
Scheduling Algorithms for Web Crawling

Carlos Castillo
Center for Web Research

Universidad de Chile
ccastill@dcc.uchile.cl

Mauricio Marin
Center for Web Research

Universidad de Magallanes
mauricio.marin@umag.cl

Andrea Rodriguez
Center for Web Research

Universidad de Concepción
andrea@udec.cl

Ricardo Baeza-Yates
Center for Web Research

Universidad de Chile
rbaeza@dcc.uchile.cl

Abstract

This article presents a comparative study of strategies
for Web crawling. We show that a combination of breadth-
first ordering with the largest sites first is a practical alter-
native since it is fast, simple to implement, and able to re-
trieve the best ranked pages at a rate that is closer to the op-
timal than other alternatives. Our study was performed on a
large sample of the Chilean Web which was crawled by us-
ing simulators, so that all strategies were compared under
the same conditions, and actual crawls to validate our con-
clusions. We also explored the effects of large scale paral-
lelism in the page retrieval task and multiple-page requests
in a single connection for effective amortization of latency
times.

1. Introduction

Web search is currently generating more than 13% of the
traffic to Web sites [42]. The main problem search engines
have to deal with is the size of the Web, which currently is
in the order of thousands of millions of pages. This large
size induces a low coverage, with no search engine index-
ing more than one third of the publicly available Web [31].

We would like to develop a scheduling policy for down-
loading pages from the Web which guarantees that, even if
we do not download all of the known pages, we still down-
load the most “valuable” ones. As the number of pages
grows, it will be increasingly important to download the
“better” ones first, as it will be impossible to download them
all.

The main contributions of this paper are:

• We propose several strategies for Web page ordering
during a Web crawl, and compare them using a Web
crawler simulator.

• We choose a strategy which is very competitive and ef-
ficient.

• We test this strategy using a real Web crawler and show
that it achieves the objective of downloading important
pages early in the crawl.

Next section presents previous work on Web crawling,
and the rest of this paper is organized as follows: section 3
outlines the problems of Web crawling, section 4 presents
our experimental framework, sections 5 and 6 compare dif-
ferent scheduling policies. In section 7 we test one of these
policies using a real Web crawler. The last section presents
our conclusions.

2. Previous work

Web crawlers are a central part of search engines, and
details on their crawling algorithms are kept as business
secrets. When algorithms are published, there is often an
important lack of details that prevents other from repro-
duce the work. There are also emerging concerns about
“search engine spamming”, which prevent major search en-
gines from publishing their ranking algorithms.

However, there are some exceptions: some descriptions
of crawlers (in chronological order) are: RBSE [26], the
WebCrawler [39], the World Wide Web Worm [35], the
crawler of the Internet Archive [11], the personal search
agent SPHINK [36], an early version of the Google crawler
[8], the CobWeb [20], Mercator, a modular crawler [28],
Salticus [10], the WebFountain incremental crawler [25],
and the WIRE crawler [5] used for this research. Descrip-
tions of crawler architectures include a parallel crawler ar-



chitecture by Cho [16] and a general crawler architecture
described by Chakrabarti [12]. Some crawlers released un-
der the GNU public license include Larbin [3], WebBase
[21] and HT://Dig [2].

Besides architectural issues, studies about Web crawling
have focused on parallelism [16, 41], discovery and control
of crawlers for Web site administrators [44, 43, 1, 29], ac-
cessing content behind forms (the “hidden” web) [40], de-
tecting mirrors [18], keeping the freshness of the search en-
gine copy high [15, 19], long-term scheduling [37, 24, 17]
and focused crawling [22]. There have been also studies on
characteristics of the Web, which are relevant to the crawler
performance, such as detecting communities [30], charac-
terizing server response time [33], studying the distribution
of web page changes [13, 23, 7, 32], studying the macro-
scopic web structure [9, 4], and proposing protocols for web
servers to cooperate with crawlers [6].

3. The problem of Web crawling

A Web crawler works by starting with a set of “seed”
pages, downloading those pages and extracting links from
them, and recursively following those links. Even if we dis-
regard the technical difficulties of transferring, processing
and storing a very large amount of data, there is still an im-
portant research problem, namely, the problem of schedul-
ing the visits to the un-visited pages (we are not considering
in this article the case of re-visits).

