
A Spatio-temporal Access Method based on Snapshots
and Events ∗

Gilberto Gutiérrez R.
Universidad del Bı́o-Bı́o / Universidad de Chile

Blanco Encalada 2120, Santiago / Chile
ggutierr@dcc.uchile.cl

Gonzalo Navarro
Center for Web Research

Department of Computer Science
Universidad de Chile

Blanco Encalada 2120, Santiago / Chile
gnavarro@dcc.uchile.cl

Andrea Rodrı́guez T.
Universidad de Concepción
Center for Web Research

Edmundo Larenas 215, Concepción / Chile
andrea@udec.cl

Alejandro González O.
Universidad del Bı́o-Bı́o

Avenida La Castilla S/N - Chillán / Chile
alejandro.gonzalez@dmr-consulting.int

José Orellana V.
Universidad del Bı́o-Bı́o

Avenida La Castilla S/N - Chillán / Chile
jose.orellana@gmail.com

ABSTRACT
This paper describes a new spatio-temporal access method
(SEST-Index) that combines two approaches for modeling
spatio-temporal information: snapshots and events. This
method makes it possible to not only process time slice and
interval queries, but also queries about events. The SEST-
Index implementation uses an R-tree structure for storing
snapshots and a log data structure for storing events that
occur between consecutive snapshots. Experimental results
that compare SEST-Index and HR-tree show that, for a
change frequency between 1% and 13%, SEST-Index re-
quires less storage space than HR-tree, and for a change
frequency between 1% and 7%, SEST-Index outperforms
HR-tree for interval queries. In addition, as SEST-Index
is an event-oriented structure, event queries are efficiently
answered. In order to decrease the storage space for fre-
quencies of change above 20%, this work explores alterna-
tives that optimize the space of the log structure without
affecting the efficiency of query answers.

∗Gilberto Gutiérrez is partially funded by Dirección de In-
vestigación, Universidad del B́ıo-B́ıo, Grant 043318 3/R.
Gonzalo Navarro and Andrea Rodŕıguez are funded by Nu-
cleus Millenium Center for Web Research, Grant P04-067-F,
Mideplan, Chile

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GIS’05,November 4, 2005, Bremen, Germany.
Copyright 2005 ACM 1-59593-146-5/05/0011 ...$5.00.

Categories and Subject Descriptors
H.2 [DATABASE MANAGEMENT]: Database appli-
cations - Spatio-temporal databases

General Terms
Algorithms, Performance

Keywords
Spatio-temporal access methods, R-trees, temporal events.

1. INTRODUCTION
Space and time are two inherent attributes of any object

of the real world. Thus, an object is characterized by its
position and extent at any instant in time [4]. These ob-
jects make up the type of spatio-temporal data that need to
be managed in some computer applications. For example,
an application of a fleet of taxis needs to store information
about where and when each of its cars has been. This allows
us to answer queries such as, Which were the cars located at
the shopping center at 6:00 pm ? or Which are the closest
cars to the car number BB-3545 (which needs assistance)?.
Other applications relate to transportation, environment,
social (e.g., demographic and health) and multimedia sys-
tems. Spatio-temporal applications have been classified into
three categories depending on the type of data they manage
[8].

1. Applications that deal with continuos changes, such as
the movement of a car on a highway.

2. Applications that include objects located in space and
that can change their position by means of a modi-
fication of their geometric shape. For example, the

changes in the administrative boundaries of a city over
time. In this type of applications the changes in the
geometric shape of the objects occur in a discrete man-
ner.

3. Applications that integrate both previous behaviors.
This type of applications appears in the environmental
area where it is necessary to model the movements of
the objects and their geometric shapes in time.

