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Abstract—We propose a strategy to perform query process-
ing on P2P similarity search systems based on peers and super-
peers. We show that by approximating global but resumed
information about the indexed data in each peer, the average
amount of computation and communication performed to solve
range queries can be significantly reduced as compared to
alternative state of the art strategies based on local indexing
at peer level. We illustrate our technique by using an indexing
method based on compact clustering.
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I. I NTRODUCTION

Similarity search over a collection of metric-space
database objects distributed on a large and dynamic set
of small computers forming a Peer-to-Peer (P2P) network
has been widely studied in recent years. Currently we have
efficient solutions for structured networks like those based
on the general purpose CAN [22] and Chord [24] protocols
[12], [13], [21], [23], [26]. In these cases the assumption is
that neither particular peers are more important than others
by executing, for instance, coordination roles, nor they have
more computing capabilities than other peers in the network.
This represents the fully distributed case in the spectrum of
feasible P2P systems for metric-space databases. Another
way to achieve this case is by defining a specific purpose
network topology by, for instance, mapping a data structure
and using the IP addresses of the peer computers as pointers
[1]–[4], [8], [9], [15]–[18], [25]. In order to achieve efficient
performance during query processing, the metrics to be
optimized are the cost of communication and the number of
peers involved in the process which, for a fully distributed
P2P system, can be significantly large.

Super-peer systems [11], [27], [28] are believed to rep-
resent a good tradeoff between centralized and distributed
architectures. They are also considered a reasonable tradeoff
between unstructured and structured P2P networks. In this
case the network is seen as a collection of stable (usually
powerful) peers calledsuper-peers to which normal peers
can connect and initiate queries. The most recent work on
this kind of P2P systems (and as such the state of the art
work for this paper) is theSimPeer system proposed in [11].

SimPeer uses the iDistance indexing strategy proposed
in [14] to support range search upon a hierarchical un-
structured P2P network composed of super-peers and peers.

The routing indexes strategy proposed in [10] is adapted
and used to route queries among neighboring super-peers.
The peers are assumed to maintain and index their own
data. The super-peers know a limited number of neighboring
super-peers and index information of the peers connected to
them. They also index information from their neighboring
super-peers. This defines a three level hierarchy where the
standard K-means clustering algorithm is used to index data
in the hierarchy. The resulting centers from the clustering
applied at each peer are indexed in the respective super-peer
using also K-means clustering. These, at super-peer level,
are called hyper-clusters. Finally, statistical data and hyper-
centers from neighboring super-peers are also clustered ina
second index stored in each super-peer which is used as
a routing index. The scheme allows super-peers to send
queries to both the most relevant peers and super-peers
during query processing. The clusters are accessed during
query processing by using the iDistance index [14] which is
intended to provide fast access to the K-means clusters.

To make the point of this paper, we put the above
description of SimPeer in generic terms. The special objects
(centers) resulting from the indexing process in each peer are
communicated to their respective super-peers, where they are
further indexed. A query first scans the super-peer index and
the result is a sort of plan that tells the super-peer to which
of its peers the query should be sent and, very importantly,
in which sections of each peer index the query should be
submitted. In addition, neighboring super-peers know about
the special objects resulting from the indexing at super-peer
level. They are also indexed to form what is called routing
indexes. The super-peer uses its routing index to decide to
which neighboring super-peer route the query. Again the
query is submitted to specific locations of the respective
index at the destination super-peer. The routing indexes
(and even the super-peer indexes) can contain statistical
information telling where is more promising to send the
query when approximate solutions are feasible.

The proposal in this work is based on the observation that
the above approach is constructed in a bottom-up manner
where local indexing plays a major role. However, this
contradicts the nature of what we called thespecial objects
which one needs them to be as selective as possible in
order to reduce the total number of distance evaluations



associated with the solution of queries and the total number
of communication actions.

Intuitively the local indexing approach lacks ability to
properly select the special objects which are the most
selective ones considering the whole database. It lacks a
global view of the data. Nevertheless the super-peers tend
to solve this problem by indexing the special local objects to
get global ones as a result. But this triggers an unnecessarily
large number of distance evaluations at search time since
the super-peer index has to be scanned to get the right local
special objects to later be searched in the respective peers.
Also as data at each peer is indexed with poor-quality special
objects, queries tends to generate more distance evaluations
in peers as well. This can be critical when we consider that
peers are expected to be small computers.

