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Abstract—We propose a strategy to perform query process- The routing indexes strategy proposed in [10] is adapted
ing on P2P similarity search systems based on peers and super and used to route queries among neighboring super-peers.
peers. We show that by approximating global but resumed  he neers are assumed to maintain and index their own

information about the indexed data in each peer, the average data. Th K limited b f neighbori
amount of computation and communication performed to solve ~ 9&!&. 1N€ SUPEr-PEers know a limited humber of neighboring

range queries can be significantly reduced as compared to Super-peers and index information of the peers connected to
alternative state of the art strategies based on local indéxg ~ them. They also index information from their neighboring

at peer level. We illustrate our technique by using an indexig  super-peers. This defines a three level hierarchy where the
method based on compact clustering. standard K-means clustering algorithm is used to index data
Keywords- Peer to peer networks; Metric-Space Databases. in the hierarchy. The resulting centers from the clustering
applied at each peer are indexed in the respective super-pee
using also K-means clustering. These, at super-peer level,
Similarity search over a collection of metric-space are called hyper-clusters. Finally, statistical data ayplein-
database objects distributed on a large and dynamic seenters from neighboring super-peers are also clusterad in
of small computers forming a Peer-to-Peer (P2P) networlsecond index stored in each super-peer which is used as
has been widely studied in recent years. Currently we havea routing index. The scheme allows super-peers to send
efficient solutions for structured networks like those lohse queries to both the most relevant peers and super-peers
on the general purpose CAN [22] and Chord [24] protocolsduring query processing. The clusters are accessed during
[12], [13], [21], [23], [26]. In these cases the assumptien i query processing by using the iDistance index [14] which is
that neither particular peers are more important than stherintended to provide fast access to the K-means clusters.
by executing, for instance, coordination roles, nor theyeha  To make the point of this paper, we put the above
more computing capabilities than other peers in the networkdescription of SimPeer in generic terms. The special object
This represents the fully distributed case in the spectrim o(centers) resulting from the indexing process in each peer a
feasible P2P systems for metric-space databases. Anotheemmunicated to their respective super-peers, where tigey a
way to achieve this case is by defining a specific purposéurther indexed. A query first scans the super-peer index and
network topology by, for instance, mapping a data structuréhe result is a sort of plan that tells the super-peer to which
and using the IP addresses of the peer computers as pointafits peers the query should be sent and, very importantly,
[1]-[4], [8], [9], [15]-[18], [25]. In order to achieve effient  in which sections of each peer index the query should be
performance during query processing, the metrics to bsubmitted. In addition, neighboring super-peers know &bou
optimized are the cost of communication and the number othe special objects resulting from the indexing at superpe
peers involved in the process which, for a fully distributedlevel. They are also indexed to form what is called routing
P2P system, can be significantly large. indexes. The super-peer uses its routing index to decide to
Super-peer systems [11], [27], [28] are believed to repwhich neighboring super-peer route the query. Again the
resent a good tradeoff between centralized and distributequery is submitted to specific locations of the respective
architectures. They are also considered a reasonableffadeindex at the destination super-peer. The routing indexes
between unstructured and structured P2P networks. In thi@nd even the super-peer indexes) can contain statistical
case the network is seen as a collection of stable (usuallpformation telling where is more promising to send the
powerful) peers calleduper-peers to which normal peers query when approximate solutions are feasible.
can connect and initiate queries. The most recent work on The proposal in this work is based on the observation that
this kind of P2P systems (and as such the state of the athe above approach is constructed in a bottom-up manner
work for this paper) is th&@mPeer system proposed in [11]. where local indexing plays a major role. However, this
SimPeer uses the iDistance indexing strategy proposecbntradicts the nature of what we called Hpecial objects
in [14] to support range search upon a hierarchical unwhich one needs them to be as selective as possible in
structured P2P network composed of super-peers and peesder to reduce the total number of distance evaluations
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associated with the solution of queries and the total numbet; in each peer and super-peer. However we pay attention
of communication actions. to the heuristic used to select them which tries to widely

