A Content-Based Approach to Searching and Indexing
Spatial Configurations

M. Andrea Rodriguez and Francisco A. Godoy

Department of Information Engineering and Computer Science
University of Concepcion
and
Center for Web Research
University of Chile
Edmundo Larenas 215, Concepcion, Chile.
{andrea, fgodoyf}@udec.cl

Abstract. A constant challenge of current spatial information systems is
the retrieval of spatial configurations. This paper describes a new approach
to retrieving spatial information whose novelty lies in using a content
measure of topological relations to search and index spatial configurations.
This approach uses a tree-based schema to index relations between objects’
minimum bounding rectangles, it preprocesses the user query to obtain an
ordered list of spatial constraints, and it explores three searching
algorithms that work over an indexed domain: full-restrictive forward
checking, partial-restrictive forward checking, and permutation-based
searching. Experimental results show the viability of this type of indexing
schema as well as the differences among searching algorithms.

1 Introduction

The importance of searching spatial information has been already recognized in a
variety of disciplines, including image analysis, spatial and multimedia databases,
geographic information systems, and digital libraries [1-3]. In such diverse
applications possible queries can be as general as “find information related to the city
of New York,” or may contain a more detailed specification of a user request, such as
"find hospitals in New York City and adjacent cities" or “find images with two green
circles separated by a blue one.” These queries can be expressed by visual languages,
such as VisualSeek [4] and Query by Sketch [5, 6], or by verbal commands, e.g., the
extended SQL commands [7].

In this work we are interested in answering queries that are composed of a set of
spatial objects and a set of spatial relations for each pair of objects. These objects are
referred to as variable objects of a query, whereas solutions to this query are the set of
instances in the database that satisfies the query constraints. Studies addressing this
type of query have taken a similarity-based approach to information retrieval by
defining the set of spatial relations that can be used in a query, a similarity measure of

spatial relations, and a search algorithm for similarity retrieval [8-14]. Some of these
studies are based on variations of 2D strings, which represent configurations as a
sequential structure for each encoded dimension [12, 15, 16]. In a similar way, other
studies have used a 3x3 matrix to determine the orientation relation by calculating the
objects’ proportional areas in the quadrants defined by the orthogonal projection of a
reference object’s MBR [17, 18]. Other studies represent configurations and queries by
attribute relation graphs (ARGs) [2, 13, 19]. In these graphs, spatial relations are
represented quantitatively by the distance and angle between centroids, and qualitatively
by the symbolic representation of topological relations, such as the topological
relations defined by Egenhofer and Franzosa [20, 21]. Similarity is then defined
between quantitative values as the inverse of their difference [13, 19] and between
qualitative relations as the inverse of the distance in a conceptual neighborhood
structure [2, 22].

As opposed to image databases that consist of a large set of images, databases in
Geographic Information Systems (GISs) are composed of a large number of spatial
objects grouped into a few thematic layers, which usually cover the whole geographic
space. In this context, the retrieval process consists of finding instances of objects in
the database that satisfy the query constraints that involve spatial relations (i.e.,
topological, orientation, and distance relations) and objects’ characteristics (e.g.,
semantic classification). In this way, the retrieval process is seen as a constraint
satisfaction problem [23]. Considering query processing as a problem of constraint
satisfaction, Papadias ef al. [2, 10, 11] addressed retrieval of spatial configurations
without restrictions on types and relations between objects.

This paper describes a general similarity-based approach to searching spatial
configurations. Unlike previous works, this work explores a quantitative approach to
index and search spatial relations. The work is based on a content measure that
distinguishes topological relations by its asymmetric values for pairs of objects and
that uses the relative size of objects as a metric refinement of the topological
relations. Then, searching a solution uses a tree-based indexing schema over points
within the space of possible values of the content measure. Following the ideas by
Papadias et al. [2], we discuss searching algorithms that represent different degrees of
satisfaction for query constraints: a full-restrictive or hard algorithm where each
constraint must be satisfied, partial-restrictive or soft algorithm where some
constraints may be violated, and a permutation-based or semi-hard algorithm where
each constraint must be at least partially satisfied.

