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Abstract. Reasoning about events or temporal aspects is fundamental
for modeling geographic phenomena. This work concerns the analysis of
events as configurations of temporal intervals. It presents two strategies
to select relations that characterize configurations of temporal intervals:
a strategy based on the algebraic property of composition and a strategy
based on a neighboring concept in a vector representation. This type of
analysis is useful for characterizing sets of events without the need of
making an exhaustive specification of all temporal relations. This work
complements a previous study about topological relations of regions in
a 2D space and confirms the potential of using the algebraic properties
of composition and the metric characteristics of intervals, even if only
qualitative relations are considered.

1 Introduction

The ability to understand, represent, and manage temporal knowledge about
the world is fundamental in humans and artificial agents [19, 22]. Reasons why
time should be included in Geographic Information Systems (GISs) have al-
ready been discussed [13]. Such reasons are mostly associated with the fact that
many applications involving the description of geographic phenomena require
the treatment of dynamic aspects that are related to space and time. Examples
of such applications are transportation and urban analysis, and the analysis of
physical phenomena.

The temporal data model currently by far the most frequently used for un-
derstanding dynamic processes in the real world is based on the linear concept.
In this concept, temporal intervals are projected onto a one-dimensional con-
ceptual space by a one-dimensional segment. Relations between these intervals
are called temporal relations. Allen [1] defined thirteen fine temporal relations,
which later were extended by the sixteen coarse relations [8]. The Allen’s basic
thirteen relations define a relation algebra [23], which implies that the set of
temporal relations is complete, each relation has a converse relation within the
set, and there exists a composition operation that results in one or more relations
within the set. The composition operation creates a reasoning mechanism that
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allows one to derive the relation between two intervals through the intervals’
combination with a common third interval.

This work concerns the temporal analysis of sets of events described by con-
figurations of temporal intervals. In this paper we talk about events as something
that occurs or happens at a particular time interval, not only at a specific point
in time. Thus, we do not make a distinction between events, processes, states or
actions. We consider events as everything that happens and is then gone. This
work abstracts the semantics of events and focuses on temporal relations be-
tween events. In the spatial domain, the same idea is applied when one abstracts
the meaning of spatial features and concentrates on spatial relations between
these features. Such an abstraction has been useful for content-based retrieval
where queries are expressed by sketches [5, 20]. In this work, however, sketches
apply to the temporal domain. For example, if we have a database that stores the
information about a diseases that occurred in a geographic area, one could be
interested in searching for diseases that co-occur, diseases that precede or start
to appear at the same time, and so on. In this search, the concern is not about
the absolute positions of events on time, but rather on the relations between
temporal intervals. This search could be extended to more than two diseases to
become a search of a set of diseases, called in this paper a configuration of tem-
poral intervals. The way the configurations of temporal intervals are expressed
in a query language is out of the scope of this paper and left for future work.

The paper presents two strategies to select relations that characterize config-
urations of temporal intervals: a composition-based and a neighborhood-based
strategy. The selection of temporal relations aims at minimizing the number of
relations that are needed to characterize the temporal arrangement of events.
Such temporal relations are the basis for content-based retrieval, where these
relations represent query criteria or query constraints. For example, given three
different events, we can have three binary temporal relations among them, with-
out considering equal and converse relations. This study explores strategies that
indicate whether or not one needs the three relations to characterize the tempo-
ral arrangement of events. The hypothesis of this work is that by minimizing the
number of constraints in a query evaluation, one decreases the computational
cost of content-based retrieval. In addition to applications in content-based re-
trieval with temporal criteria, this work can be interesting for compressing in-
formation about relations between events, or in discovering dynamic patterns by
focusing on subsets of temporal relations. Associated with spatial information,
where topological relations describe constraints about the spatial arrangement
of objects [3, 5, 11, 20], selecting temporal relations may have an impact not only
on modeling but also representating dynamic phenomena.