Intuitively the local indexing approach lacks ability to cover the metric-space defined by the database objects. As
properly select the special objects which are the mostlustering method we use the List of Clusters (LC) strategy
selective ones considering the whole database. It lacks presented in [7] and enhanced in [20].
global view of the data. Nevertheless the super-peers tend We determine the set d¥/ global centers by performing
to solve this problem by indexing the special local objects t a tournament which starts at each peer associated with every
get global ones as a result. But this triggers an unnecéssarisuper-peer. In a peémwe select as the next center a database
large number of distance evaluations at search time sincebject o € B; that maximizes the sum of the distances
the super-peer index has to be scanned to get the right locdlo, c¢;,) wherec,, are the previously selected centers. This
special objects to later be searched in the respective .peeiis repeated until getting/ centersc,. Also each time a new
Also as data at each peer is indexed with poor-quality speciaentercy is obtained, theX — 1 database objects that are
objects, queries tends to generate more distance evaigatiothe nearest ones tq are removed from the tournament with
in peers as well. This can be critical when we consider thatl = N/M. We then collect allM-N,, peer centers;, in their
peers are expected to be small computers. respective super-peers, and select a new set/ofenters

At indexing time, our approach first tries to determinefrom them using the same heuristic wifki = N,,. After
(almost) global special objects (LC centers as describethis, each super-peer gets thé centers obtained by its
below) by performing a sort of tournament among peerseighboring super-peers and applies the heuristic ovesetho
attached to a given super-peer and among neighboring superenters and their own centers with = n + 1 (this can be
peers. Then when agreement has been reached, each pertended one or more hops away across neighboring super-
indexes its local objects by using the same global specigbeers or apply a kind of circulating ring strategy among
objects. As they are the same at super-peer level, searchimgmmunities of super-peers). In any case, upto this point,
the super-peer index costs very few distance evaluatioss, j the cost in communication is identical to the local indexing
the comparison of the query against the respective speciane [11].
objects. Like in the local indexing case, queries can be After each super-peer has obtained it semi-global
then directly sent to specific sections of the indexes latatecenters, they are broadcast to their peers and neighboring
in the selected peers. When the system ensures that aliper-peers. The peers use these centers to index thdir loca
super-peers have been considered in the tournament we g#ijects so that th& -nearest objects are associated with each
the exact global special objects. However, our experimtentacenterc; with K = N/M. They are stored in buckets of size
results show that such an exhaustive scan is not necessary&. For each center; the peers return to their respective
achieve better performance than the local indexing approac super-peer the tuplé:, p, r,,,7.) where: is the identifier
Also because super-peers agree on similar global speciaf the center,p the identifier (IP address) of the sending
objects we do not need routing indexes. We just indexpeer,r,, the distance betweery and the nearest object to
neighboring special objects into the same super-peer index; stored in the respective bucket, andthe distance to the
Namely, we do not need a secondary index to route queriefarthest one. In local indexing these tuples are also sent to
to neighboring super-peers. the super-peers, so the extra-cost of the semi-global appro

In the remaining of this paper we describe our approaclis no more than twice the cost of the local one because the
and present experimental results. Section 2 describes ttwmmunication of centers from super-peers to peers.
proposed methods to build a P2P index upon a scheme The super-peers store the tuplesp, r,,, ) in the res-
based on peers and super-peers and perform range seapdctive buckets associated with the centeys Also for
operations upon it. Section 3 presents experimental sesuleach center; a tuple (i, s,r},,r.) is created where is
that compare the same index under the context of local anthe super-peer addressg, the minimumr,, of the tuples
global indexing. Finally section 5 presents conclusions. (i, p,r,,,r,) stored in the bucket and, the maximumr,
in those tuples. Then all super-peers send to their neighbor
their tuples (i, s, ,7..). We denote the received tuples

Yi'my T

A. Index construction as (i,s, ., r.)*. Finally the super-peers include in their
We defineB; to be the collection ofV database objects buckets the received tuples. At this point the respective
stored in the peei. We assume an initial P2P system with center objects:; are already stored in the super-peer from
N, super-peers, each containifg, peers withVy, < N,.  the previous step. Thus the received tuples are increased as
We defineM to be the number of special objects which we (i, cs, s, 7., 7.)* before being stored in the bucket whose
call centers. Thus the index in each peer and super-peer hasenterc; is the nearest one 6. Also the values,, andr,
M centers (below we describe how to relax this to have af the respective center tuple;, r,,,r,) are updated with
variable number of centers and objects in peers and supethe arrivingr/,, andr., (if necessary).