This work proposes a new access method (SEST-Index)
that is adequate for applications that belong to the second
category, thus it supports discrete changes to the location
and shape of the objects. This access method is based on
producing snapshots after a certain number of changes that
occur over objects and on storing the events that produce
these changes in a data structure called log. Consequently,
it allows the representation of (1)temporal snapshots and (2)
events on objects, described in [16]. This approach has been
discussed in others studies [2, 3], but it has been discarded
a priori by arguing that it is not easy to determine how
many events determine a new snapshot and that extra time
is required for query processing. The number of snapshots
represents a tradeoff between space and answer time, since
a larger number of snapshots decreases the answer time of a
query while increasing the storage space. Inversely, a smaller
number of snapshots decreases the space while increasing
the answer time. This work explores and experimentally
evaluates the combination of snapshots and events for the
following reasons:

1. Both snapshots and events are considered complemen-
tary and relevant information for spatio-temporal ap-
plications. Interesting queries exist for objects’ states
and for events over objects. For example, when did an
object enter a region? and how many objects move out
of a region within a given time interval?.

2. The frequency of snapshots can be adjusted depending
on the type of applications and the change frequency of
objects. For example, there may be applications where
it is not of interest to query about objects’ states over
some period of time.

3. The data structure for snapshots and changes or events
are independent, and so are the improvements that can
be obtained in either structure. Moreover, integration
of existing spatial access methods for handling snap-
shots into this approach can be easily achieved.

There exist various spatio-temporal access methods for
this same category of applications. Some are RT-tree [17],
HR-tree (Historical R-tree) [6, 7], 3D R-tree [14], HR+-
tree [10], MV3R-tree [11] and OLQ (Overlapping Linear
Quadtree)[15], among others that are designed to only an-
swer time slice and time interval queries about the history of
the special attributes of objects. Unlike these previous stud-
ies, this work aims to define a new access method that can
efficiently answer time slice, time interval and event-based
queriers.

The organization of this article is as follows. In Sec-
tion 2 the advantages and disadvantages of the main spatio-
temporal access methods are discussed. Section 3 describes
the proposed access method, considering data structures and
algorithms for query processing and updates. In Section 4

an experimental evaluation is presented. Section 5 presents
some variants of SEST-Index. Finally, Section 6 presents
conclusions and future work.

2. SPATIO-TEMPORAL ACCESS METHODS
This section describes the main spatio-temporal access

methods available for applications of category 2 (Section 1).
Figure 1 shows an example of the evolution of a set of

spatio-temporal objects in different instants of time. For
simplicity, an example in a two-dimensional space is con-
sidered. In Figure 1, the axes x and y represent the two-
dimensional space while t corresponds to the temporal di-
mension. In instant of time t1, objects O1 and O2 are in-
serted. In instant t2, object O3 is inserted while object O1

moves and O2 changes its shape. In instant t5, object O1

moves again and object O2 changes its form until it com-
pletely disappears. A time slice query is shown in Figure
1. This query is expressed in the following way: find objects
that appear in the rectangle q at instant t3.

Figure 1: An example of the evolution of spatio-
temporal objects

According to [12] and [5], it is possible to classify the
spatio-temporal access methods into the following three cat-
egories:

• Methods that treat time as another dimension.

• Methods that incorporate the temporal information
within the node structure without considering time as
another dimension.

• Methods based on overlapping and multiversion of the
structure. In this case, the temporal dimension is sep-
arated from the spatial dimension.

The 3D R-tree [14] considers time as another axis along
with the spatial coordinates. Using this approach, an ob-
ject that initially remains at (xi, yi) during time interval
[ti, tj) and then at (xj , yj) during time interval [tj , tk) can be
modeled by two line segments in a three-dimensional space
[(xi, yi, ti), (xi, yi, tj)) and [(xj , yj , tj), (xj , yj , tk)), which can
be indexed by a 3D R-tree. This idea works well if all the
final limits of the time intervals are known in advance. A
disadvantage of this approach is the inefficiency of process-
ing time slice queries. Advantages of this approach are the
efficiency in the use of space and the efficiency in processing
time interval queries.

RT-tree [17] is a structure belonging to the second cate-
gory. In this structure, the temporal information is kept in
the nodes of the R-tree. This is an extension of the infor-
mation content that an R-tree normally has. The tempo-
ral information plays a secondary role because the search is
guided by the spatial information. In this way, queries with
temporal conditions cannot be efficiently processed [6].

