
A P2P Meta-Index for Spatio-Temporal Moving
Object Databases

Cecilia Hernandez1, M. Andrea Rodriguez13 and Mauricio Marin23

1 Dept. of Computer Science, Universidad de Concepción, Chile,
{cecihernandez,andrea}@udec.cl

2 Yahoo! Research, Chile,
mmarin@yahoo-inc.com

3 Center for Web Research, Universidad de Chile, Chile

Abstract. In this paper we propose a distributed meta-index using a
peer-to-peer protocol to allow spatio-temporal queries of moving objects
on a large set of distributed database servers. We present distribution and
fault tolerance strategies of a meta-index that combines partial trace of
object movements with aggregated data about the number of objects in
the database servers. The degrees of distribution and fault tolerance were
compared by using discrete-event simulators with demanding spatio-
temporal workloads. The results show that the distributed meta-index
using Chord provides good performance, scalability and fault tolerance.

1 Introduction and Related Work

For query processing, an important aspect of distributed moving object applica-
tions is the distribution of the index structure. Advances in this sense are studies
that distribute spatial index structures, such as the Quadtree and R-tree struc-
tures, in peer-to-peer (p2p) networks [4, 7]. In similar way, studies in distributed
spatio-temporal databases have typically considered a distributed global index
structure, which organizes spatio-temporal information in a structure defined in
terms of space and temporal partitions [2, 5]. These studies have addressed win-
dow queries (i.e., time-instant and time-interval queries) and not queries about
locations of particular objects or aggregated queries.

In this paper, we describe an alternative approach to distributed spatio-
temporal database servers. First, and unlike previous works, we design a struc-
ture to support different types of queries including coordinate-based queries (i.e.,
time-slice and time interval queries), aggregated queries (top-K servers with the
largest number of objects and geographic extent), and combined queries of the
form “Where was an object o at a time instant t or time interval [t1, t2]?” We
argue that it is impractical to think of solving these types of queries with a global
index when the system is composed of a large and dynamic number of servers.
Second, instead of having a global and distributed spatio-temporal structure, we
propose to handle independent local indexes in database servers and a global and
distributed meta-index structure. This could be seen as a two-level architecture;

however, we are not forcing any coordination between the meta-index and the
local indexes.

A preliminary study for this meta-index [3] analyzes the viability of creat-
ing and updating a centralized structure in a highly dynamic environment of
moving objects. This paper continues with our previous work and describes the
distributed meta-index structure using Chord [6]. In this paper we present ex-
perimental evaluation that shows the good performance, scalability and fault
tolerance properties of the proposed system.

The structure of the paper is as follows. Section 2 describes the meta-index,
whose distribution and fault tolerance strategies are presented in section 3. Sec-
tion 4 presents experimental evaluation supporting our claims on performance,
scalability and fault tolerance. Finally, we outline our conclusions in Section 5.

2 Meta-Index Description

A basic component of the system is the meta-index structure that guides the
search process to local servers or gives approximated answers to different queries.
In particular, we studied the following types of queries: (1) time-slice or time-
interval queries that return objects or trajectories within a query window and
time instant or interval, (2) aggregated queries concerning the top-K servers
with largest number of objects or trajectories and largest extent area, (3) nearest
neighbors to a specific object and time instant, and (4) queries about the location
of a particular object at a specific time instant.

The meta-index stores partial data about the time-varying location of ob-
jects. These data include: time-varying number of objects per server (statistical
or aggregated information), time-varying geographic extent including the loca-
tion of objects in a server, and coarse traces of object visits across servers. Coarse
traces of objects in the meta-index are not “real” sparse trajectories, but lists
of servers that objects have visited sorted by the time of the data collection.

Among all queries of interest, this paper concentrates only on queries about
the location of specific objects at a particular time instant, since they represent
a challenging and not previously addressed query in the context of distributed
spatio-temporal databases. This type of queries uses the object traces and num-
ber of objects per server at different time stamps in the meta-index. Using coarse
traces for answering this type of queries is novel since we do not use the classical
space partition to organize or distribute spatio-temporal information.

The search algorithm, based on object traces, finds the first location of the
object at a time instant t′ such that |t′− t| is minimum, with t the query time. If
the trace of an object is not found in the meta-index, the algorithm starts search
on servers with largest number of objects at query time. When a first location of
the object is found, the algorithm follows the object path in the corresponding
servers until finding the location of the desired object at query time.