The composition-based strategy relies on the basic derivation property of
composition operations, whereas the neighborhood-based strategy exploits the
closeness of temporal intervals to select relations between intervals. In this sense,
this work follows closely ideas from the work by Rodŕıguez et al. [20], which
defines and compares strategies for query pre-processing of topological relations
in a 2D space; however, to the best of our knowledge, there has not yet been
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done some research in the temporal domain in this direction. Thus, a goal of
this work was to explore how well strategies that were applied to topological
relations between regions in 2D space could be applied to temporal intervals.

The organization of this paper is as follows: Section 2 describes tempo-
ral relations and their composition. Section 3 presents the composition- and
neighborhood-based strategies for simplifying configurations of temporal inter-
vals. Section 4 evaluates the applicability of these strategies for content-based
retrieval of configurations of temporal intervals. Conclusions and future work are
presented in Section 5.

2 Temporal Relations

The representation of time by means of intervals rather than points has a his-
tory in philosophical studies of time [9, 10]. In 1983, Allen [1] defined a calculus
of time intervals as a representation of temporal knowledge that could be used
in artificial intelligence. Nowadays, many researchers from different disciplines
still use Allen’s thirteen temporal relations. Allen’s Interval Algebra provides a
rich formalism for expressing qualitative relations between temporal intervals.
Allen’s interval algebra uses the notion of binary relations between convex in-
tervals, which are intervals without gaps. An interval I is represented as a pair
[I−; I+] of real numbers with I− < I+, denoting the left and right end points of
the interval, respectively. This means that Allen only deals with pure intervals
without considering point intervals.

Let the beginnings and endings of two events have three possible relations:
smaller (<), equal (=), and larger (>). Then events have thirteen possible qual-
itative relations. The relations that are shown in Table 1 capture the qualitative
aspect of event pairs as before, meets, overlaps, starts, finishes, during, and equal,
in terms of constraints on the end points of the constituent temporal intervals.
These basic temporal relations have their corresponding converse relations, with
equal being self-converse. The symbolic representation of temporal relations used
in this paper modifies the proposal by Kulpa [12]. It considers symbols that are
based on two horizontal lines, representing the two intervals, and one or two
vertical lines, representing the temporal topology.

Like the composition table of topological relations between regions [4], there
exists a composition table for the temporal relations between intervals (Table 2).
In this table, a crisp result of a composition rik and (;) rkj gives a unique possible
relation rij . For example, the composition I1 is before I2 ; I2 contains I3 ( ; )
has the crisp result that I1 is before I3 ( ). When the composition does not
give any information (ni), all relations are possible.

Although there is a significant analogy between spatial and temporal rela-
tions, there are certain important differences. For example, when working with
temporal intervals one has to differentiate between X meets Y and Y meets X,
since time has a unidirectional nature.
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Table 1. Topological temporal relations between two pure intervals

Relation Symbol Conditions Converse

I1 before I2 I1+ < I2- after ( )

I1 meets I2 I1+ = I2- met by ( )

I1 overlaps I2 I2- > I1- ∧ I1+ < I2+ ∧ I1+ > I2- overlapped by ( )

I1 starts I2 I1- = I2- ∧ I1+ < I2+ started by ( )

I1 finishes I2 I1+ = I2+ ∧ I1- > I2- finished by ( )

I1 during I2 I1- > I2- ∧ I1+ < I2+ contains ( )

I1 equal I2 I1- = I2- ∧ I1+ = I2+ equal

Table 2. The composition table for the thirteen relations

rik;rkj

ni

ni

ni

3 Simplifying Configurations of Temporal Intervals

A configuration of temporal intervals is considered to be a set of temporal in-
tervals that holds particular temporal relations. In this context, a configuration
can be seen as a graph G that is complete, directed and labeled, where nodes N
are temporal intervals and arcs A are binary relations between these intervals
(Equation 1).
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G = (N,A)
N = {I1, I2, . . . , In}
A = {rij |∀i, j ∈ [1..n],∃Ii, Ij ∈ N} (1)

A graph G that describes a set of n intervals can be represented as a matrix
of n × n elements, where these elements identify binary temporal relations rij .
Elements rii along the diagonal are the identity relation (i.e., equal) (Figure 1).