At indexing time, our approach first tries to determine
(almost) global special objects (LC centers as described
below) by performing a sort of tournament among peers
attached to a given super-peer and among neighboring super-
peers. Then when agreement has been reached, each peer
indexes its local objects by using the same global special
objects. As they are the same at super-peer level, searching
the super-peer index costs very few distance evaluations, just
the comparison of the query against the respective special
objects. Like in the local indexing case, queries can be
then directly sent to specific sections of the indexes located
in the selected peers. When the system ensures that all
super-peers have been considered in the tournament we get
the exact global special objects. However, our experimental
results show that such an exhaustive scan is not necessary to
achieve better performance than the local indexing approach.
Also because super-peers agree on similar global special
objects we do not need routing indexes. We just index
neighboring special objects into the same super-peer index.
Namely, we do not need a secondary index to route queries
to neighboring super-peers.

In the remaining of this paper we describe our approach
and present experimental results. Section 2 describes the
proposed methods to build a P2P index upon a scheme
based on peers and super-peers and perform range search
operations upon it. Section 3 presents experimental results
that compare the same index under the context of local and
global indexing. Finally section 5 presents conclusions.

II. SEMI-GLOBAL INDEXING AND SEARCH

A. Index construction

We defineBi to be the collection ofN database objects
stored in the peeri. We assume an initial P2P system with
Ns super-peers, each containingNp peers withNs ≪ Np.
We defineM to be the number of special objects which we
call centers. Thus the index in each peer and super-peer has
M centers (below we describe how to relax this to have a
variable number of centers and objects in peers and super-
peers). Like [11] we employ clustering to select the centers

ci in each peer and super-peer. However we pay attention
to the heuristic used to select them which tries to widely
cover the metric-space defined by the database objects. As
clustering method we use the List of Clusters (LC) strategy
presented in [7] and enhanced in [20].

We determine the set ofM global centers by performing
a tournament which starts at each peer associated with every
super-peer. In a peeri we select as the next center a database
object o ∈ Bi that maximizes the sum of the distances
d(o, ck) whereck are the previously selected centers. This
is repeated until gettingM centersck. Also each time a new
centerck is obtained, theK − 1 database objects that are
the nearest ones tock are removed from the tournament with
K = N/M . We then collect allM·Np peer centersck in their
respective super-peers, and select a new set ofM centers
from them using the same heuristic withK = Np. After
this, each super-peer gets theM centers obtained by itsn
neighboring super-peers and applies the heuristic over those
centers and their own centers withK = n + 1 (this can be
extended one or more hops away across neighboring super-
peers or apply a kind of circulating ring strategy among
communities of super-peers). In any case, upto this point,
the cost in communication is identical to the local indexing
one [11].

After each super-peer has obtained itsM semi-global
centers, they are broadcast to their peers and neighboring
super-peers. The peers use these centers to index their local
objects so that theK-nearest objects are associated with each
centerci with K = N/M . They are stored in buckets of size
K. For each centerci the peers return to their respective
super-peer the tuple(i, p, rm, rx) where i is the identifier
of the center,p the identifier (IP address) of the sending
peer,rm the distance betweenci and the nearest object to
ci stored in the respective bucket, andrx the distance to the
farthest one. In local indexing these tuples are also sent to
the super-peers, so the extra-cost of the semi-global approach
is no more than twice the cost of the local one because the
communication of centers from super-peers to peers.

The super-peers store the tuples(i, p, rm, rx) in the res-
pective buckets associated with the centersci. Also for
each centerci a tuple (i, s, r′m, r′x) is created wheres is
the super-peer address,r′m the minimumrm of the tuples
(i, p, rm, rx) stored in the bucket andr′x the maximumrx

in those tuples. Then all super-peers send to their neighbors
their tuples (i, s, r′m, r′x). We denote the received tuples
as (i, s, r′m, r′x)∗. Finally the super-peers include in their
buckets the received tuples. At this point the respective
center objectscs are already stored in the super-peer from
the previous step. Thus the received tuples are increased as
(i, cs, s, r

′

m, r′x)∗ before being stored in the bucket whose
centerci is the nearest one tocs. Also the valuesrm andrx

of the respective center tuple(ci, rm, rx) are updated with
the arrivingr′m andr′x (if necessary).