To maintain the meta-index, we define a crawling strategy that collects data
from database servers asynchronously [3]. In every data collection from a server, a
crawler transfers to the meta-index aggregated data and the ids of objects which

have been in the server but not transfered in previous visits. Consequently, some
objects might no longer be present in the server at the time of the data collection.

3 Meta-Index Distribution

We base the distribution of the meta-index on a p2p network using Chord pro-
tocol [6]. Chord defines a common address space for nodes and data keys and
provides a lookup algorithm. This algorithm enables distribution by mapping
data keys among a changing set of nodes with O(log n) routing cost.

In order to use bandwidth efficiently, we propose two strategies for distribut-
ing the meta-index data. First, we introduce the concept of MSB (Most Sig-
nificant Bits) to map moving object trace data to Chord keys. Crawlers use
the MSB to group object trace data in Composite Objects. The number of bits
defined by the MSB constitutes a threshold for the update message maximum
size performed by crawlers’ robots. Second, since the amount of aggregated data
per update message is very small we piggy it back to composite objects. This
scheme allows crawlers to send fewer update messages into the p2p network
avoiding overloading the network. Figure 1 shows an example of how a robot
groups object traces into two composite objects. In this case the MSB is 28
which means that the maximum number of moving object ids in a composite
object is 16 (24). Here, composite objects are identified by compositeObj1 and
compositeObj2 with their corresponding moving object ids and aggregated data
(SD1).

P62

P8

P51

P44 P32

P27

K18

compositeObj1

SD1

compositeObj2

SD1

server s, time t

obj17

obj25

obj30

obj41

obj48

obj52

obj61

P20

SD1

SD1

SD1

SD1

1

2

4

3

Robot

Fig. 1. Meta-index distribution

The meta-index distribution strategy requires the administration of two types
of messages. S-messages (messages 1-3 in Figure 1) and T-messages (message
4 in Figure 1). S-messages carry control and aggregated data but they do not
carry composite object content. Aggregated data are stored in all peers visited
until finding the destination peers. T-messages transfer composite object content
from the entry peer to the peer that will store the composite object.

The distribution of the meta-index supports fault tolerance in two ways: by
the partial replication of aggregated data in all peers, and by distributing the
object traces uniformly at random in p peers. The replication of aggregated
data is useful when no data about the trace of the desired object is found in the
distributed meta-index. In such case, the number of objects stored in any of the
peers is used to rank the servers where to most likely find the desired objects.
Second, data collected by a crawler are grouped into sub-composite object ids
based on MSB and a random number between 1 and p. Then, object traces
are associated randomly with one of the p possible sub-composite objects and
stored in the corresponding peer. When a client looks for a specific object at
a given time, it starts the search at a random peer, this peer looks up the p
sub-composite objects in parallel and sends back the best answer to the client,
where best here means the estimated location of the object at the closest time
to the query. If one of the peers holding the requested object is down, another
peer among the p ones may have it. Even though the reply might not be the
best, it would serve as starting search point for the client.

Operations on our meta-index system architecture are decentralized. First,
crawlers collect data from database servers and update the meta-index in the
p2p network in parallel. Crawlers build composite objects based on MSB and p,
and send them to the peer-to-peer network through Update() messages. Second,
peers receive and delegate Update() operations (Algorithm 1) to other peers in
order to find the destination peer. We allow peers to receive queries from any
node on the network through the RecvClientQuery() procedure. This procedure
takes in a moving object and query time and finds at most p peers that resolve
the query. The procedure DoQuery() looks up recursively the composite object
id in the peer-to-peer network and then the query resolving involves applying
the search algorithm described in 2. Peer operations are defined in Algorithm 1.

4 Experimental Evaluation

Our simulation environment uses event-driven simulators. One simulates the
database servers and crawling generating the data in the form of the meta-index.
Another simulates the Chord protocol to allocate and lookup meta-index data.
We also used the network simulator NS-2 (http : //www.isi.edu/nsnam/ns) in
tandem with GT-ITM (http : //www.cc.gatech.edu/projects/gtitm) to simulate
the network topology and environment.

We use workload data generated by a public spatio-temporal dataset gener-
ator; the Network-based Generator of Moving Objects (NGMO) [1]. The data
set contains 50,000 initial moving objects, existing around 150,000 along the
simulation time. In similar ways as seen in [7], we run the experiments with 4,
8, 16, and 32 crawlers’ robots and 16, 32, 64 and 128 peers. We chose peers and
clients randomly from stub nodes defined in a transit-stub network of 588 nodes
created with NS-2/GT-ITM.