I1

I2

I3

I4

time

I1

I4

I3

I2

I1

I1

I2

I2

I3

I3

I4

I4

Fig. 1. Temporal configurations as a directed graph represented by an n× n matrix

The idea of simplifying configurations of temporal intervals aims at determin-
ing the subset of temporal relations that can characterize temporal configurations
or events. Thus, the idea is to reduce the number of temporal relations without
(significantly) reducing the amount of information conveyed by the whole set of
relations. To do so, two different strategies are analyzed: (1) composition-based
and (2) neighborhood-based strategies.

3.1 Composition-Based Strategy

The composition-based strategy (CBS) for analyzing configurations of temporal
intervals is solely based on the composition of binary relations so that no ex-
plicit information about the duration and absolute moment on time of intervals
are needed. CBS starts with a graph representing a configuration of temporal
intervals and selects a minimal subgraph from which one can derive the com-
plete and original graph without losing information about the relations between
temporal intervals (i.e., relations defined in Table 1). The strategy for finding
this subgraph follows the principles of logical consistency in a graph [14].

Logical consistency: Logical consistency is expressed by the composition of
binary relations. Given a configuration expressed as a graph, consistency is for-
mulated as a constraint satisfaction problem [16] over a network of binary rela-
tions [15]. To be a consistency network of binary relations, a graph must fulfill
three constraints: node-consistency, arc-consistency, and path-consistency.
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– Node-consistency: each node must have a self-loop arc, denoting the identity
relation.

– Arc-consistency: for each directed arc there must be an arc in the reverse
direction, denoting the converse binary relation.

– Path-consistency: although a variety of paths can lead from one node to
another, in order to infer the path consistency of a relation it is sufficient
to consider all composition paths of length two that connect the relation
between nodes. Having a consistent graph, a relation must coincide with
its induced relation determined by the intersection of all possible composi-
tion paths of length two (Equation 2, where ’;’ represents the composition
operator).

∀i,jrij =
n⋂

k=1

rik; rkj (2)

Following the principle of path consistency, a relation can be completely
derived if, and only if, it is the only relation that results from the intersection of
all possible composition paths of length two in the graph. Consider the example
in Figure 2 with three temporal intervals. The graph in the figure corresponds
to a node-, arc-, and path-consistent network. The path consistency is checked
with the determination of the nine induced relations (Table 3).

I1

I1 I2

I2

I3

I3I1

I2I3

Fig. 2. Node-, arc-, path- consistency network of temporal relations

Composition-based simplification: Unlike consistency checking [6], where
one is interested in completing a partial graph, a strategy for simplifying con-
figurations of temporal intervals starts from a complete and consistent graph
and eliminates relations that can be consistently derived. In such a process of
simplifying temporal configurations, it is important to analyze whether or not
by eliminating relations we obtain a unique minimal subgraph.

The work in [20] showed that there exists one minimal subgraph that results
from the application of the composition-based strategy to simplify topological
configurations of regions in a 2D space. In the temporal domain with thirteen
interval relations, in contrast, there may be more than one minimal subgraph. A
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Table 3. All possible derivations from path-consistency

Relation Derivation

r11 = r12; r21

T
r11; r11

T
r13; r31 = ( ∨ ∨ ∨ ∨ ∨ ∨ ∨ ∨ )T T

( ∨ ∨ )

r12 = r11; r12

T
r12; r22

T
r13; r32 =

T T
( ∨ ∨ )

r13 = r11; r13

T
r12; r23

T
r13; r33 =

T
( ∨ ∨ )

T
r21 = r21; r11

T
r22; r21

T
r23; r31 =

T T
( ∨ ∨ )

r22 = r21; r12

T
r22; r22

T
r23; r32 = ( ∨ ∨ ∨ ∨ ∨ ∨ ∨ ∨ )T T

( ∨ ∨ )

r23 = r21; r13

T
r22; r23

T
r23; r33 = ( ∨ ∨ )

T T
r31 = r31; r11

T
r32; r21

T
r33; r31 =

T
( ∨ ∨ )

T
r32 = r31; r12

T
r32; r22

T
r33; r32 = ( ∨ ∨ )

T T
r33 = r31; r13

T
r32; r23

T
r33; r33 = ( ∨ ∨ )