The organization of the paper is as follows. Section 2 presents the description of
the content measure used by the similarity function and the indexing schema. Section
3 describes the preprocessing strategy. Section 4 introduces the three searching
algorithms. Experiments using a randomly created data set are presented as a proof of
concepts in Section 5. Conclusions and future research directions are in Section 6.

2. Framework for content-based searching and indexing

Searching spatial configurations is considered as a process of searching sets of
instances in a database that satisfy query constraints expressed by spatial relations, in
particular, topological relations. The main idea behind our approach to query
processing is the determination of a content measure of topological relations and the
use of this measure as basis for an indexing mechanism.

2.1 Content measure

This work uses the simplified and common representation of objects in current spatial
indexing schemas for Geographic Information Systems (GISs); that is, objects’
minimum bounding rectangles (MBRs). This simplification is widely used for its
desirable computational properties, and it can be used as a first approximation in a
similarity-based retrieval.

The defined content-measure of topological relations considers three basic
primitives over objects” MBRs: (1) areas of individual MBRs and areas of intersection
of pairs of MBRs, (2) diagonals of MBRs, and (3) minimum internal and external
distances between boundaries of MBRs (i.e., d; (6A4,0B) and d, (6A,0B), respectively)
(Figure 1).

Al
de
B
BNC
9

Fig. 1. Primitives of the content measure

For further clarification, we define a region’s MBR and the intersection of pairs of
MBRS as follows (Equations la-b):
MBR(A) = {BOUND((x{1,), (35", 3)) / ¥(x, ») €4
() { ((xl 5y1),(Xz 7}’2)) (st) s (la)
A A A A
X SXAY ZYAX) =XAY) <V}

INTSERSECT(MBR(A), MBR(B)) = {BOUND((x;, 37)(%) /

1b
V(x,)) xsxaynzyaxzxay;=y(x,y)EAA(x,y)EB} (1b)

The underlying idea of this measure is that distance between objects is a basic
parameter for the refinement of disjointness, while the area of the objects is a basic

parameter for the refinement of overlapping (Equation 2) [24].

area(A) - 2area(A N B) N distanc e(84,6B)

F,(4,B) =
area(A) diagonal(A)

F (B,)= area(B) - 2area(A N B) . distanc e(0B,0A4) where
area(B) diagonal(B)

d,(8A,0B) if ANB=0

distance (54, 5B) =
istance (34, OF) { _d,(0A,8B) if AN B= D

@

This measure is asymmetric; so, describing the arrangement of two objects needs
two values, one in each direction of the relation. Figure 2 presents the range of values
in 2D that characterizes the topological relations between MBRs. The boundaries of
the regions in this figure were determined by considering extreme cases and then
creating the corresponding parametric equations. As Figure 2 reflects, all eight
topological relations between two extended objects, such as those defined by the 9-
Intersection model [20] and the RCC model [25], can be defined in the 2D space that

maps values of the content measure.

r (1‘3,A)

®-

A Meets B

F_(AB) \MN

A Covers B
A Inside B

s B--8-00

A Equal B

N

A Disjoins B
A Overlaps B

A Contains B

A Covered_by B

Fig. 2. Domain values tor uic content measure classified into 8 topological relations

2.2 Indexing schema

The idea of an indexing schema is to avoid the exhaustive review of the whole dataset
in a searching process. Geographic databases deal with large numbers of objects, and
user queries in these systems contain a variable number of objects. A traditional

approach to this problem has been to use a spatial indexing schema over MRBs with
heuristics to guide the search process of objects with specific topological constraints
[2, 10, 11]. The approach of this work, instead, uses an index of spatial relations
between objects rather than an index of the spatial locations of objects. Although
indexing spatial relations may mean generating an index structure that is larger than
the index structures based on spatial location, retrieval processes that demand the
constraint satisfaction of spatial relations can be strongly improved as we avoid the
constant evaluations of topological relations that occurs with a traditional indexing
schema.