Search performance of centralized versus distributed meta-index.
We first evaluate the performance of the search process for a centralized versus

Algorithm 1 Algorithms at peers
1: procedure Update (peer entrypeer, composite object id coid, aggregated data sd)
2: if aggregated data sd is not in thispeer then
3: Add sd into this thispeer
4: end if
5: if coid must be stored in thispeer then
6: Get composite object co with co.id = coid from entrypeer
7: Add composite object co with co.id = coid into thispeer
8: else
9: call Update message to nextpeer (based on Chord protocol)

10: end if
11: end procedure

1: procedure RecvClientRequest (moving object id moid, timestamp queryT ime)
2: Get all composite object ids coidList using moid, MSB and P
3: for each coid in coidList in parallel do
4: call DoQuery(coid) on a random peer
5: end for
6: Resolve best reply to client
7: end procedure

1: procedure DoQuery (composite object id coid)
2: if coid is in thispeer then
3: call Algorithm1 defined in section 2
4: return
5: else
6: call DoQuery(coid) on nextpeer (based on Chord protocol)
7: end if
8: end procedure

distributed meta-index by using the number of visits to local servers as a perfor-
mance metric to answer a query of type “find object o at time stamp t,” (Figure 2
(a)) . We used three types of benchmarks, each with 200 queries: (b1) random
objects (average trajectory length of 32 servers), (b2) objects with largest trajec-
tories (average trajectory length of 175 servers), and (b3) objects with shortest
trajectories (average trajectory length of 2 servers). Here, the meta-index con-
tains traces for 71% of the total number of moving objects (150,000) that exist
during simulation time; that is, approximately 30% of queries for the whole data
set would need to use statistical data from the meta-index.

Figure 2 (b) shows the performance of the distributed meta-index for 200
random queries using different percentages of searches that require the statistical
data. Here, using statistical data in a search is important because this data is
partially recovered from peers, which can affect the performance with respect to
the number of visits to local servers during searches. The quality of the statistical
data recovery would improve when using p greater than 1, since query solving
would combine statistical data from p peers. We present the ratio between a
centralized and distributed meta-index search using 8 robots and statistical data
recovery from only one peer. In this figure, values close to 1.0 mean that the

(a) (b)

Fig. 2. Performance of the meta-index: (a) The ratio number of servers visited using the
meta-index to the number of servers visited using the server random selection strategy
(The x-axis indicates the different numbers of robots updating the meta-index), (b)
Search performance with a distributed meta-index with respect to a centralized meta-
index (Different curves indicate percentages of use of aggregated data in the search)

distributed and centralized meta-index have similar performance with respect to
the number of visits to local servers.

Communication Overhead. In order to evaluate the communication over-
head associated with the distribution of the meta-index in the p2p network,
we run an experiment that shows the number of bytes transmitted in update
operations (i.e., bytes in S-messages and T-message). This number of bytes is
normalized by the total number of bytes of the meta index, such that we can ob-
tain an overhead with respect to the original data content we want to distribute.
Figure 3(a) shows the normalized number of bytes with respect to different num-
bers of peers and different setting of MSB.

Elasticity. We run an experiment to compare the scalability of the dis-
tributed meta-index with the centralized system. We measured the response time
for a protocol that use MSB=20, P=1, 128 peers and different rates of query
concurrency, from 10 to 1000 queries per second given to the system. Figure 3
(b) indicates that over 200 queries per second, the performance of the central-
ized system starts to be affected significantly due to the workload. In this case,
the response time in the centralized scheme does not scale because of network
congestion. The P2P system has a great amount of available bandwidth allowing
it to scale gracefully with increasing query rate.

Fault Tolerance. We analyzed the fault tolerance in terms of the strategies
described in 3. Figure 3(c) shows the efficiency of the distribution of the aggre-
gated data among peers. We define efficiency in a strict hand-to-hand manner
by averaging over all servers and peers on the ratio average number of objects
to the maximum number of objects observed in any peer for the same server.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 20 40 60 80 100 120 140 160 180

B
yt

es
 c

on
tr

ol
 /

 b
yt

es
 d

at
a

Number of p2p nodes

20
21
22
23

 100

 1000

 10000

 100000

 0 200 400 600 800 1000 1200

R
es

po
ns

e
tim

e
(m

s)

Number of queries

centralized

p2p

(a) (b)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 20 40 60 80 100 120 140 160 180

