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Abstract. This paper derives and compares two strategies for minimizing
topological constraints in a query expressed by a visual example: (1)
elimination of topological relations that are implied uniquely by composition
and (2) restriction to topological relations that relate near-neighbor objects, as
determined by a Delaunay triangulation. In both cases, the query processing
approach is to solve a constraint satisfaction problem over a graph of binary
topological relations. Individuals and the combination of the composition- and
neighborhood-based strategies were implemented and compared with respect to
their ability to reduce topological constraints, and with respect to the quality of
the results obtained by a similarity-based searching that uses these pre-
processing strategies. The main conclusion of this work is that similarity
queries that are formulated in a visual language should exploit the metric
characteristics of the configuration, even if only topological constraints are
considered for making matches.

1 Introduction

Query evaluation in geographic databases is often expensive, because the spatial data
stored are more complexly structured and data sets are larger than their non-spatial
counter parts. Spatial queries are usually expressed as a set of spatial objects and a set
of spatial constraints among the objects. The spatial constraints may be topological
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(e.g., overlap or inside), metric (e.g., within 2 miles or near), and directional (e.g.,
north). The goal of a query evaluation is to match the query constraints among the
related objects with binary spatial relations between objects that are stored in a spatial
database. Since the spatial objects are embedded in the same space, the set of binary
spatial relations—and, therefore, also the number of possible constraints—grows
exponentially with the number of spatial objects in the query. This is the case, for
example, if the goal is to find spatial scenes that are similar to a given configuration
or if a spatial query is derived from a sketch [1], where the user specifies a query by
drawing an example that is composed of objects and implicit spatial constraints. For n
objects drawn, the sketch—and, therefore, the derived query—contains n2 topological
relations, n2 direction relations, and n2 metric relations. Such a type of query implies
very hard combinatorial computations [2-4] and, therefore, presents a challenging
problem for spatial information retrieval.

The evaluation of a spatial query is typically composed of a sequence of
steps (Figure 1) [5]. Starting with the semantic analysis, a consistency checker
evaluates whether or not query constraints contain self-contradictions [6]. The
optimizer aims at speeding up the query processing by generating an evaluation plan
according to optimization rules and access path selections. Finally, the query
processor is in charge of carrying out the evaluation. This paper focuses on spatial
query optimization involving binary topological relations.

Fig. 1. Sequence of tasks in a query evaluation (based on [5]).

Most approaches to spatial query optimization have pursued an efficient
search process by defining an optimal evaluation plan [7-11]. In these approaches, the
complexity of spatial operators and the size of the search space become the basis for
defining the best sequence of tasks in answering a query. This paper pursues a
complementary approach that is independent of the data collection in the spatial
database and, therefore, can be performed as part of query optimization in a pre-
processing step. Query pre-processor aims at reducing the number of spatial
constraints by analyzing the content of a spatial query with the goal to find a subset of
constraints that will satisfy the query. A subset of constraints does not lose
information if the results of the query process obtained with this subset satisfy the
constraints that were not evaluated.

This study considers two strategies for reducing the number of topological
relations that describe a spatial configuration: (1) composition-based and (2)
neighborhood-based approaches. The composition-based approach considers the
spatial reasoning concept of composition, where topological relations can be derived
from a subset of given topological relations [12]. It is, therefore, based purely on the
algebraic properties of the set of topological relations. The neighborhood-based
strategy considers semantics of the space by emphasizing that non-disjoint topological
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relations are more relevant than disjoint relations, since they indicate physical
connection between objects [13, 14]. Thus, what matters are the relations between
objects that are physically close to each other. Although some level of composition-
based or neighborhood-based query pre-processing has been used in the past [13, 15,
16], no study has described the background, and the advantages and disadvantages of
pre-processing the query with such strategies.

The organization of the remainder of this paper is as follows: Section 2 presents the
representation of spatial configurations and definitions associated with topological
relations. Section 3 and 4 develop composition-based and neighborhood-based pre-
processing strategies, respectively. Experimental results that compare both pre-
processing strategies are given in Section 5. Section 6 draws conclusions and
discusses future research directions.

