, 27]. Unlike other
compressed structures, our representation indexes internal
graph patterns found in graphs (bicliques), enabling a wide
set of query operations. We also index the rest of the graph
(without bicliques), which facilitates its access and analysis.

2. RELATED WORK
The Web is one of the most studied graphs, and compress-

ing it has been an active research area [10, 32, 5, 15, 11, 4].
Randall et al. [29] first proposed lexicographic ordering of
URLs to exploit locality and similarity for compressing Web
graphs. Later, Boldi and Vigna [5] proposed the WebGraph
framework, one of the most competitive approaches in terms
of space/time requirements for out-neighbor queries. This
approach exploits power-law distributions, similarity and lo-
cality. They also developed ς codes, which are well suited
for compressing power-law distributed data with small ex-
ponents [6]. More recently Boldi et al. [4] (BV) explored and
evaluated other ordering methods, including Gray ordering,
to improve their previous results.

Another recent compression scheme, by Apostolico and
Drovandi [2], reorders the nodes based on a breadth-first
(BFS) traversal of the graph, instead of the lexicographic
order. It then encodes the outdegrees of the nodes in the or-
der given by the BFS traversal, plus a list of the edges that
cannot be deduced from the BFS tree. It achieves compres-
sion by dividing those lists into chunks and taking advantage
of locality and similarity. We refer to this approach as AD.

Buehrer and Chellapilla [11] used a scalable pattern min-
ing approach to provide compression of Web graphs. They
used min-wise independent hashing [9] for clustering and
identified directed complete bipartite graphs (i.e., bicliques)
using a frequent itemset mining approach on each cluster.
A biclique is formed by two sets of nodes, A and B, such
that all the elements of A point to all the elements of B.
For each biclique, they defined a virtual node that connects
the two sets, replacing all the |A| · |B| links from A to B
by |A| links from A to the virtual node, plus |B| links from
the virtual node to B. Applying gap encoding to the re-
sulting graph, they were able to improve the original com-
pression of Boldi and Vigna [5]. We refer to this scheme as
VNM (Virtual Node Miner). Recently, VNM has been used
to improve running times for Web graph algorithms based
on random walks, such as PageRank and HITS, achieving
speedups proportional to the compression ratio [20]. An-
other edge-reducing approach was proposed by Claude and
Navarro [15]. It is based on Re-Pair [25], a grammar-based
compressor. Re-Pair repeatedly finds the most frequent pair
of nodes in the concatenated sequence of all adjacency lists
and replaces it with a new symbol.

All these methods provide efficient out-neighbor naviga-
tion, that is, retrieving the adjacency list of any node.
Adding in-neighbor navigation (i.e., retrieving the nodes
that point to a node) is usually performed by representing

the transpose of the graph in addition to the graph itself.
Boldi et al. [4] showed that Gray ordering outperforms oth-
ers for the transpose of Web graphs. A proposal by Bris-
aboa et al. [8] supports out/in-neighbor navigation using
an structure that represents the adjacency matrix taking
advantage of its sparseness. A recent implementation im-
provement is available [24]; we refer to it as k2tree. Claude
and Navarro [16] presented a compact Web graph represen-
tation that enrichs the output of Re-Pair compression with
compact data structures (Re-Pair-GMR) [17] that yields
in-neighbor queries as well.

Recent works on compressing social networks [13, 26] have
exposed compression opportunities, although in less degree
than in Web graphs. The approach by Chierichetti et al. [13]
is based on the Webgraph framework [5], using shingling
ordering (based on Jaccard coefficient) [9] and exploiting
link reciprocity. Maserrat and Pei [26] achieve compression
by defining a Eulerian data structure using multi-position
linearization of directed graphs. Their approach supports
out/in-neighbor queries in sublinear time.

In the context of communities, Saito et al. [30] presented
a method for spam detection based on classical graph al-
gorithms such as identification of weak and strong con-
nected components, maximal clique enumeration and min-
imum cuts. Other techniques, based on graph algorithms,
aim to extract small subgraphs or small communities for
mining purposes [23]. The Web graph compression proposed
by Buehrer and Chellapilla [11] use the notion of communi-
ties defined by bicliques. They provide community seed se-
mantic evaluation showing four community patterns found
during compression. However, none of these schemes sup-
ports community queries on the compressed structure.

3. COMPRESSING WEB GRAPHS
In this section we describe edge-reducing patterns

(VNM [11] and Re-Pair [15]), node ordering methods (BV [6,
4] and AD [2]), and techniques that support out/in-neighbor
queries such as k2tree [8]. We present experimental results
on the effect of combining edge-reducing patterns with the
other methods and discuss our results.

3.1 Edge-reducing compressors
The VNM [11] compressor is based on the idea of iden-

tifying bicliques and using virtual nodes as one level of in-
direction between the two sets. The use of virtual nodes
reduces the number of edges. After reducing edges the au-
thors apply gap and Huffman coding for compressing Web
graphs. Identifying bicliques has two phases: clustering and
mining. The clustering phase groups similar rows of the ad-
jacency matrix. It uses the heuristic of grouping rows with
high Jaccard coefficients [9]. For a graph G = (V,E), they
use k min-wise independent hash functions [9] to obtain a
hash function matrix of size k · |V |. Rows in the matrix
are sorted lexicographically and then traversed by column,
grouping rows with the same value. When the number of
rows drops below a threshold, a new cluster is defined. The
hash function matrix is only used for clustering.