With the content measure defined above, an indexing schema can be easily derived
from any spatial access methods. For example, a tree-based indexing schema helps to
organize the space into divisions of spatially close points, where points in this space
represent the asymmetric values of the content measure between pairs of objects’
MBRs. In Figure 3 an example of a R-tree [26] is shown.

R1

pT T

* P
R3| R4

LS pe” o

8
€09 || o7 _ [pTp2p5] [P3p4p7] [P9pI1pI2] [p6 P8 pIO
ploe

RS g py—xs

Fig. 3. Tree-Based indexing schema

One might consider using a different indexing schema that organizes configurations
as a whole, using, say, a multidimensional vector space, but the fact that it is
impossible to know in advance the number of variable objects in a user query makes it
impossible to predefine a vector space with fixed number of dimensions. Furthermore,
our indexing schema exploits the metric refinement of topological relations in such a
way that it is impossible to handle just eight topological relations between regions as
an array of 8 values. The defined content measure distinguishes an infinite number of
variations of these topological relations given by the metric refinement of areas,
diagonals, and distances between MBRs.

The total number of possible binary spatial relations of a fixed kind (e.g., inside)
among n objects is n(n-1). In order to reduce the number of relations to be indexed, we
consider that non-disjoint relations are relevant, because they indicate physical
connection between objects [6, 27]. So, we eliminate disjoint relations with a relative
distance separation larger than d (i.e. F,, () > d), a parameter that is set before the
indexing process starts.

The search for a relation (i.e., a query constraint) in the trees uses a distance
function between a query constraint and the spatial relation of instances in the
database. In this evaluation, a query constraint is represented by the content measure of
two variable objects of the query v; and v, that is R(v;,v;), and a possible solution is
represented by the content measure of two instances u,, and u; in the database, that is
R(u,,u,), taking each direction of the relation separately (Equation 3). Both variable
objects and instances are presented by their MBRs.

d(R(v;, v }), RGug,up)) < W(R(vi,v ;) G
d(R(v j,vi), Rup,up) < T(R(vj,v,)

A constraint is said to be satisfied when the distance is less than a threshold
function 7(R(v;,v)), which depends on the relation (i.e., constraint) that the system

is searching for. The idea of this threshold function is that distance is not homogenous
in the space of the content measure. For example, the difference between two disjoint
relations is not as relevant as the difference between a meer and overlap relations.
Break values in the space of the content measure are 1 and -1 (Figure 2). The value 1
separates disjoint from non-disjoint relations, whereas the value —1 separates inside
from overlap. So, we have defined a threshold function that considers the distance
between these break values and the query constraint (Equation 4). Thus, as the
absolute value of the content measure that describes a query constraint approaches the
value 1, the difference becomes more relevant than when the constraint represents a
disjoint or inside relation with content values distant from 1 and —1, respectively.

T(R(v;,v;)) = abs(l = abs(R(v;,v;))) *a, a<1.0 ®

3 Query Pre-processing

Query preprocessing plays two important roles: (1) eliminating irrelevant or implicit
relations and (2) sorting the list of constraints by relevance or short searching path. As
in the indexing process, we eliminate disjoint relations with a distance separation
larger than a threshold (d), and we check for implicit relations through composition
tables of topological relations [21]. A path consistency algorithm [28] can check
whether or not by eliminating relations we can keep the query consistent. For
example, Figure 4 presents a configuration with 3 objects, so 6 spatial relations can
be determined: A meets B, A contains C, B disjoint C, and their respective converse
relations. By definition of the converse relations we could eliminate 3 explicit
relations that are completely derived from their converse. Using the composition
operation, we can then derive the relation B disjoint C by applying the following
composition:

B meets A ; A contains C = B disjoint C

SN
N

Fig. 4. Configuration with derivable relations

Applying the criterion that non-disjoint relations are more relevant [6, 27], we
create an increasing ordered list of spatial constraints based on the values of the
content measure. Small values of the content measure correspond to large degrees of
overlapping, ranging between equal, inside, covered_by, overlap and meet relations.

4 Searching Algorithms

Three different algorithms were developed to search configurations using the indexing
schema defined above. All three algorithms consider a forward checking strategy.
While the two first algorithms force individual constraints be satisfied, the last
algorithm relaxes this condition and checks a global similarity value in each forward
checking step.