T
( ∨ ∨ )

T

reason for having more than one minimal subgraph is the asymmetric property
of temporal relations, which has an effect on the composition of relations. Unlike
the spatial domain of 2D regions, where the relation overlaps is a relation whose
participation in a composition does not result in a crisp result, in the temporal
domain each relation participates in at least one composition with a crisp result.
Both overlaps and overlapped by relations in the temporal domain participate
in three different compositions with crisp results. Thus, in the temporal domain,
if either overlaps or overlapped by results from the intersection of composition
paths of length two, these relations may still be used in other composition paths
that derive other relations. For instance, consider a configuration with four tem-
poral intervals and the derivable relations presented in Table 4. The relation rij

is derived from the intersection of two composition paths of length two. One of
these compositions involves the relation rik. In addition, rik can be derived by
using a composition path that involves rij . Thus, one could use rij or rik in the
composition path and get a crisp result.

Table 4. Example of alternative derivable relations

Relation Derivation

rij = ril; rlj

T
rik; rkj = ;

T
;

rik = rij ; rjk

T
ril; rlk = ;

T
;
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A more complete example illustrates how the graph of a configuration of tem-
poral intervals, represented as a matrix, can be reduced to a minimum number
of relations. Figure 3 shows the set of temporal intervals and the corresponding
matrix representation of the initial consistency network.

I1

I1 I2

I2

I3

I3

I4

I4

I5

I5

I1

I2

I3

I4

I5

time

Fig. 3. Temporal configuration with the matrix representation of its consistency net-
work

Table 5 shows the possible derivations from path consistency that result in
crisp results. For example, the derivation of the relation between intervals I1 and
I2 (r12) is achieved by the intersection of the sets of relations that result from
the compositions r13; r32, r14; r42, and r15; r52. Unlike this case, the intersection
of the results of the compositions r12; r23, r14; r43, and r15; r53 is equivalent to
the set { , , } (i.e., any of the relations in the set is a possible result) and,
therefore, this intersection does not uniquely derive the relation r13 ( ). Cases
when the intersections of composition paths do not result in crisp results are not
included in Table 5.

Table 5 shows that there are seven possible derivations from path consistency;
however, it is not possible to eliminate all of these relations. The derivation of
r12 requires the relation r14 and, vice versa, the derivation of r14 requires the
relation r12. So, we cannot eliminate both relations. The same situation occurs
with relations r14 and r34, r12 and r15, and r24 and r34. Note in Table 5 that
to derive relation r35, one just needs the composition between relations r31 and
r15, since only this composition gives a crisp result.

A minimal subgraph will eliminate the maximum number of relations that
are derivable, while keeping the minimum number of relations that are needed
to completely determine the original consistency network. In this example, there
are two possible combinations of derivable relations obtained from node, arc-
and path consistency. These combinations create minimal subgraphs with six
relations (Figure 4).

A strategy for selecting a minimal subgraph is to add heuristics in the search
of minimal subgraphs. A basic heuristics is to choose the subgraph that contains
more relevant relations, where relevance is a qualitative order of relations. For
example, intervals that are far apart may be considered less important. Such a
heuristics follows the classic principle of geography, which establishes a stronger



9

Table 5. All possible derivations from path-consistency

Relation Derivation

r12 = r13; r32

T
r14; r42

T
r15; r52 = ( ∨ ∨ )

T
( ∨ ∨ ∨ ∨ )T

( ∨ ∨ ∨ ∨ )

r14 = r12; r24

T
r13; r34

T
r15; r54 = ( ∨ ∨ ∨ ∨ )

T
( )

T
(ni)

r15 = r12; r25

T
r13; r35

T
r14; r43 = ( ∨ ∨ )

T
( ∨ ∨ )

T
( ∨ ∨ ∨ ∨ ∨ ∨ ∨ ∨ )

r24 = r21; r14

T
r23; r34

T
r25; r54 = ( ∨ ∨ ∨ ∨ )

T
( )

T
( ∨ ∨ ∨ ∨ )

r34 = r31; r14

T
r32; r24

T
r35; r54 = ( ∨ ∨ ∨ ∨ )

T
(ni)