HR-tree [7, 6] and MR-tree [17] belong to the third cat-
egory. Both are based on the concept of overlapping. The
basic idea is that, given two trees, the most recent tree cor-
responds to an evolution of the older tree. HR-tree is one of
the most studied methods for which evaluations have been
made and for which variants exist. The major advantage of
the HR-tree is its efficiency in processing time slice queries.
The major disadvantage is the excessive space that it re-
quires to store the structure. For example, if only an object
of each leaf node moves in instant ti, the tree is completely
duplicated at time instant ti+1. MV3R-tree [11] also be-
longs to the third category, using a multiversion approach.
MV3R-tree uses two structures: a MVR-tree (Multi-version
R-tree) [11] for processing timeslice queries (where HR-tree
has advantage) and an auxiliary 3D R-tree for processing
long interval queries (where 3D R-tree has advantage).

3. PROPOSED METHOD: SEST-INDEX
The idea behind our method consists in maintaining the

snapshots of the database for certain instants of time and a
log to store the events occurred between consecutive snap-
shots. When an object undergoes a change in its spatial at-
tribute at a given time instant, it generates a change event.
The log is store in time-order and allows us to reconstruct
whatever the state of the database was between two consec-
utive snapshots (see Figure 2). The proposed access method
considers that, for each snapshot, the spatial components of
the live objects in the database are stored in an R-tree data
structure. As it was explained previously, changes are main-
tained in the log. For example, in Figure 2 the state of the
objects in the snapshot t0 are stored in R0, and the events
that modify the geometry of objects in the temporal interval
(t0, ti), are stored in log L0. Thus, to recover the state of
the database at an instant t with t0 < t < ti, we start from
the R-tree in instant t0 and update objects’ attributes (i.e.,
location) with the information of log L0

Figure 2: General outline of SEST-Index

3.1 Structure description
The structure of the R-tree is the same as the proposal in

[1], and the data structure of the log is a linked list of blocks.
The entries in the blocks are tuples with the following struc-
ture: < t, Geometry, Oid, Op >, where t corresponds to the
time in which the modification (for example the insertion
of a new object) happened, and Oid is the object identifier.
Geometry corresponds to the values in the spatial compo-
nent of the object, which depends on the type of spatial ob-
jects that need to be stored. For example, if the objects are
points in a two-dimensional space, then Geometry will be a
pair of coordinates (x, y). If the objects are polygons, then
Geometry will be a set of points that defines the polygon or
its approximation, for example, the polygon’s MBR (Mini-
mum Bounding Rectangle). Finally, Op indicates the type
of operation (i.e., type of event or type of modification). For
this work,we consider just two types of operations: move in
(an object moves to a new position) and move out (an ob-
ject leaves its current position). Thus an object creation is
modeled as a move in, an object deletion as a move out, and
an object changing its position or its shape as a move out
followed by a move in. The entries in the log are ordered
by the attribute t.

The whole index is a data structure A, which is a se-
quence of snapshots Ai such that Ai.t is the corresponding
time instant of the i-th snapshot, Ai.R is the R-tree for
such snapshot, and Ai.L is the log of events between time
instants Ai.t and Ai+1.t. A parameter d defines the maxi-
mum allowed distance (in disk blocks or changes) between
consecutive snapshots.

3.2 Operations

3.2.1 Time slice queries
To process a time slice query, the first step is to find the

corresponding snapshot according to the time instant t that
is specified in the query. This snapshot corresponds to the
latest time instant within [0, t] when a snapshot has been
stored. Using this snapshot, a spatial search is done using
the method defined in [1] for an R-tree. The set of objects
obtained from this query is updated with the entries in the
corresponding log (Figure 3).

1: TimeSliceQuery(Rectangle q, Time t)
2: {R will be a set that stores the objects of the answer}
3: Find the last entry i in A such that Ai.t ≤ t
4: R = SearchRtree(Ai.R, q) {All the objects in Ai.R that in-

tersect q at instant Ai.t are retrieved}
5: for each entry e ∈ Ai.L so that e.t ≤ t do
6: if e.Geometry Intersect(q) then
7: if e.Op = Move in then
8: R = R ∪ {e.Oid}
9: else
10: R = R− {e.Oid}
11: end if
12: end if
13: end for
14: return R

Figure 3: Algorithm to process a time slice query

3.2.2 Time interval query
Similar to the process for time slice queries, objects from

the R-tree are retrieved by starting at a previous reference
point that is closest to the starting instant t1 of the time
interval of the query. Then, the process continues with all

entries in the log whose time instant is less than or equal to
the upper bound t2 of the time interval of the query (Figure
4).