The general structure underlying these algorithms is defined by sets of instances in
the databases that satisfy the constraints expressed in the query. Thus, given a user
query with a set of n variable objects Q = {v,,...,v,}, each configuration in the set of
possible solutions has a structure with n instances S = {u,,...,u,} in the database. The
goal of the tree algorithms defined below is not to find the first solution, but rather to
create a set of solutions using a ranking schema. The ranking of solutions is
determined by the sum of distances between content measures calculated for each pair
of variables in the query and the corresponding pair of instances in the database
(Equation 5). This function represents a global similarity of configurations with
respect to a user query.

D(Q,S) = > J(Fm(via"j) —Fm(uiauj))z +(Fm(vjavi) —1[7»1(%,141'))2)

Vi,V €0; ui,quS

In searching instances for each constraint, the algorithms access the index tree
whose depth determines the number of checking operations; that is, the complexity of
this algorithm.

4.1 Full restrictive.

The full restrictive algorithm checks constraints one-by-one using the index schema.
As it finds solutions for each constraint, it performs a join operation with the
previously found solutions to match instances (Figure 5). A join operation performs a
Cartesian product of its two arguments (i.e., previous solutions and solutions for the
last constraint analyzed), performs a selection forcing equality on those instances that
should correspond to equivalent variable objects in the query, and removes duplicates.

Query constraints Ri(vi,vs) R:(vi,V3) ceveeeninnnens Ry (Va1,V0)
Instances in the Ri(u,uy) ...l
database \

R](I/I,',', u//) Rg(u,', Mk)

Fig. 5. Full restrictive strategy to searching configurations

In addition to the complexity given by the search in the index structure, this
algorithm needs to perform m join operations, where m is the number of constraints.
For each join operation, the algorithm checks / times whether the instances match or
not the previous candidate solutions, where [is the smallest number between the
number of solutions of the last constraint analyzed and the number of previously
found solutions. The final ranking of solutions is given by the global similarity
measure defined in Equation 5.

4.2 Partial restrictive

The partial restrictive algorithm finds configurations where some of the constraints
may not be satisfied. Like the full-restrictive algorithm, this algorithm finds
configurations with instances that satisfy the constraints, even when the solutions
may contain a smaller number of objects than the original user query. This may
happen when few constraints are satisfied and none of these constraints involves
instances for a variable object of the query. The fact that some constraints may not be
satisfied, however, does not imply that the solutions will always contain a smaller
number of instances than the number of objects in the user query. For example, a
query with three objects involves three pairs of content measures (one for each pair of
objects). If two constraints are satisfied it will result in solutions with 3 objects.

The types of operations for this algorithm are equivalent to the operations of the
previous algorithm. Unlike the previous algorithm, however, when instances do not
match, the algorithm does not necessarily eliminate the candidate solution. The best
solutions in this algorithm are the ones with a larger value of global similarity

(Equation 5) and with a larger number of instances in the database assigned to variable
objects in the query.

4.3 Permutation-Based Search

The permutation-based search finds configurations by looking for global similarity
rather than for individual constraint satisfactions. In this way, constraints may not be
completely satisfied; however, the search finds solutions that are expected to be the
most similar configurations to the user request. In the worst case, finding the most
similar configuration implies all n-permutations of N objects, with n being the
number of objects in the query and N the number of objects in the database. Thus, for
N >> n, the retrieval process is exponential in the size of the query (O(N")). To avoid
the exhaustive search, this algorithm reduces the domain of searching to the sets of
objects that satisfy each constraint, obtained using the indexing schema. Once these
objects are found, the algorithm makes the needed permutations. The types of
operations for this algorithm are the search in the index schema and permutations,
considering a global similarity value that is larger than a given threshold.