At a first glance, it might seem that this scheduling prob-
lem has a trivial solution. If a crawler needs to download a
series of pages whose file sizes in bytes are Pi, and has B

bytes per second of available bandwidth for doing it, then
it should download all the pages simultaneously at a speed
proportional to the size of each page:

Bi =
Pi

T ∗
; T∗ =

∑
Pi

B
(1)

T ∗ is the optimal time to use all the available bandwidth.
This optimal scenario is depicted in Figure 1.

However, there are many restrictions that forbid this opti-
mal scenario. The main restriction of any scheduling policy
is that it must avoid overloading Web sites: a Web crawler
can impose a substantial amount of work on a Web server,
specially if it opens many simultaneous connections for
downloading [29]. It is customary that a Web crawler does
not download more than one page from the same Web site at
a time, and that it waits between 30 and 60 seconds between
accesses. This, together with the fact that Web sites have
usually a bandwidth BMAX

i
that is lower than the crawler

bandwidth B, originate download time-lines similar to the
one shown in Figure 2.

In the Figure, the optimal time T* is not achieved, be-
cause some bandwidth is wasted due to limitations in the

Figure 1. Optimal scenario for downloads.

Figure 2. A more realistic scenario; the
hatched portion is wasted bandwidth.

speed of Web sites (in the figure, BMAX
3

, the maximum
speed for page 3 is shown), and to the fact that we must
wait between accesses to a Web site (in the figure, pages
1 − 2 and 4 − 5 belong to the same site).

To overcome the problems shown in Figure 2, it is clear
that we should try to download pages from many different
Web sites at the same time. Unfortunately, most of the pages
are located in a small number of sites: the distribution of
pages to sites, shown in Figure 3, is very bad in terms of
crawler scalability. Thus, it is not possible to use produc-
tively a large number of robots and it is difficult to achieve
good use of the network bandwidth.

There is another serious practical restriction: the HTTP
request has latency, and the latency time can be over 25% of
the total time of the request [34]. This latency is mainly the
time it takes to establish the TCP connection and it can be
partially overcome if the same connection is used to issue
several requests using the HTTP/1.1 “keep-alive” feature.



 1e-05

 1e-04

 0.001

 0.01

 0.1

 1  10  100  1000  10000  100000

Fr
ac

tio
n 

of
 s

ite
s

Number of documents

k/x^1.77 in [50,500]

Figure 3. Distribution of site sizes.

4. Experimental setup

We crawled 3.5 million pages in April 2004 from over
50,000 Web sites using the WIRE crawler [5]. We estimate
that this is more than 90% of the publicly available Chilean
Web pages. We restricted the crawler to download at most
25,000 pages from each Web site.

Using this data, we created a Web graph, and ran a sim-
ulator on this graph using using different scheduling poli-
cies. This allowed us to compare different strategies under
exactly the same conditions. This simulator models page
transfers and bandwidth saturation of the Internet link when
too many connections are in process.

We considered a number of scheduling strategies whose
design is based on a heap priority queue with nodes repre-
senting sites. For each site-node we have another heap rep-
resenting the pages in the Web site, as depicted in Figure
4.

Figure 4. Queues used for the scheduling.

The scheduling is divided in two parts: the policy for or-
dering the queue of Web sites (long-term scheduling) and
the policy for ordering the queues of Web pages (short-term
scheduling).

At each simulation step, the scheduler chooses the top-
most Website from the queue of Web sites and sends this

site’s information to a module that will simulate download-
ing pages from the Website. The parameters for our differ-
ent scheduling policies are the following:

• The interval w in seconds between connections to a
single Web site.

• The number of pages k downloaded for each connec-
tion when re-using HTTP connections.

• The number r of simultaneous connections to different
Web sites, i.e.: the degree of parallelization. Although
we used a large degree of parallelization, we restricted
the robots to never establish more than 1 connection to
a Web site at a given time.