1: IntervalQuery(Rectangle q, Time t1, Time t2)
2: G = ∅ {G is a set that stores objects of the answer}
3: Search last entry i in A such that Ai.t ≤ t1
4: R = SearchRtree(Ai.R, q) {All objects of Ai.R that intersect

q in the instant Ai.t are retrieved}
5: L = Ai.L
6: k = i
7: Update R with the changes in the log L which are found in

the interval [t, t1] (just like a TimeSliceQuery)
8: G = R
9: if all the entries in log L were processed then
10: k = k + 1
11: L = Ak.L
12: end if
13: Let ts be the next instant after t1 stored in Log L
14: while ts ≤ t2∧ entries remain to be processed in L do
15: Update R with the changes in Log L ocurred in ts
16: G = G ∪R
17: if all the entries in log L were processed then
18: k = k + 1
19: L = Ak.L
20: end if
21: Let ts be the next instant stored in Log L
22: end while
23: return G

Figure 4: Algorithm to process an Interval type
query

3.2.3 Queries about events
With SEST-Index it is possible to process queries about

events. For example, given an area q and a time t, find how
many objects move in the area q and how many objects
move out the area q at time instant t. A simple implemen-
tation of this type of queries consists in using an array B
to locate the log block Bid containing the events occurred
at time t. Each entry of the array B occupies a small space
and, therefore, it is possible to keep various entries in a disk
block. For example, for blocks of size 1024 bytes, it is possi-
ble to store approximately 128 entries. Notice that this im-
plementation doesn’t need to access an R-tree for processing
a query about events. Figure 5 describes the algorithm.

3.2.4 Updating the structure
This method aims to update the index with the changes

over objects occurred in a particular time instant. Assume
we have a list with all changes that have occurred at a time
instant and with all objects that can be found ”live” in the
database just before this time instant. What the algorithm
does is to update the ”live” objects at the new time instant
that is being inserted in the database. It then verifies if the
parameter d satisfies the threshold condition, that is, if the
size (in blocks) defined for the logs is reached by the new
changes. In such case, a new snapshot is created, which
implies creating a new R-tree and a new entry in A. If d has
not been reached, the changes are simply stored in the log.
Figure 6 describes this algorithm.

4. EXPERIMENTAL EVALUATION
With the aim of evaluating the performance of SEST-

Index, it is compared with HR-tree in terms of disk usage

1: EventQuery(Rectangle q, Time t, Array B)
2: Search the entry i in array B such that Bi.t = t
3: L = Bi.Bid
4: terminated = false
5: oi = 0 {quantity of objects that entered q at time t }
6: os = 0 {quantity of objects that left q at time t }
7: while not terminated do
8: for each entry e ∈ L so that e.t ≤ t do
9: if e.t = t ∧ e.Geometry Intersect(q) then
10: if e.Op = Move in then
11: oi = oi + 1
12: else
13: os = os + 1
14: end if
15: end if
16: end for
17: if e.t > t then
18: terminated = true
19: else
20: L = next log block
21: end if
22: end while
23: return (oi, os)

Figure 5: Algorithm to process queries about events

1: InsertChanges(Time t, Changes c, SnapShot F) {t is
the instant of time in which the changes happen, c is a list
with the changes occurred at t and F corresponds to the ”live”
elements in the instant immediately preceding t}

2: Let i be the last entry of A.
3: Update F with the changes of c
4: Insert the elements of c at the end of log Ai.L
5: if the total changes in c plus the stored changes in the log