2 Representing Topological Relations

A configuration C is a set of objects O and a set of constraints R expressed by the
binary topological relations between two objects (Equation 1). This configuration can
be seen as a graph, where nodes are the objects and directed edges are the binary
topological relations [15, 18].

    
C O R O o o R o o o o On i j i j= = ∧ = ∈{ }( , ) : { ... } {( , ) : , }1

(1)

The graph g that describes a spatial configuration with n objects can be represented
as a matrix of nxn elements, where these elements identify binary topological relations
Rij. Elements along the matrix diagonal Ri,i are all equal relations.

2.1 Topological Relations

Topological relations are binary spatial relations that are preserved under topological
transformations such as rotation, translation, and scaling. This work concentrates on
topological relations between regions. Figure 2 shows the eight topological relations
that can be found between two regions [19, 20], organized in a graph that connects
conceptual neighbors derived from the concept of gradual changes [21]. For example,
disjoint and meet are two neighboring relations in this graph and, therefore, they are
conceptually closer than disjoint and overlap. Only regions are considered here,
because objects are usually indexed based on their Minimum Bounding Rectangles
(MBRs) [10, 22]. Searching for MBRs is a first filter in solving a query and is usually
sufficient for finding a spatial object.
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Fig. 2. Eight topological relations between regions, arranged by their conceptual neighborhoods
[12].

Refinements of these topological relations can be also introduced in order to
differentiate relations by taking into account metric characteristics of objects, such as
relative size and distances [23, 24]. Thus, a pair of objects can be seen as further
disjoint than another pair if the distance between the first pair is larger than the
distance between the second pair.

2.2 Relation Algebra

Topological relations are usually defined as a relation algebra [25]. A relation
algebra (with universe ℜ ) is defined as a ten-tuple 〈ℜ,  +, • ,  −, 0, 1, ;, 1', 0',  〉,
where 〈ℜ,  +, •,  −, 0, 1〉 is a Boolean algebra, 0 is the empty relation, 1 is the universal
relation, ; is a binary operation called composition, 1' is the identity relation, 0' is the
diversity relation, and   is a unary operator forming the converse of a given relation
[25]. The composition operation (;) allows us to make inferences about the relation
between two objects, oi and ok, by combining the relations, R and S, over a common
object, oj (Equation 2).

R ; S ≡  (oi, ok) | ∃ oj such that (oi, oj) ∈  R and (oj, ok) ∈  S (2)

2.3 Composition of Topological Relations

The composition may result in a set of relations that is composed of one or more than
one element and whose number of elements increases as less precise information is
obtained from the inference. For example, if the composition of two operations yields
the set with all possible relations (i.e., the universal relation 1), no information at all is
obtained from this inference. The composition table for topological relations between
regions (Figure 3) shows that out of the 64 compositions, 27 compositions have a
unique result, three compositions yield the universal relation, and 34 compositions
have between two and six relations in their results.

disjoint
meet
overlap

coveredBy
inside

covers
contains

equal
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Fig. 3. Composition able of topological relations between regions [12].

3 Composition-Based Pre-Processing

The composition-based approach for query pre-processing is solely based on the
algebraic properties of composition. It does not require or exploit any metric
descriptions of the objects in a configuration. The composition-based approach starts
with a consistent graph and finds a smallest subgraph, from which one can derive the
complete, original graph. The strategy for finding this subgraph follows the principles
of topological consistency in a graph [26]. There is a comprehensive method for
analyzing the consistency of spatial configuration based on the logical consistency
expressed by the composition of relations. Given a configuration expressed as a
graph, topological consistency is formulated as a constraint satisfaction [16,17]
problem over a network of binary topological relations [18, 27]:
¥  Each node must have a self-loop, denoting the identity relation (Equation 3).