The implementation of this algorithm follows. A query (Q) is represented by a list
of variable objects (variables v;). Based on this list of objects, a list of constraints (C)
is obtained. For each constraint, the algorithm searches for solutions (S) using the
tree-based schema. Each solution is also represented by a list of pairs of instances in
the database. Then it takes each previously found global solution (GS[]), that is, a set
of n = 2 instances in the database, and permutes its instances with the instances found
in the last search, resulting in a new candidate solution SS. If this new solution gives
a global similarity (Equation 5) with respect to the user query that is larger than a
given threshold, the solution is kept and added to the set of global solutions. This
process is repeated until all constraints have been sequentially considered.

Procedure Permution_Based Similarity (Q)
C < Get_Constraints(Q); GS <nil
for i < 1 to m do // for each constraint
temp <—nil; X< Content_Measure(C[i]); S <— Search_Tree(X)
if i = 0 then Add_Solutions(S,GS) else
for j < 1 to Size(GS) do // for each global solution found previously
for k <1 to Size(S) do // for each solution to the current constraint
SS<— Permute(GS[/],S[k])
if (D(Q,SS) = i*t) then Add_Solutions(SS,temp)
GS<temp
Sort(GS); return GS

end Permution Based Similarity

5 Experimental Results

In order to test our indexing schema and algorithms, we have created a database with
18,000 random objects of 6 different semantic classes. In this database, disjoint is the
relation with the highest frequency of occurrences (90%), followed by the overlap (7%)
and contain relations (3%). The frequency distribution of relations is due to the fact
that the database is composed of objects’ MBRs that are homogenously distributed
over one large space. Thus, there is not a concentration of objects in particular areas of
the space, which could produce a larger number of overlap relations. In addition, two
real objects that meet most likely results in their MBRs overlapping rather than
meeting so, the number of meet relations is small.

A R-tree structure [26] was created as an index of content measures for
combinations of object classes, giving rise to 21 different trees. These 21 different
trees result from the symmetric combination of 6 classes plus the combination of the
6 classes with themselves, that is, 6*5/2 + 6 = 21. Nodes in each of these trees
contain between 250 and 500 elements, given a maximum depth of 3 for each tree.
The total number of relations indexed was 150,000, as the result of the elimination of
relations whose content measures in both directions were larger than 4.0 (i.e., d =
4.0). The size of the spatial indexes was 50% larger than the size of the stored objects’
MBRs.

Three queries are presented here: a configuration existing in the database (Q1) and
two non-existing configurations (Q2 and Q3). All three examples contain four objects
and three different object classes. The existing configuration (Figure 6) contains an
overlap relation between objects of different classes. The rest of the relations are all

disjoint.

Q\g\
vz

L,

Fig. 6. Example of existing configuration (Q1)

Two queries that were not exactly equivalent to any configuration in the database
were defined. The first of these queries (Q2) involves overlap relations, whereas the
second one (Q3) involves just disjoint relations. Since disjoint is the most common
relation in the database, this type of query may imply a larger number of comparisons

between candidate instances than comparisons for those queries with rare relations in
the database.

7 — XY
x%/ 7
Y 2y

#

Q2 Q3

Fig. 7. Examples of non-existing configurations (Q2, Q3)

After defining the queries, the system performs a preprocessing to eliminate and
sort constraints. As a result of this preprocessing, no constraint was eliminated from
the queries, since the disjoint relations have a short separation between MBRs (d =
4.0), and composition could not derive any relation in these queries. Based on the sort
operation over content measures, the order of constraints taking in the search process
is as follows:

Table 1. Ordered constraints by query (where constraints are expressed by the pair of
objects that defines the relation)

Query List of Ordered Constraints

Ql {24, (2,3), (4.3), (1,2),(1,3),(1,4)}
Q2 {(3,2),(3:4),(2.4),(1,2),(1,3),(1,4)§
Q3 {(1,3),(1,2),(2,3),(2,4),3,4),(1,4)§

As Table 1 indicates, overlap relations take precedence over disjoint relations. In
particular, by looking at query Q2 it is possible to notice that the system first
searches for the three overlapping objects, which indeed are less frequent than the
disjoint objects in the database.