Ai.L is greater than d then
6: {Create a new snapshot in SEST-Index} Ai+1.t = t

Ai+1.R = R-tree with the live objects in F Ai+1.L = ∅
7: end if

Figure 6: Algorithm to update the structure

Figure 7: Space usage with 3000 objects

and number of blocks read for the different types of queries
described in the previous section (time slice, time interval
and event-based queries). In the absence of real data, the ex-
periment uses data obtained with the spatio-temporal data
generator GSTD[13]. Sets with 1000, 3000 and 5000 points
(objects), respectively, were created. These points are dis-
tributed uniformly within a region in time instant 0.0. Sub-
sequently, they are moved randomly during the next 50 time
instants until reaching time instant 1.0. Thus, in this eval-
uation, we consider change events related to the movement
of objects. Four percentages of object mobility (change fre-
quency) were considered: 1, 3, 5 and 7 percent per instant of
time. Three values for the parameter d were also studied: 4,
8, and 12 disk blocks with a block size of 1024 bytes. Disk us-
age was measures by the number of blocks used by the data
structures after inserting the objects and their changes. Ac-
cess time was defined as the average number of blocks read
for performing 100 random queries.

The tests were performed on a Pentium 4 computer with
1.6 Ghz, 1 Gb of RAM and Linux Operating System.

4.1 Space usage
Figure 7 shows that SEST-Index uses less disk space than

HR-tree, and this behavior is more pronounced as the num-
ber of objects or the percentage of changes decreases. An ex-
treme case in wich SEST-Index utilizes more disk space than
HR-tree occurs when the selected d is so low that SEST-
Index is only able to store the changes occurred in a single
time instant in each log. In such a case, a new snapshot for
each time instant is created and the structure degenerates
into many individual R-trees.

A simple idea for reducing even more the space used by
SEST-Index is to consider the basic HR-tree strategy, that
is, at the instant of creating a new R-tree in a snapshot,
reuse part of the R-tree of the previous snapshot. This idea
was evaluated, but little space was saved (around 5%).

4.2 Time slice queries
100 queries were performed with rectangles (query win-

dows) formed with 5% and 10% of the dimension in each
axis. The results shown for 3000 objects are similar to the
results obtained for 1000 and 5000 objects.

We can observe in Figures 8 and 9 that SEST-Index reads
more blocks than HR-tree in this type of query. For most
cases, SEST-Index needs, on average, twice of the number of
disk accesses required by HR-tree. SEST-Index always takes
longer to answer to a time slice query than HR-tree, since it
does not only read an R-tree but also the corresponding log.

Nevertheless, as the parameter d gets smaller, the disadvan-
tages of SEST-Index decrease because small logs imply less
blocks read in order to answer a query.

Figure 8: Blocks read by a time slice query with
a query window formed by 5% of the dimension in
each axis

Figure 9: Blocks read by a time slice query with a
query window formed by 10% of the dimension in
each axis

4.3 Time interval queries
As for time slice queries, the evaluation of time interval

queries uses 100 random query windows formed with 5% and
10% of the dimension in each axis. Only results for 3000
objects are shown, since similar conclusions were reached
for 1000 and 5000 objects.

We can observe in Figures 10, 11, 12 and 13 that SEST-
Index reads less blocks than HR-tree when the change fre-
quency is low (less than 5%). As the query interval grows,
the advantage of SEST-Index increases. This advantage is
due to the fact that SEST-Index only reads one R-tree and
sequentially a log. HR-tree, in contrast, must read an R-tree
for each time instant within the query interval.

4.4 Queries about events
In the same way of previous evaluations, 100 queries were

performed with rectangles (query windows) formed with 5%
and 10% of the dimension in each axis. The results shown
for 3000 objects are similar than those obtained for 1000 and
5000 objects. The queries about events were processed using
the algorithm in Figure 5. In this algorithm, the number of
blocks that were read depends only on the percentage of
change frequency and not on the parameter d or the size of
the query window. This can be clearly seen in Figure 14.