peers). Like [11] we employ clustering to select the centers In this way the index data structure kept at each super-
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peer is formed by a sequen¢e;, r,,,,r.,b;) with i= 1 ...  to the peerp. At this point the distanceé(q, c¢;) has been

M whereb; is a pointer to the bucket associated with eachalready calculated. When the message is received in the
centerc;. And each bucket pointed to lby is composed of a peer, the objects in the bucket associated with the center
sequence of tuple, p, r.,, 1) and (i, cs, s, 7., v, )* where  ¢; are compared against the query. Each objeftdr which

the last tuple can be further enhanced by pre-computing thé(¢,0) < r holds true, is placed in the result set for the
distanced(c;, ¢s) which can be used to reduce the numberquery (g, r).

of times the distancé(q, ¢;) has to be computed at search  Upon a tuplet; = (4, ¢s, 8, 7m, 72:), it iS Nnecessary to com-
time as we explain below. putel = d(q, cs) and evaluate the inequaliéy+ r > t,.r,

In the super-peers all centers from peers that are not globaind ¢ — » < ¢,.r, and if it holds true, then the super-peer
centers to the super-peer are discarded to release space. Bends a messade, r, i, ¢) to the neighboring super-peer
data structure kept at each peer is simple since they aflo that the search can continue in the bucket associated with
see the same set of centers and queries comes from tlige center in the super-peeg, and so on recursively.
respective super-peer with already calculated informatio
about what buckets are to be examined. The bucket ke
at each peer for a center contains the set of database Every time a new peer wants to participate in the system
objects which are the closet ones dpin the peer. Here it sends a request to one of the known super-peers which
further optimizations can be made to reduce the number gpasses back the global centérs,r;, s;), wherer; is the
objects that must be compared against the query. average radius calculated considering the covering rddii o

We can keep a table with a few columns containingthe current peers attached to the centersand s; the
distances to pivots, one per column. The first pivot is thestandard deviation. The peer indexes its local data using
center itself an the column stores the distance of each bbjethe centers by attaching its database objects to the first
in the bucket to the center. This column is kept sorted incenter (in the construction order indicated by the subscrip
ascending order of these distances. So two binary searche$ c¢;) for which the object is within the range defined by
on the column determine the range of rows where the objects:;, ;). We allow a tolerance of; = 1.5s; + r; over the
that can be potentially part of the answer to the query ar@verager;. We use this method of insertion to detect cases
located. The second column contains as pivot the center thit which new peers provide to the system some objects
is the farthest one te;. The third is the closet one to, that can potentially become global centers because they are
and so on interleaving. These additional columns are used tgignificantly different from the current global ones.
further narrow the number of objects to be compared with The local database objects that cannot be inserted in one
the query. In [6] it is shown that good pivots are the onesof the clusters defined by the global centers are stored in
very far or very close to the objects being examined by thean overflow area. The center of this area is the current
query. object that maximizes the sum of the distance to all global

Notice that when one uses one column of the above tableenters. This center can be replaced by another object if
we have a situation that can be considered as equivalent #uring the process of index construction in the peer a new
the B+ Tree in the iDistance approach discussed in [11]pbject arrives to the overflow area which has a larger value
[14]. However as we include more columns our approacHor the cumulative sum of the distance to all global centers.
becomes more effective in reducing the number of candidat&his center is sent to the super-peer and is included in a
object which finally do make into the results of the rangerespective overflow area of the super-peer index.
query (we call thisffectiveness and show results about this ~ The super-peer handles its overflow area as it were a local
in the section of experiments). index. This is done upto a threshold value for the size of

] the overflow area is achieved, in which case a tournament
B. Range search algorithm is effected on these local centers to elect one or more

A range searclig, ) with objectq and radius- consists  global centers. This time, however, the tournament is 8ligh
on retrieving all the objects located within the query ball. different because we need to estimate the number of new
We assume that the queries arrive to any super-peer. Thidobal centers that must be calculated. This because the
centers(c;, rm, Tz, b;) with i= 1 ... M of the super-peer are objects in the overflow area can belong to very different
traversed and each time the inequality, c;) + r > 7, regions of the metric-space. To this end we form groups
andd(q,c¢;) — r < r, holds true, the bucket; is traversed of centers by considering the degree in which the centers