In this way the index data structure kept at each super-



peer is formed by a sequence(ci, rm, rx, bi) with i= 1 ...
M wherebi is a pointer to the bucket associated with each
centerci. And each bucket pointed to bybi is composed of a
sequence of tuples(i, p, rm, rx) and(i, cs, s, r

′

m, r′x)∗ where
the last tuple can be further enhanced by pre-computing the
distanced(ci, cs) which can be used to reduce the number
of times the distanced(q, cs) has to be computed at search
time as we explain below.

In the super-peers all centers from peers that are not global
centers to the super-peer are discarded to release space. The
data structure kept at each peer is simple since they all
see the same set of centers and queries comes from the
respective super-peer with already calculated information
about what buckets are to be examined. The bucket kept
at each peer for a centerci contains the set of database
objects which are the closet ones toci in the peer. Here
further optimizations can be made to reduce the number of
objects that must be compared against the query.

We can keep a table with a few columns containing
distances to pivots, one per column. The first pivot is the
center itself an the column stores the distance of each object
in the bucket to the center. This column is kept sorted in
ascending order of these distances. So two binary searches
on the column determine the range of rows where the objects
that can be potentially part of the answer to the query are
located. The second column contains as pivot the center that
is the farthest one toci. The third is the closet one toci,
and so on interleaving. These additional columns are used to
further narrow the number of objects to be compared with
the query. In [6] it is shown that good pivots are the ones
very far or very close to the objects being examined by the
query.

Notice that when one uses one column of the above table
we have a situation that can be considered as equivalent to
the B+ Tree in the iDistance approach discussed in [11],
[14]. However as we include more columns our approach
becomes more effective in reducing the number of candidate
object which finally do make into the results of the range
query (we call thiseffectiveness and show results about this
in the section of experiments).

B. Range search algorithm

A range search(q, r) with objectq and radiusr consists
on retrieving all the objects located within the query ball.
We assume that the queries arrive to any super-peer. The
centers(ci, rm, rx, bi) with i= 1 ... M of the super-peer are
traversed and each time the inequalityd(q, ci) + r ≥ rm

andd(q, ci) − r ≤ rx holds true, the bucketbi is traversed
meaning that the query ball intersects the range(ci, rx) −
(ci, rm). Traversing a bucketbi means dealing with tuples
tp = (i, p, rm, rx) andts = (i, cs, s, rm, rx).

Upon a tupletp, the algorithm computes the inequality
d(q, ci) + r ≥ tp.rm and d(q, ci) − r ≤ tp.rx and if it
holds true, then the super-peer sends a message(q, r, i)

to the peerp. At this point the distanced(q, ci) has been
already calculated. When the message is received in the
peer, the objects in the bucket associated with the center
ci are compared against the query. Each objecto for which
d(q, o) ≤ r holds true, is placed in the result set for the
query(q, r).

Upon a tuplets = (i, cs, s, rm, rx), it is necessary to com-
puteℓ = d(q, cs) and evaluate the inequalityℓ + r ≥ ts.rm

and ℓ − r ≤ ts.rx and if it holds true, then the super-peer
sends a message(q, r, i, ℓ) to the neighboring super-peers
so that the search can continue in the bucket associated with
the centeri in the super-peers, and so on recursively.

C. Dynamism

Every time a new peer wants to participate in the system
it sends a request to one of the known super-peers which
passes back the global centers(ci, ri, si), whereri is the
average radius calculated considering the covering radii of
the current peers attached to the centersci and si the
standard deviation. The peer indexes its local data using
the centers by attaching its database objects to the first
center (in the construction order indicated by the subscripts
of ci) for which the object is within the range defined by
(ci, r

∗

i ). We allow a tolerance ofr∗i = 1.5 si + ri over the
averageri. We use this method of insertion to detect cases
in which new peers provide to the system some objects
that can potentially become global centers because they are
significantly different from the current global ones.

The local database objects that cannot be inserted in one
of the clusters defined by the global centers are stored in
an overflow area. The center of this area is the current
object that maximizes the sum of the distance to all global
centers. This center can be replaced by another object if
during the process of index construction in the peer a new
object arrives to the overflow area which has a larger value
for the cumulative sum of the distance to all global centers.
This center is sent to the super-peer and is included in a
respective overflow area of the super-peer index.