E
ffi

ci
en

cy
 o

f
S

ta
t-

da
ta

 d
is

tr
ib

ut
io

n

Number of p2p nodes

20
21
22
23

-0.2

 0

 0.2

 0.4

 0.6

 0.8

432132121

%
 O

bj
ec

ts

Fault tolerance P

P=2 P=3 P=4

(c) (d)

Fig. 3. Communication overhead, elasticity, and fault tolerance of the meta-index:
(a) relative number of bytes transmitted in update operations, (b) response time for
different query rates given to the system for centralized and p2p scheme (MSB=20,
p=1 and 128 peers), (c) efficiency of distribution of statistical data in peers, and (d)
quality of fault tolerance distribution for different values of p

This is a demanding distribution test for both the degree of completeness and
precision of the samples kept in each real p2p node. There is a trade-off with
MSB, since fewer bits lead to a small number of composite objects circulating
among the peers.

We also measured the distribution of an object trace in the participating
p peers. We show results about the percentage of objects that maintain traces
between 1 and p peers. In Figure 3(d), the first bar for each p represents the
percentage of objects whose traces are only in one peer (objects with shortest
traces), the second bar represents the percentage of objects whose traces are in
two peers, and so on. The results indicate that our strategy is able to provide
fault tolerance for object traces for 70% of the objects in the system.

5 Conclusions

Overall our strategy allows the two main processes, namely crawling and search-
ing to make efficient use of the p2p network. Crawlers can store their payload in
any peer and user queries can also start up in any peer. Thus the scheme can ac-
commodate many crawlers, which improve the probability of registering at least
one trace per moving object. Also, user queries throughput can be increased by
evenly distributing the start of searches across all of the p2p nodes.

Our experiments results show that combining trace-based data with statistics
about the number of objects per server in the meta-index provides performance
guarantees in comparison with using random access to database servers to resolve
the query addressed in this paper. Moreover, the centralized trace meta-index
data does not experiment any loss in the distribution scheme. However, the
distribution of the statistical data suffers partial loss in comparison with the
centralized scheme, but, as seen in Figure 2, it improves in at least 50% the
overall performance.

Acknowledgements. Cecilia Hernandez is partially funded by DIUC Grant -
206.091.044-1.0, University of Concepcion, Chile. Andrea Rodriguez and Mauri-
cio Marin are funded by Nucleus Millennium Center for Web Research, Grant
P04-067-F, Mideplan, Chile.

References

1. Thomas Brinkhoff. A framework for generating network-based moving objects.
GeoInformatica, 6(2):153–180, 2002.

2. H. Lee, J. Hwang, J. Lee, S. Park, C. Lee, and Y. Nah. Long-term location data
management for distributed moving object databases. In Ninth IEEE International
Symposium on Object and Component-Oriented Real-Time Distributed Computing,
pages 451–458. IEEE Press, 2006.

3. Mauricio Maŕın, Andrea Rodŕıguez, Tonio Fincke, and Carlos Román. Searching
moving objects in a spatio-temporal distributed database servers system. In Robert
Meersman and Zahir Tari, editors, OTM Conferences (2), volume 4276 of Lecture
Notes in Computer Science, pages 1388–1401. Springer, 2006.

4. Anirban Mondal, Yi Lifu, and Masaru Kitsuregawa. P2pr-tree: An r-tree-based spa-
tial index for peer-to-peer environments. In Wolfgang Lindner, Marco Mesiti, Can
Türker, Yannis Tzitzikas, and Athena Vakali, editors, EDBT Workshops, volume
3268 of Lecture Notes in Computer Science, pages 516–525. Springer, 2004.

5. Y. Nah, J. Lee, W.J. Lee, H. Le, M.H. Kim, and K.J. Han. Distributed scalable
location data management system based on the GALIS architecture. In Tenth IEEE
International Workshop on Object-Oriented Real Time Dependable Systems, pages
397–404. IEEE Press, 2005.

6. Ion Stoica, Robert Morris, David Liben-Nowell, David R. Karger, M. Frans
Kaashoek, Frank Dabek, and Hari Balakrishnan. Chord: a scalable peer-to-peer
lookup protocol for internet applications. IEEE/ACM Trans. Netw., 11(1):17–32,
2003.

7. Egemen Tanin, Aaron Harwood, and Hanan Samet. Using a distributed quadtree
index in peer-to-peer networks. VLDB J., 16(2):165–178, 2007.