&. Dynamism

meaning that the query ball intersects the rafger,) — intersect each other.
(ci,mm). Traversing a buckel; means dealing with tuples The degrees; » at which cluster(cy, 1) intersects cluster
tp = (4,0, Tm,Tz) @Ndts = (i,¢s, S, T'm, I'z)- (ce,72) is calculated as followsi) they intersect each other

Upon a tuplet,, the algorithm computes the inequality if d(c1,c2) < 1 + ro, and the degree; , is set to an
d(g,c;) +r > tpry andd(q,¢;) — r < t,.r, and if it initial value of 1 (or O otherwise),i) one is contained into
holds true, then the super-peer sends a mesg$age:) the another if d(c1,c2) < |r1 — 12|, (iii) if contained and



r1 < rg, the degreeS; o is reduced by5; 5 = (11/72) - S1.2, 40,701 images vectors (dimension 20), and we used it as an

(iv) otherwise ifry > ro the Sy is increased taS; » = empirical probability distribution upon which we genexhte
1+ rq/r, and ) if they in fact do not contain each other, our random image objects. We call this data set NASA.
they just intersect, thel; 2 is decreased t&1 2 = (|r1 — The query log for this data set was generated by taking
ro|/d(c1,c2)) - S1,2. randomly selected objects from the same set. These data

The valuesS; ; are used to do clustering of the centerssets contain 3,000,000 objects each. We use the Euclidean
stored in the overflow area of the super-peer. This clugierindistance with these collections to measure the similarity
starts by selecting one of the centers at random, say centbetween two objects. We used range search radii of R1= 0.1,
(c1,71). All centersk for which Sy, is O are considered R2= 0.6 and R3= 0.7 for the uniform data set (dimension
candidates to become new global centérs,r.). The  16); R1= 0.7, R2= 1.5 and R3= 5.0 for the Gaussian data set
remaining centergc;,r;) are associated to the candidate (dimension 16); and R1= 0.01, R2= 0.07 and R3= 0.7 for
center(cy, ri) for which the valueS; 5, is maximum. After  the NASA data set. These radii were selected experimentally
this, for each group of clusters one of them is selected as # obtain a reasonable number of results. Figure 10 shows
new global center. We select the one that maximizes the sutthe all-object-pairs distance distribution for the dattsse
of the distances to all current global centers. These center Below we show results normalized to 1 in order to better
are communicated to all peers and neighboring super-peeittustrate comparative performance in terms of percentage
which are used to re-index their respective overflow areasdifferences among the strategies. Also when we wiite

L strategy we refer to the proposal described in Section Il
D. Dynamism in SmPeer which is based on our approximation to global indexing. For

Unfortunately in the description presented in [11] (belowthe purpose of comparing global and local indexing under
we call it KM strategy) no precise details are given on how the same setting, we have also implemented a realization
their scheme handles the arrival of new peers to the systemf the LC strategy which indexes local centers coming
Thus in this section we describe how we have modified thérom peers in the same way as it is made in [11], that is,
implementation of the strategy described in [11] to includeindexing in a bottom up fashion. We c&{M strategy the
this case. We assume there &g peers connected td/, implementation of the strategy presented in [11] which has
super-peers. When a new peeii$joining the P2P network, been enhanced with the procedure described in Section II-D.
we apply the KM strategy upon its database objects and We use a system composed of 30 super-peers and 1,000
obtain a list of M cluster descriptions (i.e., a sequence ofpeers, each peer starts up with 10 centers and we use 10
M centers represented by the pajes, ;) wherec; is the  global centers. For super-peers we use two interconnection
center object and; is the covering radius). We must also topologies: an all-to-all and a ring topology (Figure 9 skow
connect the peer to its locally closest super-peer. For that comparison between the two). The topology affects in the
the new peer sends its list f centers(c;,r;) to a contact same way to the LC and KM strategies since in both cases
super-peer SPof the network. The super-peer Somputes indexing is constrained to each super-peer and its imnmediat
the intersection degree between the clustefsr;) of the  neighboring super-peers. In the first set of experiments the
peer and its own clusters. SBIso computes the intersection database objects are distributed uniformly at random onto
degree with the clusters of its neighbor super-peers. lginal the peers (Figures 1, 2, 3, and 4 and Table I).
the closest super-peer is selected apgésRssigned to it. To For the second set of experiments the database objects
emulate an actual distributed system, the super-peglisSP are distributed onto the peers by trying to focus them on
selected uniformly at random from theé, super-peers. different regions of the metric-space. We employ the pivot