The super-peer handles its overflow area as it were a local
index. This is done upto a threshold value for the size of
the overflow area is achieved, in which case a tournament
is effected on these local centers to elect one or more
global centers. This time, however, the tournament is slightly
different because we need to estimate the number of new
global centers that must be calculated. This because the
objects in the overflow area can belong to very different
regions of the metric-space. To this end we form groups
of centers by considering the degree in which the centers
intersect each other.

The degreeS1,2 at which cluster(c1, r1) intersects cluster
(c2, r2) is calculated as follows: (i) they intersect each other
if d(c1, c2) ≤ r1 + r2, and the degreeS1,2 is set to an
initial value of 1 (or 0 otherwise), (ii ) one is contained into
the another if d(c1, c2) ≤ |r1 − r2|, (iii ) if contained and



r1 < r2, the degreeS1,2 is reduced byS1,2 = (r1/r2) ·S1,2,
(iv) otherwise if r1 > r2 the S1,2 is increased toS1,2 =
1 + r2/r1, and (v) if they in fact do not contain each other,
they just intersect, thenS1,2 is decreased toS1,2 = ( |r1 −
r2|/d(c1, c2) ) · S1,2.

The valuesSi,j are used to do clustering of the centers
stored in the overflow area of the super-peer. This clustering
starts by selecting one of the centers at random, say center
(c1, r1). All centersk for which Sk,1 is 0 are considered
candidates to become new global centers(ck, rk). The
remaining centers(cj , rj) are associated to the candidate
center(ck, rk) for which the valueSj,k is maximum. After
this, for each group of clusters one of them is selected as a
new global center. We select the one that maximizes the sum
of the distances to all current global centers. These centers
are communicated to all peers and neighboring super-peers
which are used to re-index their respective overflow areas.

D. Dynamism in SimPeer

Unfortunately in the description presented in [11] (below
we call it KM strategy) no precise details are given on how
their scheme handles the arrival of new peers to the system.
Thus in this section we describe how we have modified the
implementation of the strategy described in [11] to include
this case. We assume there areNp peers connected toNs

super-peers. When a new peer Pi is joining the P2P network,
we apply the KM strategy upon its database objects and
obtain a list ofM cluster descriptions (i.e., a sequence of
M centers represented by the pairs(ci, ri) whereci is the
center object andri is the covering radius). We must also
connect the peer to its locally closest super-peer. For that,
the new peer sends its list ofM centers(ci, ri) to a contact
super-peer SPc of the network. The super-peer SPc computes
the intersection degree between the clusters(ci, ri) of the
peer and its own clusters. SPc also computes the intersection
degree with the clusters of its neighbor super-peers. Finally,
the closest super-peer is selected and Pi is assigned to it. To
emulate an actual distributed system, the super-peer SPc is
selected uniformly at random from theNs super-peers.

We define the closest super-peer SPj to a peer Pi as
the one with the greatest cumulative sum of the quantities
|d(ci, cj)−rci

−rcj
|∀cj ∈ SPj andci ∈ Pi. In the rare event

that the cumulative sum is zero for all SPc’s neighboring
super-peers, then the peer Pi is assigned to the contact super-
peer SPc. When this happens the clusters of SPc are rebuilt
by using the K-means algorithm.

III. E XPERIMENTAL RESULTS

To obtain performance results we used the Metric Spaces
Library SISAP (http://www.sisap.org/Home.html) for gene-
rating synthetic vector data collections (uniform and Gaus-
sian) and queries. Another data set representing image
objects was generated synthetically as follows. We took
a collection of images from a NASA data set containing

40,701 images vectors (dimension 20), and we used it as an
empirical probability distribution upon which we generated
our random image objects. We call this data set NASA.
The query log for this data set was generated by taking
randomly selected objects from the same set. These data
sets contain 3,000,000 objects each. We use the Euclidean
distance with these collections to measure the similarity
between two objects. We used range search radii of R1= 0.1,
R2= 0.6 and R3= 0.7 for the uniform data set (dimension
16); R1= 0.7, R2= 1.5 and R3= 5.0 for the Gaussian data set
(dimension 16); and R1= 0.01, R2= 0.07 and R3= 0.7 for
the NASA data set. These radii were selected experimentally
to obtain a reasonable number of results. Figure 10 shows
the all-object-pairs distance distribution for the data sets.