Figure 10: Blocks read in time interval queries with
size of time intervals equal to five and query windows
formed with 5% of the dimension in each axis

Figure 11: Blocks read in time interval queries with
size of time intervals equal to 5 and query windows
formed with 10% of the dimension in each axis

Figure 12: Blocks read in time interval queries with
size of time intervals equal to 10 and query windows
formed with 5% of the dimension in each axis

Figure 13: Blocks read in time interval queries with
size of time intervals equal to 10 and query windows
formed with 10% of the dimension in each axis

Figure 15 shows the number of blocks that were necessary
to read for processing queries about events for both SEST-
Index and HR-tree, considering 3000 objects and a value d
equal to 8 (similar results were obtained for other values of
d). We can observe that SEST-Index reads a smaller number
of blocks than HR-tree. This is due to the fact that HR-tree
needs to query two consecutive instants of time (process two
R-trees), whereas SEST-Index makes a direct location of the
changes stored in the log.

Figure 14: Blocks read by SEST-Index for queries
about events for 3000 objects. SEST-Index(i-j) in-
dicates queries for sets of objects with a change fre-
quency of i% and query window formed by j% of
the dimension in each axis.

5. SEST-INDEX VARIANTS
In spite of the fact that SEST-Index performed well for

low change frequencies (between approximately 1% and 13%
for storage cost and between 1% and 7% for interval queries
and queries based on events), one of its main disadvantages
is the rapid growth of its size as the change frequency in-
creases (see Figure 16). This rapid growth is explained by:
(1) the greater frequency of snapshots that are needed as
the percentage of changes and/or the number of objects in-
creases and (2) each time that an R-tree is created (i.e.,
a new snapshot), all objects are duplicated including those
that have not undergone modification between consecutive
snapshots.

In this section we propose two variants of SEST-Index:
the first aims to solve the problem of duplication of objects
in the snapshots, and the second tries to increase the size of

Figure 15: Blocks read by HR-tree and SEST-
Index for queries about events for 3000 objects.
XX-tree(i%) indicates SEST-Index or HR-tree for
queries about events whose query window is formed
by i% of the dimension in each axis.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 5 10 15 20 25 30

bl
oc

ks

change frequency(%)

HR-tree
SEST-Index

Figure 16: Growth of the index size versus the per-
centage of change frequency (3000 objects)

the log without affecting the performance of the queries.

5.1 First variant (Partitioning the space)
Our first variant consists in partitioning the original space

into a set of disjoint regions. To do so, we use a spatial access
method such as K-D-B-tree [9] (we choose this structure
because it splits the space into disjoint subspaces while the
union of these subspaces comprises the whole space). Then,
the logs can be assigned to the regions of the lowest levels
of the partition or to regions of intermediate levels (Figure
17). With this idea, duplication of objects can be avoided
where no changes have occurred. The index I of Figure 17
is used to rapidly locate the appropriate snapshot for the
time given in the queries.

A B

C

D
E

F

G H

. .
.

.....
....
.

..
.

. .
.

......
....
.

..
.

. . ..
.... .. .

. Snapshot

Events

log

I

Figure 17: General diagram of the first variant (par-
titioned with K-D-B-tree)

The following procedure is used to process a time slice
query. First, regions in the K-D-B-tree that intersect the
query window are selected. Then, for each of these regions,
and using the index I, the corresponding snapshot is located
and the changes are applied to obtain the set of objects in
the region that are part of the answer.

Figure 18: Space usage with 3000 objects (HR-tree
versus first variant)

A preliminary experiment compared this first variant of
SEST-Index with HR-tree by using a database with 3000
objects, four different change frequencies (i.e., 1, 3, 5 and
7%), and three different log sizes (i.e., 4, 8 and 12 blocks).
The results show that this SEST-Index variant requires, ap-
proximately, only 10% of the space used by HR-tree (Figure
18), half of the number of block read by HR-tree to process
time interval queries (Figure 19), and twice the number of
blocks read by HR-tree to process time slice queries (Fig-
ure 20), which is similar to, and not much worse than, the

Figure 19: Blocks read in time interval queries with
size of time intervals equal to 10 and query windows
formed with 10% of the dimension in each axis (HR-
tree versus first variant)

Figure 20: Blocks read in a time slice query with a
query window formed by 10% of the dimension in
each axis (HR-tree versus first variant)

results obtained with the original SEST-Index.
This approach presents two limitations: (1) the objects

must be points and (2) the space or region where the changes
occur must be fixed.