The mining phase operates locally within each cluster,
looking for vertices with common subsets of outlinks. More
relevant communities are given by larger outlink sets (of
size pattern size) shared by larger vertex sets (of size pat-
tern frequency), which provide better compression. The



mining algorithm builds a trie on the adjacency lists of the
vertices, and chooses long paths in the trie to find good sets.

The algorithm performs successive iterations, so that vir-
tual nodes created during an iteration can participate in
bicliques in a subsequent iteration.

Another edge-reducing compressor is based on Re-
Pair [25], a grammar-compression algorithm consisting of
repeatedly finding the most frequent pair of symbols in a
sequence of integers and replacing it with a new symbol.
Starting from an integer sequence S, the algorithm iterates
over the following steps. (1) It identifies the most frequent
pair ab in S. (2) It adds the rule r → ab to a dictionary R,
where r is a new symbol that is not in S. (3) It replaces any
occurrence of ab by r in S. This is repeated until the re-
placements do not improve compression. The output of the
algorithm is the remaining sequence C and the dictionary R.
C is formed with both terminal symbols (original symbols
in S) and nonterminal symbols (introduced in step 2). In
order to obtain the original symbols, nonterminals must be
decompressed using the information stored in dictionary R.

Re-Pair has been used for compressing the Web graph ad-
jacency lists, providing competitive results in terms of com-
pression, and supporting fast out-neighbor queries [15].

3.2 Reordering nodes
The WebGraph framework [4] supports different Web page

orderings (URL, lexicographic, Gray ordering, loose and
strict host-by-host Gray ordering). With either ordering,
each Web page is mapped to a unique integer identifier.
WebGraph then exploits locality and similarity. Locality
means that, usually, most of the links of a page point to
nearby pages. Similarity means that many Web pages tend
to have many outlinks in common, or in other words, that
some adjacency lists are very similar to others.

WebGraph uses two compression parameters, window size
(w) and maximum reference count (m). The window size
corresponds to the number of previous rows in the adjacency
matrix considered when compressing a row x for reference
coding. The idea is to find the most similar previous row in
that window. If that row exists, it is called a prototype. A
larger window size yields better and slower compression. On
the other hand, the maximum reference count is the maxi-
mum allowed length of a reference chain. When compressing
a row x of the adjacency matrix, the compression is done
with respect to a previous prototype y, and row y could
have been compressed differentially with respect to some
other prototype z, generating a reference chain. Limiting
the length of the reference chain retains fast decompression.

Each row is encoded using its prototype, if any, plus out-
links not in the prototype. WebGraph encodes consecutive
outlinks using interval encoding and ς codes for integers [6].

Apostolico and Drovandi [2] proposed an ordering method
based on breadth-first search. The method depends on the
topological structure of graphs instead of the URLs. They
use gap and run-length encoding and define a new integer
encoding called π codes, claimed to be better suited than ς
codes for power-law distributions with exponent close to 1.

The compression scheme works on chunks of level (l)
nodes. Parameter level provides a tradeoff between com-
pression performance and time to retrieve the adjacency list
of a node. With l = 8 they achieve better compression and
similar access times than WebGraph.

3.3 Compressors supporting out/in-neighbors
These compressors support out/in-neighbor queries on the

same structure, avoiding the need of using the graph plus its
transpose (as it is the case with the WebGraph, VNM, and
Re-Pair compressors).

The k2tree scheme [8] represents the adjacency matrix by
a k2-ary tree of height h = dlogk ne (where n is the number of
vertices). Simulating an MX-Quadtree decomposition [31],
it divides the matrix into k2 submatrices of size n2/k2. The
tree representation, at each level, defines k2 child nodes con-
taining a bit “1” if there is at least a “1” on the submatrix
it represents, and a “0” otherwise. Nodes represented with
a bit “1” are recursively divided into k2 nodes. At the last
level, the leaf nodes contain the bits of the adjacency ma-
trix. A recent improvement [24] uses statistical compression
at the last level and retains fast access times.

Re-Pair GMR [16] uses the grammar-based compression
technique Re-Pair, and defines compact data structures
based on bitmaps and sequences with fast rank/select oper-
ations [14, 17]. These support in-neighbor queries by finding
in the adjacency lists all the positions where the node, or a
nonterminal expanding to it, is mentioned.

3.4 Composing methods
In this section we evaluate the impact of combining edge-

reduction with other methods. We proceed in two stages: an
edge-reduction stage yields a new graph, containing fewer
edges and more nodes (including virtual nodes). Then a
compression stage applies existing compression techniques
on the edge-reduced graph.

For the edge-reducing stage we consider three alternatives.
The first is VNM, which we implemented as described in its
article [11], using C++ and STL, but we did not implement
the compression of the resulting graph (the full method,
including this last compression, will be called VNMb).
We added a compression parameter maximum saving =
pattern size · pattern frequency. This parameter defines
the minimum biclique size we consider for edge reduction.
Second, we implemented Re-Pair as just an edge-reducing
method (i.e., rule r → ab is seen as the creation of a virtual
node r with edges to a and b), which we call RPo. Third,
we consider VNMRP, which applies VNM and then RPo.