Below we show results normalized to 1 in order to better
illustrate comparative performance in terms of percentage
differences among the strategies. Also when we writeLC
strategy we refer to the proposal described in Section II
which is based on our approximation to global indexing. For
the purpose of comparing global and local indexing under
the same setting, we have also implemented a realization
of the LC strategy which indexes local centers coming
from peers in the same way as it is made in [11], that is,
indexing in a bottom up fashion. We callKM strategy the
implementation of the strategy presented in [11] which has
been enhanced with the procedure described in Section II-D.

We use a system composed of 30 super-peers and 1,000
peers, each peer starts up with 10 centers and we use 10
global centers. For super-peers we use two interconnection
topologies: an all-to-all and a ring topology (Figure 9 shows
a comparison between the two). The topology affects in the
same way to the LC and KM strategies since in both cases
indexing is constrained to each super-peer and its immediate
neighboring super-peers. In the first set of experiments the
database objects are distributed uniformly at random onto
the peers (Figures 1, 2, 3, and 4 and Table I).

For the second set of experiments the database objects
are distributed onto the peers by trying to focus them on
different regions of the metric-space. We employ the pivot
selection heuristic proposed in [5] which produces pivots
evenly distributed in the metric-space. One pivot is selected
for each peer and the database objects that are the closest
to the pivot are stored in the same peer. We study two
configurations. In the first one, the peers are clustered by
similarity to decide to which super-peer they are connected
(Figures 5, 6 and 7). The second one connects each peer
to any super-peer selected at random (Figure 8 presents a
comparison between the two cases).

A. Constant number of peers

To show the advantages of trying to approximate global
indexing we show in Figure 1 results for the LC strategy
under global and local indexing. These are results for the
three radiir used in range queries(q, r). The Figure shows
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Figure 1. Total number of distance evaluations and messagesfor global
and local indexing by using the LC strategy.

Table I
PERCENTAGE OF EFFECTIVENESS.

Gauss
radius LC KM

0.7 55.7 0.2
1.5 55.6 2.5
5.0 62.1 10.5

Nasa
radius LC KM
0.01 56.0 0.2
0.07 59.8 2.5
0.1 61.4 20.8

Uniform
radius LC KM

0.1 58.0 0.2
0.6 61.4 2.5
0.7 64.7 17.4

results for the total number of distance evaluation and total
amount of communication. For each metric we show the
ratio global to local indexing (as described above global
indexing is the LC strategy with global centers determined
considering large set of peers whereas local indexing is
the LC strategy with local centers determined as proposed
in [11]). In all cases global indexing outperforms local
indexing. Notice that we observed that the KM strategy [11]
performed about 10 times more distance evaluations than the
LC with our proposal for global indexing. This strategy has
to pay more distance evaluation since it also indexes the
centers of its neighboring super-peers.

In addition, our technique of using the pivoting table
with two or more columns allows the LC to be more
effective in reducing the number of candidate objects that are
finally compared with the query. In this respect, the pivoting
strategy is more efficient than the iDistance B+ Tree used in
[11]. This measure is captured in Table I which shows the
percentage of objects that are compared with the queryand
become part of the query answer (a larger value indicates a
greater effectiveness).

B. Increasing the number of peers

In the following experiments we evaluate the performance
of the global LC strategy and compare it with the KM
strategy under a dynamic P2P system. The P2P system is

initialized with 50% of theNp peers and the remaining
50% join the system in two groups to reach0.75 Np and
Np with Ns kept constant, and for each group the same
number of queries are processed with both strategies. For
each set of queries we determine three metrics given by
the total number of distance evaluations, the total amount
of communication and the percentage of effectiveness as
described for the results in Table I.

Figure 2 shows the number of distance evaluations per-
formed by the LC and KM strategies as we increment the
number of peers in the network. Thex-axis shows the per-
centage of peers involved during the query searches andy-
axis shows the normalized number of evaluations performed.
As new peers join to the network the algorithms require
more distance evaluations to processes queries, because the
system has more information and more candidate clusters
may be selected. Figure 3 shows the communication in bytes
required to process a batch ofQ query in different intervals
of number of peers with the same tendency as Figure 2. In
both graphics the LC strategy outperforms the KM strategy.
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Figure 2. Distance evaluations for0.5Np, 0.75Np andNp peers.