5.2 Second variant (Indexing the log)
The second variant is motivated by the results presented

in Figures 21 and 22 where it is possible to see that (1) the
size of the log has a high impact on the size of the index
and (2) a low impact on the performance of the queries.
Furthermore, the second variant removes the limitations of
the former one, that is, objects may have a geometric extent
(i.e., not only points) and the boundaries of the partitions
in the space can vary.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 10 20 30 40 50 60 70

si
ze

 o
f i

nd
ex

 (
bl

oc
ks

)

size of log (blocks)

Figure 21: Size of the log versus size of the index
(3000 objects, 7% of change frequency)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 10 20 30 40 50 60 70

bl
oc

ks
 r

ea
d

size of log (blocks)

Time Slice(10%)
Interval(10%,10)

Event(10%)

Figure 22: Blocks read for the queries (3000 objects,
7% of change frequency)

This approach consists in maintaining an index for the
logs (in addition to the R-tree of the snapshots) for each
time instant in which changes occur (see Figure 23).

In Figure 23, R0 corresponds to an R-tree of the snap-
shot created at t0; R1 and R2 are the R-trees that index
the elements stored in the logs; a, b, c and d are leaf nodes;
b1, b2, b3 and b4 correspond to log nodes and A, B, C and D
are internal nodes at the last level of R0, R1 and R2, respec-
tively. The index R1 is obtained from R0 in the following

...

...

...
R 1 R 2

t 1 t 2t

R

A B C D E F

a b c d
b1 b2 b3 b4

0

0

Figure 23: General diagram of the second variant

way: (1) all the internal nodes of R0 are copied and (2) all
the changes that occur within the same MBR of an entry
are stored in the same log block together with a pointer
to the corresponding leaf node. For example, the changes
that occur in the second entry of node C are stored in b1
along with a pointer to the leaf node b. The changes cause
that the successive MBRs in the insertion path are modified
(they grow or decrease) such that they contain the geometry
of the objects in the snapshot as well as their changes. The
index R2 can be obtained from R1 in a similar way.

The number of indexes will depend on the predefined
threshold value for some parameter, which can be related
to the size of the log or the percentage of overlap of inter-
mediate nodes. Once this threshold value is reached, a new
snapshot is created, and the process of the creation of the in-
dexes is repeated. This variant allows us to share log nodes
for the indexes; for example, node b1 stores changes corre-
sponding to the second entry in C and D. It is also possible
that one entry groups many changes and, therefore, such en-
try requires several blocks. This occurs with the first entry
of node E, which stores blocks b2 and b3 of the log.

Let us suppose that we perform a time slice query in time
instant t2 and that the query window intersects only with
the MBR of the second entry of F , let e be such entry. We
first retrieve the changes that intersect with e.MBR and
are in node b4, let Q be such set. Afterwards, Q is updated
with the changes stored in node b1 (indicated by a dotted
line). Finally, the set Q is used to update the objects stored
in the leaf node d. One of the problems that can come
up is that lists of log blocks to be accesed on a query may
become too long (for example, dotted line in Figure 23). A
way to eliminate this problem is to generate a snapshot at
the level of the leaf node in the instant in which the size of
the list exceedes a certain pre-established value. This last
modification makes this variant be very similar to the former
variant, but without the former variant’s limitations.

Estimations on the storage used by the second variant
indicate that it only requires between 10% and 25% of the
space occupied by HR-tree to maintain 3000 objects with a
change frequency of 7%. With respect to answer time, the
first and second variants have similar performance.

6. CONCLUSIONS
A new method (SEST-Index) is proposed to create spatio-

temporal indexes that combine the storage of snapshots and
change events over objects. The method tries to establish a

compromise between the time required to process the queries
and the space occupied by the index.

SEST-Index requires less space than HR-tree, when the
change frequency of objects is low (1% to 13%). It also
outperforms HR-tree for time interval queries (with change
frequency between 1% and 7%) and queries about events.
The advantages of SEST-Index over HR-tree in time interval
queries increase as the query window increases. For time
slice queries, SEST-Index requires more disk accesses than
HR-tree, depending on the size of the log. It is important
to notice that HR-tree is the most efficient spatio-temporal
access method for processing time slice queries known until
now.