T
( ∨ ∨ ∨ ∨ )

r35 = r31; r15

T
r32; r25

T
r34; r45 = ( )

T
( ∨ ∨ )

T
( ∨ ∨ ∨ ∨ ∨ ∨ ∨ ∨ )

r45 = r41; r15

T
r42; r25

T
r43; r35 = ( )

T
( ∨ ∨ ∨ ∨ )

T
( )

I1

I1 I2

I2

I3

I3

I4

I4

I5

I5

I1

I1 I2

I2

I3

I3

I4

I4

I5

I5

Fig. 4. Consistent minimal subgraphs derived from node-, arc-, and path-consistency

connection between close objects [24]. Another strategy may consider to sort
relations based on the information content of the relations in a context. Following
the argumentation from information theory [21], information content is defined
in terms of the uncertainty that the data eliminate, that is, it is negative to the
likelihood or frequency of the data. For example, within a large set of intervals,
the use of a less frequent relation reduces the uncertainty of which intervals hold
such relation. In this work, we selected the subgraph with a larger number of
non-disjoint relations, considering that these relations are less frequent in data
sets [7].
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3.2 Neighborhood-Based Strategy

The Neighborhood-Based Strategy (NBS) is a quantitative technique that con-
centrates on closely related temporal interval points. Making an analogy to To-
bler’s First Law of Geography [24] “everything is related to everything else, but
nearby things are more related than distant things,” this work explores a tem-
poral closeness, that is, “everything is related to everything else, but nearby
things in time are more related than distant things in time.” Very important
here is to say that implicitly one talks about the same location in space. It is
not that obvious how applicable neighborhood in time is, especially considering
the ontological object of time as temporal intervals; however, to the best of our
knowledge there has been not much work that explores a neighboring concept
of temporal intervals in configurations.

Neighborhood of temporal intervals: This work characterizes a temporal
interval by two parameters: (1) the duration (radius) of an interval and (2) the
moment when the interval happens, which is identified by the middle point of the
interval [12]. These parameters are mapped onto a 2D space with the x-axis being
middle points and y-axis being radii of intervals. Within this vector representa-
tion, intervals are considered connected or closely related if they are neighbors.
Neighboring points are determined by using the Delaunay Triangulation [17, 18].
The Delaunay Triangulation partitions the Euclidean space, composed of a set
of points, into triangles such that no four points of this set are co-circular. The
dual of the Delaunay Triangulation, the Voronoi Diagram, represents a partition
of space into regions where points of the Delaunay Triangulation are the nuclei
of specific areas. These areas are bounded by the perpendicular bisectors of the
nucleus and the set of its neighboring points. An example of the determination
of neighboring temporal intervals is shown in Figure 5.

I4

I3
I2

I5

I1

radius

middle point

I1

I2

I3

I4

I5

time

Fig. 5. Representation of temporal intervals and determination of Delaunay Triangu-
lation
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From Euler’s Equation [18], which is applied for every convex polyhedron
with mn nodes and ma arcs, one can derive that every node in the Delaunay
Triangulation has a degree (i.e., number of neighboring nodes) ≥ 3. If all nodes of
a Delaunay Triangulation are substituted with intervals and all arcs with binary
relations, we can deduce that for a very large graph, the average number of
neighbors (av ng) of an interval is less than six (Equation 3). Thus, the average
total number of arcs must be less than 3n, that is, it grows linearly by O(n), with
n being the number of intervals. This upper bound of the number of relations in
the final subgraph contrasts the theoretical bound of O(n2) of the initial graph.

av ng =
2ma

mn
≤ 6− 12

mn
(3)

Neighborhood-based simplification: To simplify temporal configurations,
these configurations are represented as points in a 2D space. Only the arcs that
exist in the resulting graph from the Delaunay Triangulation are considered to
represent relations that are part of the minimal subgraph. The graph from the
Delaunay Triangulation is undirected; however, we consider the arcs of this graph
as binary relations, that is, as directed arcs. For example, consider the temporal
configuration and the Delaunay Triangulation in Figure 5, its corresponding
minimal configuration graph represented as a matrix is shown in Figure 6.