For the compression stage we also considered three
alternatives. First, we used the full Re-Pair com-
pression scheme obtained from its authors [15] (RPc).
Second, we used WebGraph (BV), version 2.4.4 taken
from http://webgraph.dsi.unimi.it. Third, we used
AD version 0.2.1, without dependencies, taken from
http://www.dia.uniroma3.it/~drovandi/software.php.

We executed our experiments on a Linux PC with 8 pro-
cessors Intel Xeon at 2.4GHz, with 32 GB of RAM and 12
MB of cache, using sequential algorithms.

We used the following data sets, corresponding to
real Web graphs and social networks; some statistics
are given in Table 1. Web graphs are snapshots made
available at http://law.dsi.unimi.it within the Web-
Graph project. As social network graphs, we use Facebook
(undirected graph, from http://socialnetworks.mpi-

sws.org/data-wosn2009.html) and Flickr (directed
graph, from http://socialnetworks.mpi-sws.org/data-

www2009.html) data sets used in social network research [33,
27]. The LiveJournal (directed graph) data set from the
SNAP project (Stanford Network Analysis Package,



Data Set Nodes Edges
eu-2005 862,664 19,235,140
in-2004 7,414,866 194,109,311
uk-2002 18,520,486 298,113,762
ar-2005 22,744,080 639,999,458
it-2004 41,291,594 1,150,725,436
Facebook 45,622 817,090
Flickr 1,861,232 22,613,981
LiveJournal 4,847,571 68,993,773

Table 1: Some statistics of our test graphs. Here in-2004

corresponds to indochina-2004 and ar-2005 to arabic-2005.
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Figure 1: Compression rate based on number of edges.

http://snap.stanford.edu/data/).
The first experiment evaluates the compression rate de-

fined as the total number of edges of the original graph di-
vided by the edges remaining after compression (including
from/to virtual nodes). Figure 1 shows the compression rate
achieved by VNM, RPo, and by VNMRP. The results sug-
gest that combining both techniques provides better com-
pression rates than applying either of them individually.

The second experiment measures the compression in terms
of bpe and aiming at maximum compression (i.e., no struc-
tures for direct access to the graphs are maintained). We
found that reducing the number of edges in the edge-
reducing stage does not always improve the final compres-
sion figures, as shown in Table 2. For this table we com-
bined edge-reduction using VNM with compression using
BV and AD. We tuned VNM using parameter m. VNM∗

(m = 1) allows any virtual node pattern that reduces edges,
thus minimizing the edges as much as possible in the edge-
reducing stage. Table 2 shows that VNM∗ does not achieve
the lowest possible bpe values, but these are achieved with
m = 30 on eu-2005, and m = 100 on the other Web graphs
(those are used in the row labeled VNM). The best com-
pression is achieved with loose host-by-host Gray ordering
of BV with w = 8 and m = −1 (for maximum compression).
This suggests that there are sufficient regularities that BV
can exploit after removing redundant edges, even if there
are more nodes in the graph.

We also apply AD with l = 100 after VNM. Larger l
did not yield more compression. In this case, it is best to
run VNM reducing the edges as much as possible (VNM∗).
Once again, the combination works better than the individ-
ual techniques. In particular, VNM+BV and VNM∗+AD
beat the best known space for compressing Web graphs.

Name eu-2005 in-2004 uk-2002 ar-2005 it-2004
BV 3.60 1.14 1.86 1.50 1.61

V NM∗+BV 2.61 1.29 2.01 1.64 1.52
VNM+BV 2.24 1.04 1.65 1.35 1.28

AD 2.89 1.08 1.90 1.67 1.55
V NM∗+AD 2.13 1.00 1.68 1.36 1.32

Table 2: Maximum compression comparison in bpe for com-

bining VNM with BV and AD.

Name eu-2005 in-2004 uk-2002 ar-2005 it-2004
VNMb 2.90 - 1.95 1.81 1.67
RPc 4.98 2.62 4.28 3.22 2.91

VNM∗+RPc 3.57 2.30 3.65 2.78 2.63
BV 4.49 1.88 2.82 2.26 2.37

VNM+BV 2.87 1.51 2.42 1.87 1.76
AD8 3.68 1.61 2.64 2.28 2.17

RPo+AD8 3.15 1.71 2.67 2.01 2.26
VNMRP+AD8 2.28 1.17 1.92 1.50 1.49
VNM∗+AD4 2.39 1.24 2.05 1.57 1.57
VNM∗+AD8 2.26 1.12 1.87 1.47 1.45

Table 3: Compression in bpe when allowing random access,

for various methods. VNMb are the bpe values reported by

Buehrer and Chellapilla [11].

Table 3 shows the compression results when the graphs
contain structures to support direct access. We include bare
compression methods (VNMb, RPc, BV, and AD) and our
best performing combinations. To enable direct access we
use BV with w = 8 and m = 3, and AD with l = 4 and
8. Since both BV and AD exploit locality and similarity,
the results suggest that the BFS ordering used in AD works
better than the loose host-by-host Gray ordering used in BV.
We achieve the best compression results using VNM∗+AD8.

Tables 4 and 5 give average times to retrieve adjacency
lists of 20 million random nodes. In the first we do not
include the time to recursively expand the virtual nodes and
the node id mapping to obtain the original graph. Average
times displayed in Table 4 are important considering recent
research where using VNM allows speeding up Web graph
algorithms based on random walk such as PageRank [20].
In Table 5 we include all the required operations to retrieve
the original adjacency lists. We can see that adding the
VNM∗ preprocessing using AD multiplies access times by
2–3, yet these are still within 20 microseconds per node,
that is, below the microsecond per delivered edge. Using
VNM with BV multiplies access times only by 2.