4.1. Interval between connections (w)

The first proposal for the interval w between connections
was given by Koster [29]: w = 60 seconds. If we download
pages at this rate from a Web site with more than 100,000
pages over a perfect connection with zero latency and infi-
nite bandwidth, it would take more than 2 months to down-
load the entire Web site; also, we would be permanently us-
ing one of the processes or threads from that Web server.
This does not seems acceptable.

Today, it is common to consider less than w = 15 sec-
onds impolite. Anecdotal evidence from access logs shows
that access intervals from known crawlers vary between 20
seconds and 3–4 minutes. We use w = 15 seconds in our
simulations and real-life experiments.

4.2. Number of pages per connection (k)

Most Web crawlers download only one page per each
connection, and do not re-use the HTTP connection. We
considered downloading multiple pages in the same con-
nection to reduce latency, and measured the impact of this
in the quality of the scheduling.

The protocol for keeping the connection open was intro-
duced as the Keep-alive header in HTTP/1.1 [27]; the
default configuration of the Apache web server enables this
feature by default, and allows for a maximum of 100 objects
downloaded per request, with a timeout of 15 seconds be-
tween requests, so when using k > 1 in practice, we should
also set w ≤ 15 to prevent the server from closing the con-
nection. This is another reason to set w = 15 during the ex-
periments.

4.3. Number of simultaneous requests (r)

All of the robots currently used by Web search engines
have a high degree of parallelization, downloading hun-
dreds or thousands of pages from the same computer at a
given time. We used r = 1, serialization of the requests, as



a base case, r = 64 and r = 256 during the simulations,
and r = 1000 during the actual crawl.

As we never open more than one connection to a given
Web site, r is bounded by the number of Web sites available
for the crawler, i.e., the Web sites that have pages which
have not yet been visited. If this is too small, we cannot
make use of a high degree of parallelization and the crawler
performance in terms of pages per second drops dramati-
cally. This happens at the end of a large crawl, when we
have covered a substantial fraction of Web pages, or by the
end of a batch of pages, when downloading pages grouped
by batches. In the later case, the batch of pages must be
carefully built to include pages from as many Web sites as
possible; this should be a primary concern when parallelism
is considered.

5. Long-term scheduling

The complete crawl on the real Chilean Web takes about
8 days, so, apart from comparing strategies under exactly
the same scenario, it is much more efficient to test many
strategies using the crawling simulator.

Retrieval real-time for Web pages is simulated by con-
sidering the real-crawl observed latency, transfer rate, page
size for every downloaded page, and (possible) saturation
of bandwidth in accordance with the number of active con-
nections at a given moment of the simulation. We also vali-
dated our results with measures from the real 8-days crawl.

As mentioned, for evaluating the different strategies, we
calculated before hand the Pagerank value of every page
in the whole Web sample and used those values to calcu-
late the cumulative sum of Pagerank as the simulated crawl
goes by. We call those values “oracle” ones since in prac-
tice they are not known until the complete crawl is finished.
The strategies which are able to reach faster values close to
the target total value 1.0 are considered the most efficient
ones.

For evaluating the different strategies, we calculated be-
forehand the Pagerank value of every page in the whole
Web sample and used those values to calculate the cumu-
lative sum of Pagerank as the simulated crawl goes by. We
call this measure an “oracle” score since in practice it is
not known until the complete crawl is finished. The strate-
gies which are able to reach values close to the target total
value 1.0 faster are considered the most efficient ones.

All of the considered strategies are based on the two-
level scheduling shown in Figure 4. We named our strate-
gies Optimal, Depth, Length, Batch and Partial:

Optimal Under this strategy, the crawler visits the pages
in Pagerank order. To do that, it asks for the Pager-
ank to an “oracle” which knows the final value of the
Pagerank for each page. Note that during the crawl, a
crawler does not have access to this information, as it

only knows a portion of the Web graph and therefore
can only estimate the final Pagerank.

At a first glance, a way of approximating this strat-
egy in practice could be to use the Pagerank obtained
on a previous crawl of the Web; however, this is not
a good estimator: Cho and Adams [14] report that the
average relative error for estimating the Pagerank four
months ahead is about 78%. Also, a study by Ntoulas
et. al [38] reports that “the link structure of the Web
is significantly more dynamic than the contents on the
Web. Every week, about 25% new links are created”.