I1

I1 I2

I2

I3

I3

I4

I4

I5

I5

Fig. 6. Minimal configuration graph that is obtained by applying the neighborhood-
based simplification

Unlike the composition-based strategy for simplifying temporal configura-
tions, given a representation of temporal configurations in a 2D space, there
exists only one minimal subgraph.

4 Experimental Results of Selecting Temporal Relations

In order to evaluate how much these strategies can simplify configurations of
temporal intervals, we use these strategies to simplify configurations of temporal
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intervals that are used as queries in a process of content-based retrieval. The idea
behind this analysis is to check the effect of eliminating temporal relations of an
original query when comparing the results of the retrieval process (i.e., the set
of configurations that are solutions) with respect to the desired answer (i.e., the
original query). Eliminations will not have a negative impact if, by considering
the subset of relations between temporal intervals as constraints in a retrieval
process, one obtains results whose temporal intervals satisfy the complete set of
constraints of the query. In such a process, there is a basic comparison between
the original configuration and the configurations retrieved from the data set.

4.1 Framework for Comparing Temporal-Interval Configurations

We distinguish two levels in the comparison of temporal relations that we have
called consistency and equivalence. Temporal relations are consistent if they
are the same within the set of thirteen interval relations defined by Allen (i.e.,
there is no contradiction in the relation between intervals); temporal relations are
equivalent if they are consistent and are the same based on metric characteristics
that distinguish relative size, relative overlapping, and relativity of disjointness.
For example, in Figure 7 the relation between I1 and I2 is consistent with the
relation between intervals I3 and I4 (r12 = r34); however, the pair of intervals
(I1,I2) is not equivalent to (I3,I4) in terms of the lengths of intervals and length
of overlap.

I1
I2

I3
I4

Fig. 7. Consistent but not equivalent temporal relations

In this context, consistency and equivalence are binary decisions; however,
equivalence is associated with a distance function that depends on metric charac-
teristics of temporal intervals. The comparison of temporal intervals is not con-
cerned with the location of intervals on time and the intervals’ absolute lengths.
Absolute positions of intervals on time are typically used for timeslice queries,
which are outside the scope of this work. A relative length is used to make the
distance measure less sensitive to scaling of intervals’ representations. We define
the distance between two pairs of intervals (I1,I2) and (I3,I4) by:

distance((I1, I2), (I3, I4)) =
{
|T (I1, I2)− T (I3, I4)| if r12 = r34

1 otherwise with

T (Ij , Ik) =
length(Ij) + length(Ik)

2length(Ij

⋃
Ik)
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length(Ij) = I+
j − I−j

Ij

⋃
Ik ≡ {(I−, I+)|I− = min(I−j , I−k ) ∧ I+ = max(I+

j , I+
k )} (4)

This function gives values from 0 to 1, with 1 meaning that the relations
are inconsistent and, therefore, non equivalent, and with 0 meaning equivalent
relations. To relax the equivalence definition, one could consider that two rela-
tions are equivalent if distance is less than or equal to a given threshold (set
in this experiment to 0.05). In this work, we say that a solution is consistent
if all relations in the solution are consistent with respect to the corresponding
query. Likewise, a solution is said equivalent if the relations in the solution are
equivalent to the relations in the query.

4.2 Evaluation of Strategies

For the analysis of composition- versus neighborhood-based strategies, a syn-
thetic set of temporal intervals was created that allows for experimental repli-
cation. The synthetic data set was created with all possible intervals from 0 to
10 temporal units, which results in 55 different temporal intervals. Although the
data set is small, it has all possible intervals within a temporal range. These
intervals, in combination, create a large set of possible configurations (e.g., for
configurations with 5 intervals, there exist 3.4× 106 possible configurations).