3.5 Bidirectional navigation
We additionally consider combining edge-reduction meth-

ods with techniques that support out/in-neighbor queries.
We evaluate the following variants:

T1: Re-Pair GMR [16] on the original graph.
T2: k2tree [8] on the original graph.

Data set AD VNM∗+AD BV VNM+BV
l = 4 l = 8 l = 4 l = 8 m = 3, w = 8

eu-2005 2.50 3.86 0.78 1.26 1.50 1.03
in-2004 2.02 2.92 0.75 1.12 1.41 1.12
uk-2002 1.75 2.61 0.83 1.14 1.34 1.19
ar-2005 2.54 3.65 0.80 1.22 1.58 1.34
it-2004 2.41 3.66 0.79 1.30 1.78 1.35

Table 4: Average time to retrieve an adjacency list, in mi-

croseconds, without any reordering nor expansion.



Data set AD VNM∗+AD BV VNM+BV
l = 4 l = 8 l = 4 l = 8 m = 3, w = 8

eu-2005 4.36 6.63 10.9 19.93 2.18 4.71
in-2004 3.58 5.23 5.65 10.72 1.80 3.33
uk-2002 2.50 3.77 4.53 7.72 1.64 2.90
ar-2005 3.82 5.93 9.49 16.95 2.07 4.53
it-2004 3.70 5.93 7.87 14.23 2.14 4.18

Table 5: Average time to retrieve an adjacency list, in mi-

croseconds, considering full expansion and reordering.
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queries with T1,T2, and T3 on Web graphs.

T3: VNM on the original graph and then k2tree.

The space/time requirements of these techniques, on Web
graphs and social networks, are displayed in Figures 2 and
3, respectively. The combination of VNM and k2tree (T3)
achieves by far the best space efficiency on Web graphs when
supporting bidirectional neighbors. However, this comes at
a significant price in access time. The combination, on the
other hand, does not work well on social networks, where
k2tree alone (T2) is unbeaten. This suggests that reducing
the number of edges on social networks removes some degree
of sparseness from the original adjacency matrices, which
does not happen on Web graphs.

3.6 Discussion
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Data set Name edges bpe

eu-2005
RPo 0.72 0.71
VNMRP 0.98 0.99

in-2004
RPo 0.79 0.65
VNMRP 0.98 0.95

uk-2002
RPo 0.74 0.70
VNMRP 0.98 0.97

ar-2005
RPo 0.75 0.73
VNMRP 0.98 0.98

it-2004
RPo 0.80 0.64
VNMRP 0.98 0.97

Table 6: Ratios of edge reduction achieved by various meth-

ods versus VNM, and of bpe reduction using AD after them.

Our results show that edge reduction, combined with
other methods, improves the state-of-the-art compression of
Web graphs. Figure 4 shows the node degree distribution
of the in-2004 original graph and after applying VNM, RPo,
and VNMRP. Very similar figures are obtained for the other
graphs. We observe that reducing edges produces very clean
power law distributions in the node degrees, regardless of the
edge-reduction method used. However, this new shape does
not seem to have, in general, an impact on the compression
achieved with AD, beyond the mere reduction in the data
size. Table 6 shows the reduction in number of nodes plus
edges achieved by the edge-reduction methods as a fraction
of VNM, and the corresponding reduction in bpe after ap-
plying AD. It can be seen that in most cases the reduction
factors are very similar, that is, AD achieves the same re-
duction in space on the original and on the reduced graphs,
and thus the overall space improvement over bare AD is a
consequence of working on a smaller graph and not of the
different node degree distribution.

Exceptions to this rule are in-2004 and it-2004, where AD
obtains a significant further reduction after applying RPo.
This may be due to the fact that RPo creates many virtual
nodes of outdegree 2, which is possibly advantageous for a
BFS ordering. In any case, this shows that further research
is necessary to understand the interactions between edge-
reduction and edge-reordering methods.

4. COMPRESSING COMMUNITIES
In this section we present a novel compressed data struc-

ture based on mining communities. We first provide some



basic notions of compact data structures we will need.

4.1 Compact data structures
A compact data structure provides the same abstraction

as its classical counterpart, using little space and support-
ing interesting queries without having to expand the whole
structure. Many compact data structures use as a basic
tool a bitmap supporting rank/select/access query primi-
tives. Operation rankB(b, i) on the bitmap B[1, n] counts
the number of times bit b appears in the prefix B[1, i]. Op-
eration selectB(b, i) returns the position of the i-th occur-
rence of bit b in B (and n + 1 if there are no i b’s in B).
Finally, operation accessB(i) retrieves the value B[i]. A so-
lution requiring n + o(n) bits and providing constant time
for rank/select/access queries was proposed by Clark [14]
and a good implementation is available (RG) [18]. In later
work, Rao et al. (RRR) [28] improved the required space to
nH0(B) + o(n) bits. H0(B) corresponds to the zero-order
entropy of bitmap B, H0(B) = n0

n
log n

n0
+ n1

n
log n

n1
, where

B has n0 zeros and n1 ones.
The bitmap representations can be extended to com-

pact data structures for sequences S[1, n] over an alpha-
bet Σ of size σ. The wavelet tree (WT) [19] supports
rank/select/access queries in O(log σ) time. It uses bitmaps
internally, and its total space is n log σ + o(n) log σ bits
if representing those bitmaps using RG, or nH0(S) +
o(n) log σ bits if using RRR, where H0(S) =

P
c∈Σ

nc
n

log n
nc

,

being nc the number of occurrences of c in S. Another se-
quence representation (GMR) [17] uses n log σ + n o(log σ)
bits, and supports rank and access in time O(log log σ), and
select in constant time.