For the searching process, parameter a of Equation 4 was set to 0.5 and the
threshold for the permutation-based algorithm was set such that the sum of distances
between relations of the query and solutions is less or equal to the number of
constraints (Equation 5). Results of query Q1 are shown in Figure 8. These results are
consistent across algorithms, since these algorithms find as best solution the
configuration equivalent to the query. The last algorithm (i.e., permutation-based)
finds three solutions based on the threshold used for filtering results. The two less

similar solutions consist of one and two different objects, respectively, with respect to
the equivalent result.

Q1 Ranking: 1° Ranking: 2° Ranking: 3°

Alg. 1 |]

§

Alg. 2 [l

i

|
> ¥ o2

Fig. 8. Results of first query Q1

Alg. 3

%

AN

Results of query Q2 are shown in Figure 9. For this query only algorithm 2 (i.e.,
partial restrictive) finds a solution. The unique found solution has a missing object,
which is the object 3 that overlaps objects 2 and 4. An intuitive analysis suggests that
although it is useful to have partial solutions, these solutions should have contained
the objects and constraints that constitute the main features of the user request. In
particular for query Q2, the constraints of objects (2,3) and (3,4) seem to have more
relevance than the constraints that involve object 1. This is considered in the order of
evaluations; however, the relevant constraints are not forced to be satisfied in
algorithm 2.

Q2 Ranking: 1° Ranking: 2° Ranking: 3°

AN

NN

Alg. 2

Fig. 9. Results of first query Q2

Results of query Q3 are shown in Figure 10. Both algorithms 2 and 3 (i.e., partial
restrictive and permutation-based, respectively) find solutions. Since algorithm 2 finds
solutions while algorithm 1 does not, it is possible to conclude that not all 6-
constraints are satisfied. Algorithm 1 should always give a subset of solutions of
algorithm 2. Algorithm 3 finds a solution that, as a global similarity evaluation,
gives a good result. The result given by the last algorithm satisfies all topological
relations among objects of the user query, but it is swapped with respect to the
vertical axis. This is expected since our content measure is independent of scale,
global rotation or swapping. The fact that algorithm 3 finds a good solution while
algorithms 1 and 2 do not is due to the restrictive error tolerance given in Equation 3.

Q3 Ranking: 1° Ranking: 2° Ranking: 3°

Y | &= ST
Alg. 2 NN \\\

[-]
//
Alg. 3 5
2y

Fig. 10. Results of first query Q3

As we explained before, an exhaustive search of query constraints would imply all
4 permutations (4 variable objects) of 18,000 objects in the database, which is of order
0(18,000%). In order to compare the complexity of algorithms, we have made an
experimental calculation of the number of comparisons for each of the queries and each
of the algorithms. We do not give CPU time, because we consider it to be dependent
on computational resources. Instead, we use these comparisons that do not include the
search in the index tree, since this search is equivalent in all three algorithms. Table 2
shows the number of comparison for each query using each algorithm.

Table 2. Number of comparisons for each query using each algorithm

Query Algorithm Number of Comparison

Ql Full restrictive 7431
Partial restrictive 7431
Permutation-based 184341

Q2 Full restrictive 560
Partial restrictive 12684
Permutation-based 1120

Q3 Full restrictive 55661
Partial restrictive 57810
Permutation-based 207998

The number of comparisons has a direct relation to the query and database
characteristics. Queries Q1 and Q3 have more solutions than query Q2. Since Q1 and
Q3 include most disjoint relations, there are many candidate solutions for individual
constraints and, therefore, the number of join as well as permutation operations is
large. Query Q2, on the other hand, represents a rare combination of constraints for
instances in the database, such that the number of solutions is quickly reduced after a
join or permutation operation. Indeed, just the partial restrictive algorithm finds
solutions for this query.

In the previous experiments we do not provide comparisons with other algorithms,
since to the best of our knowledge, none of the previous studies have attempted to
define a continuous content measure that distinguishes topological relations. In
addition, previous studies have used traditional indexing schemas of objects’ MBRs
instead of indexing spatial relations. In detail, using our R-tree index of spatial
relations, in the best case the search process visits a number of nodes equivalent to the
depth of the tree, that is, 3 for our experiments. Indeed, for our experiments, none of
the searches in the index took more than 27 visits. If we consider that each of our
nodes does not have more than 500 children, we have compared less than 27*500 =

13,500 value pairs to obtain solutions for each constraint. If we perform an exhaustive
revision of the whole space to find a pair of objects that satisfies a query constraint,
the systems should have checked O(18,000%) combinations.