As further research, we plan to fully implement the two
variants of SEST-Index. We will evaluate these variants
under different scenarios and with respect to other access
methods, such as MV3R-tree and 3D R-tree. We will also
define an analytical cost model for our indexes, which will
allows us to predict the space usage and response time for
query processing.

7. REFERENCES
[1] Guttman, A. R-trees: A dynamic index structure for

spatial searchinng. In ACM SIGMOD Conference on
Management of Data (1984), ACM, pp. 47–57.

[2] Kollios, G., Tsotras, V. J., Gunopulos, D.,
Delis, A., and Hadjieleftheriou, M. Indexing
animated objects using spatiotemporal access
methods. Knowledge and Data Engineering 13, 5
(2001), 758–777.

[3] Kollios, G. N. Indexing Problems in SpatioTemporal
Databases. PhD thesis, Polytechnic University, New
York, June 2000.

[4] Manolopoulos, Y., Theodoridis, Y., and
J.Tsotras, V. Advanced Database Indexing, 1st ed.
Kluwer Academic Publishers, 1999.

[5] Mokbel, M. F., Ghanem, T. M., and Aref, W. G.
Spatio-temporal access methods. IEEE Data
Engineering Bulletin 26, 2 (2003), 40–49.

[6] Nascimento, M., Silva, J., and Theodoridis, Y.
Access structures for moving points. Tech. Rep.
TR–33, TIME CENTER, 1998.

[7] Nascimento, M. A., Silva, J. R. O., and
Theodoridis, Y. Evaluation of access structures for
discretely moving points. In Spatio-Temporal Database
Management (1999), pp. 171–188.

[8] Pfoser, D., and Tryfona, N. Requirements,
definitions, and notations for spatiotemporal
application environments. In GIS ’98: Proceedings of
the 6th ACM International Symposium on Advances
in Geographic Information Systems (1998), ACM
Press, pp. 124–130.

[9] Robinson, J. T. The K-D-B-tree: A search structure
for large multidimensional dynamics indexes. In ACM
SIGMOD Conference on Management of Data (1981),
ACM, pp. 10–18.

[10] Tao, Y., and Papadias, D. Efficient historical
R-Tree. In SSDBM International Conference on
Scientific and Statical Database Management (2001),
pp. 223–232.

[11] Tao, Y., and Papadias, D. MV3R-Tree: A
spatio-temporal access method for timestamp and

interval queries. In The VLDB Journal (2001),
pp. 431–440.

[12] Theodoridis, Y., Sellis, T. K., Papadopoulos,
A., and Manolopoulos, Y. Specifications for
efficient indexing in spatiotemporal databases. In
IEEE Proceedings 10th International Conference on
Scientific and Statistical Database Management
(1998), pp. 123–132.

[13] Theodoridis, Y., Silva, J. R. O., and
Nascimento, M. A. On the generation of
spatiotemporal datasets. In SSD ’99: Proceedings of
the 6th International Symposium on Advances in
Spatial Databases (1999), Springer-Verlag,
pp. 147–164.

[14] Theodoridis, Y., Vazirgiannis, M., and Sellis,
T. K. Spatio-temporal indexing for large multimedia
applications. In ICMCS ’96: Proceedings of the 1996
International Conference on Multimedia Computing
and Systems (ICMCS ’96) (Washington, DC, USA,
1996), IEEE Computer Society, pp. 441–448.

[15] Tzouramanis, T., Vassilakopoulos, M., and
Manolopoulos, Y. Overlapping linear quadtrees and
spatio-temporal query processing. The Computer
Journal 43, 4 (2000), 325–343.

[16] Worboys, M. Event-oriented approaches to
geographic phenomena. International Journal of
Geographical Information Science 19, 1 (2005), 1–28.

[17] Xu, X., Han, J., and Lu, W. RT-tree: An improved
R-tree index structure for spatio-temporal database.
In 4th International Symposium on Spatial Data
Handling (1990), pp. 1040–1049.