4.2 Community-based compressed structure
We focus on detecting communities on Web graphs and

social networks so that we can represent the original graph
in terms of a set of community graphs and a remaining graph.

Definition 1. Community. We define a community
as a complete (directed or undirected) bipartite graph,
H(S,C) = G(V = S ∪ C,E = S × C). Vertices s ∈ S
are called sources and vertices c ∈ C are called centers. We
define the community size as |S|+ |C|.

Definition 2. Community Density. We define the density
by considering the connections inside a community group [1]:

H(S,C) = G(V,E) is γ-dense if |E|
|V |(|V |−1)/2

≥ γ.

Definition 3. Directed (Undirected) Bipartite Partition,
DBP (UBP). Let G(V,E) be directed (undirected). A bipar-
tite partition of G consists of a class H =

S
Hr of bipartite

graphs Hr = H(Sr, Cr), and a remaining graph R(VR, ER),
so that all Hr and R are edge-disjoint and G = H ∪R.

Definition 4. Undirected plus Directed Bipartite Par-
tition, UDBP. Let G(V,E) be a directed graph. We de-
rive from G an undirected graph Gu(Vu, Eu), containing an
undirected edge per pair of reciprocal edges in G. Now con-
sider the UBP of Gu into Hu and Ru(VRu , ERu). Define
dup(E) as the set of directed edges formed by a pair of
reciprocal edges per undirected edge in E. Then we call
Gd(Vd, E − dup(Eu − ERu)) the remaining directed graph
of G. Now consider the DBP of Gd into Hd and Rd. The
UDBP of G is formed by Hu, Hd, and Rd.
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Figure 5: Compact representation of H (a) and R (b).

Note that DBP and UBP aim at representing a graph
as a set of communities, regarded as directed or undirected
bicliques. A large communityH(S,C) will allow us replacing
|S| · |C| edges by just |S|+ |C| edges and a new node. UDBP
is more sophisticated, and aims at exploiting reciprocity in
directed graphs, that is, reciprocal edges. It first looks for
reciprocal bicliques, and only then for directed bicliques.
Whether UDBP is better or worse than plain DBP on a
directed graph will depend on its degree of reciprocity.

Our construction proceeds in two phases. The first phase
is community detection and extraction, and the second is
building a compressed structure representation. We use the
VNM scheme [11] for detecting and extracting communi-
ties. We apply VNM iteratively, extracting large communi-
ties first, using higher to lower maximum saving values.

4.3 Compact representation of H
Let H = {H1, . . . , HN} be the communities found in ei-

ther of the previous definitions. We represent H as two se-
quences of integers with corresponding bitmaps. Sequence
Xs with bitmap Bs represent the sequence of sources of
the communities and sequence Xc with bitmap Bc repre-
sent the respective centers. More precisely, we have Xs =
xs(1)xs(2)...xs(r)...xs(N), where xs(r) = s1...sk represents
the set Sr of Hr = (Sr, Cr), si ∈ Sr, si < si+1 for 1 ≤ i < k,

and Bs = 10|S1|−1...10|SN |−11. In a similar way, we have
Xc = xc(1)xc(2)...xc(r)...xc(N), where xc(r) = c1...cm rep-
resents the set Cr, cj ∈ Cr, cj < cj+1 for 1 ≤ i < m, and
Bc = 10|C1|−1...10|CN |−11. Figure 5 (a) shows an example.

We represent integer sequences and bitmaps with com-
pact data structures that support rank/select/access op-
erations: we use WTs [19] for sequences and an uncom-
pressed representation [14] for bitmaps, for a total space of
|X|(H0(X) + 1) + o(|X| log σ), where σ is the number of
vertices in H. Note that |X| is the sum of the sizes of the
communities in H, which can be much less than the number
of edges in the subgraph it represents.

We answer out/in-neighbor queries as follows. Their com-
plexity is O((|output|+1) log σ), which is essentially optimal
up to a factor of O(log σ), where σ is the number of nodes
in the graph.



out-neighbors (u)

occur ← rankXs (u, |Xs|)
for i← 1 to occur do
y ← selectXs (u, i)
p← rankBs (1, y)
s← selectBc (1, p)
e← selectBc (1, p+ 1)− 1
for j ← s to e do
out.add(accessXc (j))

end for

end for

in-neighbors (u)

occur ← rankXc (u, |Xc|)
for i← 1 to occur do
y ← selectXc (u, i)
p← rankBc (1, y)
s← selectBs (1, p)
e← selectBs (1, p+1)− 1
for j ← s to e do
in.add(accessXs (j))

end for

end for

We answer community queries in H as follows. Table 7
gives the time complexities achieved. Most of them are,
again, optimal up to factor O(log σ). The exception is Q7,
which can be costlier due to repeated results.