We define the closest super-peer;S®B a peer P as selection heuristic proposed in [5] which produces pivots
the one with the greatest cumulative sum of the quantitiegvenly distributed in the metric-space. One pivot is selgct
|d(ci,cj) —re, —7¢;|Vcj € SPrande; € P;. In the rare event  for each peer and the database objects that are the closest
that the cumulative sum is zero for all 3® neighboring to the pivot are stored in the same peer. We study two
super-peers, then the pegri®assigned to the contact super- configurations. In the first one, the peers are clustered by
peer SR. When this happens the clusters of.Sffe rebuilt  similarity to decide to which super-peer they are connected
by using the K-means algorithm. (Figures 5, 6 and 7). The second one connects each peer
to any super-peer selected at random (Figure 8 presents a
comparison between the two cases).

To obtain performance results we used the Metric Spaces
Library SISAP (http://www.sisap.org/Home.html) for gene A Constant number of peers
rating synthetic vector data collections (uniform and Gaus To show the advantages of trying to approximate global
sian) and queries. Another data set representing imagadexing we show in Figure 1 results for the LC strategy
objects was generated synthetically as follows. We tookunder global and local indexing. These are results for the
a collection of images from a NASA data set containingthree radiir used in range querigg, r). The Figure shows

Ill. EXPERIMENTAL RESULTS



1.2 —— — initialized with 50% of theNV,, peers and the remaining
50% join the system in two groups to rea6ty5 N, and
1+ EV Comm : N, with N, kept constant, and for each group the same
o number of queries are processed with both strategies. For
08 F  w Te 1 each set of queries we determine three metrics given by
' e the total number of distance evaluations, the total amount
06 1 Uﬂéf::f: oo ] of communication and the percentage of effectiveness as
Nasa —x— ¥ described for the results in Table I.
041 a8 Figure 2 shows the number of distance evaluations per-
Do formed by the LC and KM strategies as we increment the
number of peers in the network. Theaxis shows the per-
centage of peers involved during the query searchesyand

RI R2 R3 RI R2 R3 axis shows the normalized number of evaluations performed.

Radii As new peers join to the network the algorithms require

Figure 1. Total number of distance evaluations and messagegobal ~ More distance evaluations to processes queries, becaaise th
and local indexing by using the LC strategy. system has more information and more candidate clusters
may be selected. Figure 3 shows the communication in bytes
required to process a batch @fquery in different intervals
of number of peers with the same tendency as Figure 2. In

Gauss Nasa both graphics the LC strategy outperforms the KM strategy.
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radius | LC | KM g Gauss
01 | 580 02 g 1 oe e o
06 | 614 25 E 0-3 D S o s
0.7 | 647 | 17.4 : Nisa
s e = L4
results for the total number of distance evaluation and tota '2 oé o e ow Z.o e
amount of communication. For each metric we show the E 0 Unidorm
ratio global to local indexing (as described above global & 1 e ] e e
indexing is the LC strategy with global centers determined Z 05 1 o S
considering large set of peers whereas local indexing is 0 R1 R R3