Figure 4 shows the effectiveness of the algorithms for
the same experiment. This last figure shows the rate of the
average number of peers reporting results for queries over
the total number of peers visited. The LC strategy exhibits
the most efficient performance.

The next set of experiments show performance results for
the case in which peers are destinated to specific regions of
the metric space and each peer is assigned to its closet super-
peer in terms of similarity. We compare this case against the
case in which objects are distributed at random among the
peers. We call the two cases asSim andRandom respectively.
Figure 5 shows results obtained by the LC and KM strategies
for the two cases (the values for LC and KM are relative to
themselves). Figure 6 shows the communication rate for the
same experiment and Figure 7 shows the effectiveness. In
overall, those results show that the performance of LC tends
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Figure 3. Communication in bytes for0.5Np, 0.75Np andNp peers.
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Figure 4. Quality of the indexes for0.5Np, 0.75Np andNp peers.

to improve in the Sim case, and it improves in a fairly larger
degree than the improvement observed in the KM strategy.

Figure 8 shows the performance of the LC algorithm using
the Uniform collection, when the peers are assigned to its
closest super-peer (Closest) and when peers are assigned at
random (Random). Except for communication, those results
shows that the LC strategy is less sensitive to the actual
super-peer assignment. What is more relevant is the effect
of focusing peers to specific regions in the metric-space.

Figure 9 compares the performance of the LC algorithm
under runs using two types of connections among super-
peers, namely ring and all-to-all. Those results show the LC
strategy is not very sensitive to the communication topology
apart from the fact that, as expected, all-to-all generatesa
higher message traffic.

Table II shows the number of peers out of 1,000 peers
involved in the solution of range queries. The columns show
the peers that were contacted and contributed with no results
(N.R), the peers that contributed with results (R) and the
total. Global indexing effectively reduces contacted peers.
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Figure 5. Difference in the number of distance evaluations performed
using random and sim assignment.
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Figure 6. Difference in the communication performed by the LC and K-M
algorithms using random and sim assignment.

IV. CONCLUSIONS

In this paper we have shown that our realization of a
clustering index data structure based on global indexing
can be an efficient strategy to perform query processing
in P2P systems composed of super-peers and peers. Our
strategy adapts itself well to the cases in which peers
join dynamically the P2P system, which is an important
requirement for this kind of systems.

We have shown that our proposal consistently outperforms
the state of the art strategy for this type of P2P infrastructure
[11]. Super-peers are expected to be stable computers which
are used as coordinators whereas peers can be small user
computers that intermittently participate in the system by
making available their local collection of database objects to
other users. In the local indexing approach proposed in [11]
the new peers joining the system locally index their database
objects using K-means clustering and send the cluster centers
to the super-peers to be further indexed at that level.
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Figure 7. Quality achieved by the indexes under random and sim
assignment.
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Figure 8. Performance of the LC algorithm when peers are assigned to the
closest super-peer vs. when peers are assigned at random with the Uniform
collection.

Essentially our approach is the reverse situation, namely
super-peers communicate the relevant centers to the joining
peers which makes the crucial difference in performance
since those centers are expected to be more effective in
driving queries to the relevant peers holding candidate
objects for the answer to queries. We have implemented
this strategy on top of the List of Clusters [7] index data
structure enhanced as proposed in [20]. Our results with
different databases show that this scheme performs well in a
variety of cases, and it outperforms global and local indexing
implemented using K-means clustering.
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Table II
AVERAGE NUMBER OFPEERS HIT BY QUERIES OUT OF1,000.

Gauss
LC Local Global

radius N.R. R. Total N.R. R. Total
0.7 102.81 44.34 147.15 26.73 39.35 66.08
1.5 144.78 52.06 196.84 24.92 41.25 66.17
5.0 232.88 54.33 287.21 28.88 48.10 76.98

Nasa
LC Local Global

radius N.R. R. Total N.R. R. Total
0.01 24.01 54.65 78.66 22.82 36.84 59.66
0.07 24.3 58.02 82.32 23.71 36.63 60.34
0.1 32.04 78.5 110.54 24.8 38.99 63.79

Uniform
LC Local Global

radius N.R. R. Total N.R. R. Total
0.1 39.73 172.4 212.13 35.33 122.07 157.4
0.6 40.25 193.14 233.39 36.32 133.02 169.34
0.7 40.68 194.28 234.96 36.76 160.69 196.85
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Figure 10. All-pairs distance distribution.