Q1 Get the centers of commu-
nity x.

start← selectBc (1, x)
end← selectBc (1, x+ 1)− 1
for i← start to end do
centers.add(accessXc (i))

end for

Q2 Get the sources of commu-
nity x.

start← selectBs (1, x)
end← selectBs (1, x+ 1)− 1
for i← start to end do
sources.add(accessXs (i))

end for

Q3 Get communities where u
participates as a source.

occur ← rankXs (u, |Xs|)
for i← 1 to occur do
y ← selectXs (u, i)
p← rankBs (1, y)
comms.add(p)

end for

Q4 Get communities where u
participates as a center.

occur ← rankXc (u, |Xc|)
for i← 1 to occur do
y ← selectXc (u, i)
p← rankBc (1, y)
comms.add(p)

end for

Q5 Get the number of communities where u participates as a
source and as a center.

ncs← rankXs (u, |Xs|)
ncc← rankXc (u, |Xc|)

Q6 Enumerate the members of
community x.

ss← selectBs (1, x)
es← selectBs (1, x+ 1)− 1
for i← ss to es do
members.add(accessXs (i))

end for
sc← selectBc (1, x)
ec← selectBc (1, x+ 1)− 1
for i← sc to ec do
members.add(accessXc (i))

end for

Q7 Enumerate the out-
communities at distance 1 of
community x.

centers← Q1(x)
for c in centers do
comms.add(Q3(c))

end for

Q8 Enumerate all the communities with their sizes.

nc← rankBs (1, |Bs|)
for i← 1 to nc do
ss← selectBs (1, i+ 1)− selectBs (1, i)
sc← selectBc (1, i+ 1)− selectBc (1, i)
size list.add(ss+ sc)

end for

Q9 Enumerate all the communities with their densities.

nc← rankBs (1, |Bs|)
for i = 1 to nc do
sources← selectBs (1, i+ 1)− selectBs (1, i)
centers← selectBc (1, i+ 1)− selectBc (1, i)
edges← sources · centers
nodes← sources+ centers
densities.add( edges

nodes·(nodes−1)/2 )

end for

4.4 Compact representation of R
We define a sequence of integers A and two bitmaps B1

and B2 for representing R(VR, ER). Sequence A is defined
as A = a(1)...a(i)...a(N), where |A| = |ER|, a(i) is the i-
th nonempty direct adjacency list of R, and N is the total
number of vertices with at least one edge in R. Bitmap B1

Query Time complexity
Q1/Q2 O(|output| · log σ)
Q3/Q4 O((|output|+ 1) log σ)
Q5 O(log σ)
Q6 O(|output| log σ))
Q7 O(|output| log σ) . . . O(|Q1| · |output| log σ)
Q8/Q9 O(|output|)

Table 7: Time complexity for community queries.

is 10|a(1)|−1...10|a(N)|−1, so |B1| = |ER|. B2 is a bitmap
such that B2[i] = 1 iff vertex i does not have out-neighbors
and |B2| = |VR|. Figure 5 (b) shows an example. The
space using WTs is |A|(H0(A)+1)+ |σ|+o(|A| log σ), where
σ = |VR|. We answer neighbor queries on R as follows:

out-neighbors (u)

if accessB2(u) = 0 then
x← rankB2(0, u)
start← selectB1(1, x)
end← selectB1(1, x+1)−1
for i← start to end do
out.add(accessA(i))

end for

end if

in-neighbors (u)

occur ← rankA(u, |A|)
for i← 1 to occur do
y ← selectA(u, i)
p← rankB1(1, y)
in.add(selectB2(0, p)

end for

On directed graphs, in-neighbors and out-neighbors are
found in time O((|output|+ 1) log σ). On undirected graphs
we choose arbitrarily to represent each edge {u, v} as (u, v)
or (v, u). Consequently, finding the neighbors of a node
requires carrying out both algorithms.

To carry out out/in-queries on the whole graph, we must
query H and R (for UBP or DBP partitions) or Hu, Hd and
Rd (for UDBP partitions), and merge the results. Commu-
nity queries are carried out only on H (or Hu and Hd for
UDBP, then merging the results). Our pseudocodes on X
and B addressed the directed case. Those for communities
representing undirected graphs are very easy to derive, and
left as an exercise.

5. EXPERIMENTAL EVALUATION
We evaluate our compact data structures supporting

out/in-neighbor and community queries. We are interested
in space/time requirements in terms of the community graph
H (or Hu +Hd), the remaining graph R, and the complete
graph G = H ∪R.

5.1 Space/time evaluation
We compare space/time efficiency using the representa-

tions below. We refer as WT-N-b to representing sequence
X with wavelet trees and bitmaps with RG [18], and as WT-
N-r to using wavelet trees for X and bitmaps compressed
with RRR [28]. N is the sampling parameter used for bitmap
implementations (if left as a variable, it gives a space/time
tradeoff). We will not give the results for using GMR [17]
on H because the space achieved is not competitive.