We started with a set of 50 configurations that were created by randomly
selecting five temporal intervals (i.e., ten temporal relations or constraints) from
the data set. These configurations are queries in the retrieval process and are
pre-processed to obtain four different cases of simplified queries: original con-
figurations with all constraints, configurations after eliminating two random re-
lations, configurations derived from the composition-based strategy (CBS), and
configurations derived from the neighborhood-based strategy (NBS). We used
the basic strategy of random eliminations of relations to evaluate whether or
not the results with subgraphs were independent of the strategies of elimination.
For the comparison of CBS and NBS, and considering the multiple subgraphs
obtained with CBS, we selected the minimal subgraph with more non-disjoint
relations (i.e., after and before relations). This heuristics was defined after check-
ing that the results of the searches based on these selected subgraphs gave, on
average, better results than other subgraphs. This is in agreement with the fact
that overlapping intervals are less common and, therefore, the search based on
query constraints defined in terms of these relations reduces the search space.

Original and simplified configurations represent query graphs and query sub-
graphs, respectively. The results of the retrieval process (i.e., the sets of temporal
intervals that satisfy the same relations than the relations in query subgraphs)
were compared in terms of degree of consistency and degree of equivalence with
respect to query graphs (i.e., graphs with all relations). The number of constraint
evaluations is used as a measure of performance, which is commonly used in the
evaluations of constraint satisfaction problems and makes the evaluation inde-
pendent of computational resources.



14

In cases of using the original configurations with all constraints, the process
always finds optimal configurations (i.e., configurations where all constraints are
satisfied). In the case of random eliminations of constraints, we found that the
number of consistent and equivalent configurations were 75% and 66%, respec-
tively. These values less than the number of consistent and equivalent results
by using CBS or NBS. A summary of results for CBS and NBS is presented
in Table 6. In this table, one has to consider that each configuration may have
more than one solution and that each configuration has a number of consistent
and equivalent relations (100% of consistent relations implies that a solution is
consistent). Figure 8 shows, in detail, the percentage of equivalent relations in
the configurations of 50 random queries (i.e., percentage over 10 constraints per
query) for CBS and NBS.

Table 6. Summary of results for CBS and NBS (* average with respect to a configu-
ration that includes all relations)

Parameters CBS NBS

Average of consistent configurations 100% 89%
Average of equivalent configurations 73% 85%
Average of consistent relations 100% 96%
Average of equivalent relations 90% 94%
Average percentage of constraint evaluations* 76% 60%

As we increased the number of intervals (six and seven intervals) and, there-
fore, the number of temporal relations to fifteen or twenty-one relations, we
observed a tendency to maintain the results of NBS and CBS in terms of the
average percentages of relations that are consistent and equivalent in configura-
tions. In particular, the percentages of consistent relations in configurations for
NBS and CBS were 94% and 100%, respectively, and the percentages of equiva-
lent relations were 94% and 92%, respectively. The main difference was obtained
in the number of equivalent configurations for CBS, which was on average 10%
less than the average of equivalent configurations with respect to the initial five
intervals.

5 Conclusions and Future Work

This paper has analyzed two different strategies to define a subset of temporal
relations that characterizes a set of temporal intervals. The composition-based
strategy is based on the composition of temporal intervals, and the neighborhood-
based strategy selects relations that connect neighboring intervals represented
in a 2D space.

While the composition-based method guarantees that relations can be de-
rived, the neighborhood-based method captures metric characteristics of tempo-
ral intervals with respect to relative length, relative overlapping, and relativity
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Fig. 8. Percentage of equivalent relations

of disjointness. In most cases, such strategies were able to characterize temporal
configurations. From a different perspective, finding minimal subgraphs based
on the composition is a complex task that could lead to an intractable problem
unless one uses heuristics to reduce the search space. The results from this work
indicate the potential of using the algebraic properties of composition and the
metric characteristics of intervals for reducing the number of relations consid-
ered in a process. The use of fewer relations in a search process was on average
computationally less expensive than the use of the complete description of sets
of temporal relations. These strategies have a potential use in applications based
on the analysis of temporal relations, such as content-based retrieval and data
mining.

As future work, we will continue analyzing the efficiency of algorithms to
apply these strategies to a larger scale. The results of this work complement
the previous results with respect to topological relations between regions in a
2D space. We expect, in the near future, to analyze spatio-temporal relations
within the same framework. In particular, a continuation of this work will be to
apply the strategies to the simplification of spatio-temporal configurations that
are described by a combination of spatial and temporal relations [2].
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