Depth Under this strategy, the crawler visits the pages in
breadth-first ordering. Web page heaps are kept in such
a way that the pages with the smallest depth in the
Web graph are the ones with the greatest heap’s pri-
orities. This is the same strategy described by Najork
and Wiener [37], which in their experiments showed to
capture high-quality pages first.

Length This strategy sorts the pages on each Web site ac-
cording to depth, but Web sites are ordered by consid-
ering the number of pages in the respective queue as
the priority for each Web site. Nodes in the sites heap
are re-arranged dynamically to follow changes in their
priorities as new pages are found.

Batch The crawler downloads a batch of K pages and once
all of those pages are retrieved, the Pagerank algorithm
is run on the subset of known Web pages (i.e.: no oracle
Pagerank values are used). The next batch is formed
with K pages sorted by the Pagerank value at that mo-
ment. This is like the strategy described by Cho et al.
[17], except that in their case K = 1 and Pagerank
is re-calculated every time a new URL is downloaded.
This can be very slow in practice.

Partial The crawler executes the Pagerank algorithm
every time K pages are retrieved, but between
re-calculations, new pages are given a “tempo-
rary” Pagerank equivalent to the sum of the nor-
malized rankings of the pages that point to them.
A newly discovered page could be crawled as soon
as it is found, as the page to be downloaded is al-
ways the page with the highest partial Pagerank.

Initial (home-pages) are assumed to have the same
Pagerank value at the start. In the case of batches, or par-
tial re-calculations, we performed experiments for
K = 10, 000, K = 50, 000 and K = 100, 000 pages.
All of the strategies are bound to the following restric-
tions: w = 15 waiting time, c = 1 pages per connec-
tion, r simultaneous connections to different Web sites,
and no more than one connection to each Web site at a
time. In the first set of experiments we assume a situa-
tion of high-bandwidth for the Internet link, i.e., the band-
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Figure 5. Cumulative Pagerank vs retrieved
pages, case for r = 1, one robot.

width of the Web crawler B is larger than any of the
maximum bandwidths of the Web servers BMAX

i
.

The results for the cumulative sum of the Pagerank val-
ues considering one robot (r = 1, a single network connec-
tion at a time; we show the effect of parallelizing the down-
loads with more robots in the following figures) are shown
in Figure 5. Note that a random policy, not shown in the Fig-
ure, would produce a straight line.

Regarding the results, the Optimal strategy is too greedy
if a high coverage (more than 75%) is expected, as it down-
loads all the pages with good Pagerank very early, but later
it has only a few Web sites to choose from, so it is then
surpassed by other strategies due to the restrictions of Web
crawling.

The strategies Depth and Batch are similar, with a small
difference in favor of Batch. This is consistent with the find-
ings of Cho et al. [17]. Finally, the Partial strategy performs
poorly and close to random. This means that the suggested
approximation of Pagerank is not a good approximation.

The Length strategy is better than the strategies based
on periodical Pagerank calculations and Depth. Notice that
the implementation for the Length policy, and its process-
ing requirements are significantly lower than for the strate-
gies which calculate link-based ranking. In particular, cal-
culating periodical Pageranks takes a significant amount of
resources in running time and space.

Figure 6 shows the effect of increasing the number of
robots to r = 64 and r = 256. Observing the rate of
growth of the cumulative Pagerank sum, the results show
that Length is more stable than Depth, though it improves
as the number of robots increases.

Table 1 shows the effects in retrieval time when we in-
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crease the number of robots for different bandwidths. The
results shows how bandwidth saturation makes pointless the
use of several robots.

Bandwidth r=1 r=64 r=256
20000000 1.0 54.6 220.1

2000000 1.0 54.3 204.3
200000 1.0 43.0 114.1

20000 1.0 27.0 83.3
2000 0.7 3.8 16.0

200 0.2 1.6 3.0

Table 1. Predicted speed-ups for parallelism.

6. Short-term scheduling

While crawling, specially in distributed crawling archi-
tectures, it is typical to work by downloading groups of
pages. During that period of time, no care is taken about
Pagerank values. The problem is that on a typical batch,
most of the pages are located in a reduced number of sites:
the distribution is similar that for the whole Web (Figure 3).