T4 WT-N-b (H) + Re-Pair GMR (R)
T5 WT-N-r (H) + Re-Pair GMR (R)
T6 WT-N-b (H) + k2tree (R)
T7 WT-N-r (H) + k2tree (R)
T8 WT-N-b (H) + WT-64-b (R)
T9 WT-N-b (H) + WT-64-r (R)
T10 WT-N-r (H) + WT-64-b (R)
T11 WT-N-r (H) + WT-64-r (R)

We use the definitions of Section 4.2 and our Web graphs
and social networks of Table 1. We use UBP to represent



Data Set Hu Hd R %

Facebook 457,968 - 359,122 43.95
Flickr 8,009,958 7,697,030 6,906,992 30.50
LiveJournal 24,270,703 17,374,268 27,078,099 39.24
eu-2005 - 17,568,086 1,667,054 8.66
uk-2002 - 270,951,713 27,162,049 9.11
ar-2005 - 602,662,165 37,337,293 5.83

Table 8: Component sizes and % of edges not participating

in communities.

the (undirected) Facebook graph, DBP on Web graphs, and
UDBP for Flickr and LiveJournal graphs. Table 8 shows
the number of edges for components Hu (= H on UBP), Hd
(= H on DBP), and R, and the percentage of R (the part
not forming communities) with respect to the original graph.
We also evaluated Web graphs with UDBP, and Flickr and
LiveJournal with UBP, but these were less competitive.

Techniques T4–T11 support community queries on H and
out/in-neighbor queries on H+R. We measure compression

on G by computing bpe = bits(H)+bits(R)
edges(H)+edges(R)

and access time

query time = query time(H) + query time(R). Table 9
shows the bpe for Hd representations of Web graphs, Hu
representation of Facebook, and Hu plus Hd for Flickr and

LiveJournal graphs. We compute bpe(H) = bits(H)
edges(H)

. When

using UDBP we show bpe(Hu) and bpe(Hd) separately. We
observe higher compression on Web graphs than on social
networks and better results using compressed bitmaps (WT-
r). We also show time efficiency for neighbor and different
community queries in Table 10 (for UDBP the times for
Hu and Hd must be added together). As it can be seen, all
community queries are supported within a few microseconds.

Figure 6 shows the space and time on Web graphs and
social networks, considering both partitions H (or Hu+Hd)
and R, and out/in-neighbor queries. On Web graphs, we
include the results using k2tree (T2) and VNM + k2tree
(T3), recall Figure 2. While in general T2 and T3 dominate
the space/time tradeoff, variant T7 (WTs on H and k2tree
on R) is competitive in some cases. Nevertheless, we remind
that T4–T11 additionally support community queries.

On social networks, on the other hand, we achieve bet-
ter results using techniques T4–T11 than using techniques
T1–T3 (we include T2, the best performing technique of
Figure 3, in Figure 6). Variant T11 provides the least
space, whereas variants T9 and T4 provide other relevant
space/time tradeoffs. T2 is only mildly relevant on Face-
book. There exist other proposals in the literature achieving
less space [26], but these do not handle community queries.

5.2 Discussion
Figure 7 shows the histogram of community sizes found in

each dataset, and Figure 8 shows the density-normalized dis-
tribution. We observe that community sizes on Web graphs
are larger than on social networks, which explains the better
compression of H for those graphs.

In Figure 8, we observe that the maximum community
density (Def. 2) is 0.6. This is obtained when |S| = 2 and
|C| = 3 or vice versa. We observe that social networks have
more of those tiny communities. Second, it can be easily seen
from Def. 2 that in a large community where |S| = |C|, the
maximum density is 0.5. Figure 8 shows that the number of
communities with density 0.5 is greater on Web graphs than
on social networks. These density observations also explain
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why we obtain better compression of H for those graphs.
When compressing Web graphs with out-neighbor sup-

port, we found that it is possible to combine compression
schemes that take advantage of different graph properties.
Reducing edge redundancy works well with methods that use
node ordering to exploit locality and similarity. This com-
bination, however, does not work well on social networks.
The reason is that on social networks community sizes are
smaller, and then representing the virtual nodes adds a con-
siderable overhead. In the context of compression techniques
that support out/in-neighbor queries, the reduction of edges
on Web graphs still allows k2tree to exploit sparseness of the
adjacency matrix, but on social networks it removes part of
the sparseness and degrades the compression.

Our biclique representation of H, instead, does not repre-
sent those virtual nodes. This is why it works particularly
well on the small communities arising in social networks.

6. CONCLUSIONS
This work has three contributions. First, it offers im-

proved space/time tradeoffs for out-neighbor queries on Web
graphs, including the best space requirements reported up to
date. We achieve this by combining a technique that reduces
the number of graph edges (VNM) [11] with techniques that
reorder nodes to exploit ordering, locality, similarity and
interval/integer encoding (AD [2] and WebGraph [5, 4]).
Second, it achieves improved space/time tradeoffs and the
best reported space for supporting out/in-neighbor queries
on Web graphs. To achieve this result, we combine VNM
with a technique that exploits the sparseness of the ad-
jacency matrix (k2tree) [8]. Third, it proposes a novel



Compression eu-2005 uk-2002 ar-2005 Facebook Flickr Flickr LiveJournal LiveJournal
Directed Undirected Directed Undirected

WT-32-b 3.82 3.55 3.20 12.11 14.26 13.15 16.91 15.40
WT-32-r 2.77 2.52 2.12 11.72 13.35 12.09 16.15 15.00

Table 9: Compression (bpe) of H on Web graphs and social networks using compact data structures.