the LC strategy with local centers determined as proposed
in [11]). In all cases global indexing outperforms local
indexing. Notice that we observed that the KM strategy [11] Peer increment
performed about 10 times more distance evaluations than the Figure 2. Distance evaluations for5N,, 0.75N, and N,, peers.
LC with our proposal for global indexing. This strategy has
to pay more distance evaluation since it also indexes the Figure 4 shows the effectiveness of the algorithms for
centers of its neighboring super-peers. the same experiment. This last figure shows the rate of the
In addition, our technique of using the pivoting table average number of peers reporting results for queries over
with two or more columns allows the LC to be more the total number of peers visited. The LC strategy exhibits
effective in reducing the number of candidate objects that a the most efficient performance.
finally compared with the query. In this respect, the pivptin  The next set of experiments show performance results for
strategy is more efficient than the iDistance B+ Tree used ifthe case in which peers are destinated to specific regions of
[11]. This measure is captured in Table I which shows thehe metric space and each peer is assigned to its closet super
percentage of objects that are compared with the qaedy  peer in terms of similarity. We compare this case against the
become part of the query answer (a larger value indicates gase in which objects are distributed at random among the
greater effectiveness). peers. We call the two cases@mandRandomrespectively.
Figure 5 shows results obtained by the LC and KM strategies
for the two cases (the values for LC and KM are relative to
In the following experiments we evaluate the performancehemselves). Figure 6 shows the communication rate for the
of the global LC strategy and compare it with the KM same experiment and Figure 7 shows the effectiveness. In
strategy under a dynamic P2P system. The P2P system dwerall, those results show that the performance of LC tends
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Figure 4. Quality of the indexes f@.5N,, 0.75N,, and N, peers. Peer increment
Figure 6. Difference in the communication performed by ti@dnd K-M

algorithms using random and sim assignment.

to improve in the Sim case, and it improves in a fairly larger
degree than the improvement observed in the KM strategy.

Figure 8 shows the performance of the LC algorithm using IV. CONCLUSIONS
the Uniform collection, when the peers are assigned to itS | this paper we have shown that our realization of a
closest super-peeClosest) and when peers are assigned atc|ysiering index data structure based on global indexing
random Random). Except for communication, those results .o pe an efficient strategy to perform query processing
shows that the LC strategy is less sensitive to the actug}, pop systems composed of super-peers and peers. Our
super-peer assignment. What is more relevant is the Eﬁe%rtrategy adapts itself well to the cases in which peers
of focusing peers to specific regions in the metric-space. join dynamically the P2P system, which is an important

Figure 9 compares the performance qf the LC algorithmrequirement for this kind of systems.
under runs using two types of connections among SUPer- \ye have shown that our proposal consistently outperforms
peers, namely ring and all-to-all. Those results show the LGpe state of the art strategy for this type of P2P infrastmect
strategy is not very sensitive to the communication topplog [11]. Super-peers are expected to be stable computers which
apart from the fact that, as expected, all-to-all generates ;o'\ ,50q as coordinators whereas peers can be small user
higher message traffic. computers that intermittently participate in the system by
_ Table Il shows the number of peers out of 1,000 peersaying available their local collection of database olsjéat
involved in the solution of range queries. The collumns Sho"‘bther users. In the local indexing approach proposed in [11]
the peers that were contacted and contributed with no sesul{he new peers joining the system locally index their databas

(N.R), the peers t_hat contr_ibuted with results (R) and th%bjects using K-means clustering and send the clusterrsente
total. Global indexing effectively reduces contacted peer ., i super-peers to be further indexed at that level.
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z Communication 1.5 144.78 52.06 196.84 24.92 41.25 66.17
8 1 P e 5.0 232.88 54.33 287.21] 28.88 48.10 76.98
705 ST St Nasa
E 0 ) . LC Local Global
“ Distance Evaluatio: radius | N.R. R. Total | N.R. R. Total
0; :,_g;:;i P 0.01 24.01 54.65 78.66( 22.82 36.84 59.66
'0 4 gt 0.07 24.3 58.02 82.32| 23.71 36.63 60.34
Rl R 0.1 | 32.04 785 11054 248 3899 63.79
Uniform
05 075 1.0 05 075 10 LC Local Global
) radius | N.R. R. Total | N.R. R. Total
Peer increment 0.1 39.73 172.4 212.13 35.33 122.07 157.4
Figure 8. Performance of the LC algorithm when peers argasdito the 0.6 40.25 193.14 233.39 36.32 133.02 169.34
closest super-peer vs. when peers are assigned at randbrtheit/niform 0.7 40.68 194.28 234.9¢ 36.76 160.69 196.85
collection.
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Figure 10. All-pairs distance distribution.