Even if a batch involves a large number of Web sites, if
a large fraction of the Web sites has very few pages, then
quickly many of the robots will be idle, as the number of
connections r is always smaller than the number of differ-
ent available Web sites. Figure 7 illustrates this problem,
showing the effective number of robots involved in the re-
trieval of a typical batch in the middle of the crawl for sce-



narios with large (20 KB/s) and small (2 KB/s) bandwidth.
A solution is to increase k and let robots get more than one
page every they visit a site, in the Figure, k = 100.
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Figure 7. Number of active robots vs time:
one page per connection (top) and 100 pages
per connection (bottom)

Downloading several pages per connection resulted in
significant savings in terms of the total time needed for
downloading the pages, as more robots are kept active for a
longer part of the crawl. In the case of the small bandwidth
scenario, the time to download a batch was reduced from
about 33 to 29 hours, and in the case of a large bandwidth
scenario, the time was reduced from 9 hours to 3 hours.

Note that, as most of the latency of a download is related
to the connection time, downloading multiple small pages
with the same connection is very similar to downloading
just a large Web page, therefore, increasing the number of
pages which are downloaded in the same connection is the
same as reducing w, the waiting time between pages. Re-
ducing w in practice can be very difficult, because it can be
perceived as a threat by Web site administrators, but increas-
ing the number of pages downloaded by connection can be
a situation in which both search engines and Web sites win.

7. Application: downloading the real Web

We started with a list of Web sites registered with the
Chilean Network Information Center, and ran the WIRE
crawler during 8 days with the Length strategy. We visited
over 50,000 Web sites with 3 million pages and were able
to download successfully 2.4 million of them (80%). In to-
tal, 57 Gb of data were downloaded.

We ran the crawler in batches of up to 100,000 pages, us-
ing up to r = 1000 simultaneous network connections, with
w = 15 seconds between accesses to the same Web site and
k = 1 download per connection. The crawler used both the
robots.txt file and meta-tags in Web pages according
to the robot exclusion protocol [29].

We calculated the Pagerank of all the pages in the collec-
tion when the crawling was completed, and then measured
how much of the total Pagerank was covered during each
batch. The results are shown in Figure 8.
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We can see that by the end of day 2, 50% of the pages
were downloaded, and about 80% of the total Pagerank was
achieved; according to the probabilistic interpretation of
Pagerank, this means we have downloaded pages in which a
random surfer limited to this collection would spend 80% of
its time. By the end of day 4, 80% of the pages were down-
loaded, and more than 95% of the Pagerank, so in general
this approach leads to “good” pages early in the crawl. In
fact, the average Pagerank decreased dramatically after a
few days (Figure 9), which is consistent with the findings of
Najork and Wiener [37].

It is reasonable to suspect that pages with good Pagerank
are found early just because they are mostly home pages or
are located at very low depths within Web sites. There is, in-
deed, an inverse relation between Pagerank and depth in the
first few levels, but 3-4 clicks away from the home page the
correlation is very low, as can be seen in Figure 10. Note
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Figure 9. Average Pagerank vs day of crawl.

that home pages have, in average, a low Pagerank as there
are many of them with very few or no in-links: we were
able to found them only by their registration under the .cl
top-level domain database.
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8. Conclusions

The restrictions involved in Web crawling make this
problem a very interesting one. In particular, a strategy
which uses an “oracle” to detect pages with high Pagerank
early, is not very good because as the crawl advances, few
Web sites are available and inefficiencies arise.

For long-term scheduling, our results show that a really
simple crawling strategy, such as the one we called Length,
is good enough for efficiently retrieving a large portion of
the Chilean Web. As the idea is to try to keep as many Web
sites active as possible, this strategy prioritizes Web sites
based on the number of pages available from them, such
that is avoids exhausting Web sites too early.

Also our simulation results show that attempting to re-
trieve as many pages from a given site (k >> 1), allows
one to effectively amortize the waiting time w before vis-
iting the same site again. This certainly helps to achieve a
better utilization of the available bandwidth.

Experiments with a real crawl using the Length strat-
egy on the ever-changing Web validated our conclusions
whereas simulation was the only way to ensure that all
strategies considered were compared under the same con-
ditions.
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