Queries eu-2005 uk-2002 ar-2005 Facebook Flickr Flickr LiveJournal LiveJournal
Directed Undirected Directed Undirected

Out WT-32-b 6.70 8.71 8.62 6.49 8.91 7.28 12.69 10.16
Out WT-32-r 9.66 12.02 12.03 9.17 12.94 10.45 18.22 14.39
In WT-32-b 6.84 8.62 8.68 8.11 10.15 10.00 13.01 13.25
In WT-32-r 9.44 11.51 11.89 11.50 14.88 14.25 18.88 18.93
Q3 WT-32-b 3.15 6.07 5.12 1.06 0.89 1.04 2.56 2.47
Q3 WT-32-r 3.53 6.87 6.05 1.28 0.98 1.09 2.77 2.59
Q4 WT-32-b 1.99 3.69 2.42 0.85 0.84 0.82 2.12 2.25
Q4 WT-32-r 2.39 4.40 3.04 0.90 0.94 0.96 2.59 2.71
Q5 WT-32-b 2.22 4.10 2.78 1.22 1.40 1.39 3.21 3.27
Q5 WT-32-r 2.61 4.86 3.43 1.31 1.61 1.61 3.68 3.80
Q6 WT-32-b 7.17 8.69 10.14 4.76 5.63 10.24 8.81 7.85
Q6 WT-32-r 8.83 11.79 13.18 7.14 9.01 10.20 11.75 10.46
Q7 WT-32-b 119.21 147.88 233.56 39.22 98.76 162.91 74.71 58.24
Q7 WT-32-r 163.02 199.47 303.11 53.48 114.33 189.35 90.70 78.95

Table 10: Times for community queries (usecs) on Web graphs and social networks representing H with compact data structures.

compressed structure that enables community and out/in-
neighbor queries on Web graphs and social networks. This
is the first compressed structure that supports community
and out/in-neighbor queries.
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G. Navarro. Practical implementation of rank and
select queries. In Posters WEA, pages 27–38, 2005.

[19] R. Grossi, A. Gupta, and J. S. Vitter. High-order
entropy-compressed text indexes. In SODA, pages
841–850, 2003.

[20] C. Karande, K. Chellapilla, and R. Andersen.
Speeding up algorithms on compressed web graphs. In
WSDM, pages 272–281, 2009.

[21] M. Katarzyna, K. Przemyslaw, and B. Piotr. User
position measures in social networks. In SNA-KDD,
pages 1–9, 2009.

[22] J. M. Kleinberg. Authoritative sources in a
hyperlinked environment. Journal of the ACM,
46(5):604–632, 1999.

[23] R. Kumar, P. Raghavan, S. Rajagopalan, and
A. Tomkins. Trawling the Web for emerging
cyber-communities. Computer Networks,
31(11-16):1481–1493, 1999.

[24] S. Ladra. Algorithms and Compressed Data Structures
for Information Retrieval. PhD thesis, University of A
Coruña, Spain, 2011.

[25] N. J. Larsson and A. Moffat. Offline dictionary-based
compression. In DCC, pages 296–305, 1999.



 0

 5

 10

 15

 20

 25

 30

 35

 40

 2  3  4  5  6  7

T
im

e 
(u

s/
ed

ge
)

space bpe

EU-2005

T2-out
T2-in

T3-out
T3-in

T4-out
T4-in

T5-out
T5-in

T6-out
T6-in

T7-out
T7-in

T8-out
T8-in

T9-out
T9-in

T10-out
T10-in

T11-out
T11-in

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 2  3  4  5  6  7

T
im

e 
(u

s/
ed

ge
)

space bpe

UK-2002

T2-out
T2-in

T3-out
T3-in

T4-out
T4-in

T5-out
T5-in

T6-out
T6-in

T7-out
T7-in

T8-out
T8-in

T9-out
T9-in

T10-out
T10-in

T11-out
T11-in

 0

 10

 20

 30

 40

 50

 60

 70

 1  2  3  4  5  6

T
im

e 
(u

s/
ed

ge
)

space bpe

AR-2005

T2-out
T2-in

T3-out
T3-in

T4-out
T4-in

T5-out
T5-in

T6-out
T6-in

T7-out
T7-in

T8-out
T8-in

T9-out
T9-in

T10-out
T10-in

T11-out
T11-in

 5

 10

 15

 20

 25

 30

 35

 14  14.5  15  15.5  16  16.5  17  17.5

T
im

e 
(u

s/
ed

ge
)

space bpe

Facebook

T2-out
T2-in

T4-out
T4-in

T5-out
T5-in

T6-out
T6-in

T7-out
T7-in

T8-out
T8-in

T9-out
T9-in

T10-out
T10-in

T11-out
T11-in

 20

 40

 60

 80

 100

 12  13  14  15  16  17  18

T
im

e 
(u

s/
ed

ge
)

space bpe

Flickr

T2-out
T2-in

T4-out
T4-in

T5-out
T5-in

T6-out
T6-in

T7-out
T7-in

T8-out
T8-in

T9-out
T9-in

T10-out
T10-in

T11-out
T11-in

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 15  15.5  16  16.5  17  17.5  18  18.5  19

T
im

e 
(u

s/
ed

ge
)

space bpe

LiveJournal

T2-out
T2-in

T4-out
T4-in

T5-out
T5-in

T6-out
T6-in

T7-out
T7-in

T8-out
T8-in

T9-out
T9-in

T10-out
T10-in

T11-out
T11-in
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