6 Conclusions

This work has presented a new approach to searching configurations in spatial
databases. It defines a content measure that is independent of scale and that
characterizes the topological distribution of spatial objects. This content measure
constitutes a metric refinement of topological relations that depends on objects’
relative sizes and relative locations. This work uses this content measure as basis for
an indexing schema and a similarity function to search spatial configurations. The
search process is implemented with three different algorithms (i.e., full restrictive,
partial restrictive, and permutation-based algorithms), which provide different degrees
of satisfaction, that is, solutions where all constraints are satisfied, solutions where at
least some of the constraints are satisfied, and solutions where an overall similarity is
fulfilled.

The indexing schema over spatial relations can strongly improve any search that
focuses on structural aspects of spatial configurations. For queries that have equivalent
configurations in databases, all three algorithms give the same results, with the
permutation-based algorithm being the one that is computationally more demanding
than the other two. In cases where there are no configurations equivalent to the query,
the partial restrictive and permutation-based algorithms have more chances to obtain
solutions. The partial restrictive algorithm has better chances of giving good solutions
if we consider that some of the constraints must be satisfied to keep the prominent
characteristics of the user request. In other cases, the permutation-based algorithm
provides a good alternative, though with additional computational cost.

As future work, we would like to extend the content measure to objects in 3D. In
the context of algorithms, we want to explore the concepts of genetic algorithms [29]
to give flexibility in the search of most similar configurations by avoiding local
solutions that may arise when using a forward checking approach. The satisfaction of
individual constraints does not guarantee that the solutions are the best solutions. For
query preprocessing, we would like to include the concept of mandatory query
constraints, such that some of the constraints must or may be satisfied. For example,
given the results of query Q2, we could have imposed that, in order to accept the
answer, the overlapping constraint must have been satisfied. An interesting aspect for
future consideration is how this index is affected by changes in the locations of
objects. Although changes in continuous locations produce continuous changes in the
values of the content measure, we have not analyzed with enough depth the effect of
these changes on the indexing schema.

7

Acknowledgments

This work has been funded by CONICYT - Chile, under Fondecyt grant 1010897, and
by Millenium Nucleous Center for Web Research, grant PO1-029-F, Mideplan, Chile.

References

1.

10.

11.

12.

13.

15.

Berchtold, S., Bohm, C., Braunmuller, B., Keim, D., and Kriegel, H.-P.: Fast Parallel
Similarity Search in Multimedia Databases. ACM SIGMOD International
Conference on Management and Data, (1997)

Papadias, D., Arkoumanis, D., and Karacapilidis, N.: On the Retrieval of Similar
Configurations. In Poiker, T. and Chrisman, N. (eds.): 8th International
Symposium on Spatial Data Handling, Vancouver, (1998) 510-521

Wang, J., Li, J.,, Chan, D., and Wiederhold, G.: Semantics-Sensitive Retrieval for
Digital Picture Libraries. Digital-Library Magazine 5:(11) (1999)

Smith, J. and Chang, S.-F.: Integrated Spatial Query and Feature Image Query.
Multimedia Systems 7 (1999) 129-140

Egenhofer, M.: Query Processing in Spatial-Query-By-Sketch. Journal of Visual
Languages and Computing 8:(4) (1997) 403-424

Blaser, A.: Sketching Spatial Queries. In Department of Spatial Information Science
and Engineering, University of Maine, U.S.A, (2000)

Egenhofer, M.: Spatial SQL: A Query and Presentation Language. IEEE Transactions
on Knowledge and Data Engineering 6:(1) (1994) 86-95

Papadias, D., Mamoulis, N., and Theodoridis, Y.: Constraint-Based Processing of
Multiway Spatial Joins. Algorithmica. Special Issue on Algorithms for GIS
(2001)

Papadias, D.: Hill Climbing Algorithms for Content-Based Retrieval of Similar
Configurations. ACM Conference on Information Retrieval, Athens (2000)

Papadias, D., Mantzouroguannis, M., Kalnis, P., Mamoulis, N., and Ahmad, I.:
Content-Based Retrieval using Heuristic Search. ACM-SIGIR Conference on
Research and Development in Information Retrieval, Berkeley (1999)

Papadias, D., Mamoulis, N., and Delis, V.: Algorithms for Querying Spatial
Structures. 24" VLDB Conference, New York, NY (1998)

Lee, S. and Hsu, F.: Spatial Reasoning and Similarity Retrieval of Images Using 2D
C-Strings Knowledge Representation. Pattern Recognition 25:(3) (1992) 305-
318

Berretti, S., Bimbo, A.D., and Vicario, E.: The Computational Aspect of Retrieval by
Spatial Arrangement. International Conference on Pattern Recognition, (2000)

El-Kwae, E. and Kabuka, M.: A Robust Framework for Content-Based retrieval by
Spatial Similarity in Image Databases. ACM Transactions on Information
Systems 17:(2) (1999) 174-198

Castaglia, G., Tortora, G., and Arndt, T.: A Unifying Approach to Iconic Indexing for
2-D and 3-D Scenes. IEEE Transactions on Knowledge and Data Engineering 4:(3)
(1992) 205-222

Lee, S., Yang, M., and Chen, J.: Signature File as a Spatial Filter for Iconic Image.
Journal of Visual Language and Computing 3 (1992) 373-392

17.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

Goyal, R. and Egenhofer, M.: Similarity of Direction Relations. In Jensen, C.,
Schneider, M., Seeger, B., and Tsotras, V. (eds.): Seventh International
Symposium on Spatial and Temporal Databases. Lecture Notes in Computer
Science, Vol. 2121, Springer-Verlag, Berlin Heidelberg New York (2001) 36-55

Goyal, R. and Egenhofer, M.: Cardinal Directions Between Extended Spatial Objects.
IEEE Transactions on Knowledge and Data Engineering (in press)

Petrakis, G. and Faloustos, C.: Similarity Searching in Medical Image Databases.
IEEE Transactions on Knowledge and Data Engineering 9:(3) (1997)

Egenhofer, M. and Franzosa, R.: Point-set topological spatial relations.
International Journal of Geographical Information Systems 5:(2) (1991) 161-
174

Egenhofer, M.: Deriving the Composition of Binary Topological Relations. Journal
of Visual languages and Computing 5:(2) (1994) 133-149

Bruns, T. and Egenhofer, M.: Similarity of Spatial Scenes. In Kraak, M. and
Molenaar, M. (eds.): Seventh International Symposium on Spatial Data Handling
(SDH '96), Delft, The Netherlands, (1996) 4A.31-42

Meseguer, P.: Constraint Satisfaction Problems: an Overview. AICOM 2:(1) (1989)
3-17

Godoy, F. and Rodriguez, A.: A Quantitative Description of Spatial Configurations.
Spatial Data Handling, Ottawa, Canada (2002)

Randell, D., Cui, Z., and Cohn, A.: A Spatial Logic Based on Regions and
Connection. In Nebel, B., Rich, C., and Swarthout, W. (eds.): Principles of
Knowledge Representation and Reasoning, KR '92, Morgan Kaufmann,
Cambridge, MA, (1992) 165-176

Guttman, A.: R-Trees: A Dynamic Index Structure for Spatial Searching. ACM
SIGMOD Int. Conf. on Management of Data, (1984)

Florence, J., Prediction Frequency of Topological Relations in Geographic Datasets.
In Department Spatial Information Science and Engineering, University of Maine
(1997)

Egenhofer, M. and Sharma, J.: Assessing the Consistency of Complete and
Incomplete Topological Information. Geographical Systems 1 (1993) 47-68
Chambers, L.: The Practical Handbook of Genetic Algorithms: Applications.

Chapman & Hall (2000)