  ∀ i iir =1' (3)

¥  For each directed edge from N to M, there must be an edge in the reverse direction,
denoting the converse topological relation (Equation 4).

disjoint meet overlap coveredBy inside covers contains equal

disjoint

equal

contains

covers

inside

coveredBy

overlap

meet



6 M. Andrea Rodríguez, Max J. Egenhofer, and Andreas D. Blaser

    ∀ =i j i j j ir r, , ,
(4)

¥  Although a variety of paths can lead from one node to another, in order to infer the
path consistency of a relation it is sufficient to consider all compositions of path
length 2 that connect the relation’s two nodes [26]. Having a consistent graph, a
topological relation must coincide with its induced relation determined by the
intersection of all possible composition path of length 2 (Equation 5).

    
∀ = ∩

=
i j i j

k A

N

i k k jr r r, , , ,;
(5)

Following the principle of path consistency, a relation could be completely derived
if and only if it is the unique possible relation that results from the intersection of
different path compositions in the query graph.

Having an initial graph that is consistent and complete, we must prove that the
minimum subgraph is unique. Otherwise, the algorithm that determines the subgraph
would need to choose between different paths. The analysis of the uniqueness of this
minimum subgraph is done exhaustively using an algorithm that checks possible
composition-based derivations.

Consider each single composition with a crisp result, that is, all compositions
whose results have a single relation. To obtain a unique subgraph with three objects,
no permutation of the relations of compositions with crisp results should produce
another crisp result.
Antecedent:     r r ri j i k k j, , ,;= , where “=” implies a crisp result.

Hypothesis:     ( ; ) ( ; ), , , , , ,r r r r r ri k i j j k k j k i i j≠ ∧ ≠ .

Without considering the fifteen trivial compositions with equal, there exist twelve
crisp results of the topological compositions (Table 1). By checking exhaustively all
twelve compositions, we accept the hypothesis. Thus, for single compositions, the
derived relation is the only relation that can be derived from the combinations of the
three relations involved in the composition (i.e., R, S, and T). An important
observation is that overlap is the only relation whose participation in a composition
operation does not result in a non-trivial crisp result.

Table 1. Crisp results for single composition.

Crisp Result

disjoint inside contains
Number of Occurrences 6 3 3

For path consistency it is known that a relation can be derived if the intersection of
all possible composition paths of length 2 results in this unique relation (Equation 5).
The foundation for this assessment is the set of permutations that can be created by
exchanging the derived relation with any of the two composition components in all
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possible composition paths of length 2. To check the uniqueness of the minimum
graph then requires the analysis of whether or not the intersections of all permutations
result in a crisp relation.
Antecedent: 

    
r r ri j

k k i k j
i k k j,

,
, ,;= ∩

∀ ≠ ∧ ≠
.

Hypothesis: 
    

r r r r r ri k
l l i l k

i l l k k j
l l j l k

k l l j,
,

, , ,
,

, ,; ;≠ ∩





∧ ≠ ∩




∀ ≠ ∧ ≠ ∀ ≠ ∧ ≠

Using an exhaustive approach we consider, in a first instance, intersections of two
paths of length 2. For example, given that ri,j  follows from the intersection of
ri,k;r k,j ∩ri,l;r l,j, the approach is to check whether or not     r r r r r ri k i j j k i l l k j k, , , , , ,; ;( ; )= ∩ .

In this process we considered all possible pairs of compositions that do not involve
the equal relation (i.e., 49 different compositions). There are 1,176 possible
combinations, created by the combination of two compositions over the set of 49
possible compositions. Ninety-eight different intersections create crisp results and do
not include a single composition with crisp result. Among these 98 crisp intersections,
only ten combinations derive a relation other than overlap (Table 2). The permutation
of the derived relation by any of the components of the combination proves to give no
crisp result. Thus, for configurations with four elements there is just one unique
minimum graph, since no exchangeable relation could be derived with the same set of
objects.

Table 2. Crisp results for intersections of two compositions with path length 2.

Intersections of Two Compositions with Path Length 2
Yielding Crisp Results

Crisp
Result

Number of
Occurrences

∩

∩

∩

∩

∩
overlap

88

∩ ∩
covers

4

∩ ∩
coveredBy

4

∩ ∩
meet

2

Subsequently, crisp results could be derived from the intersection of three paths of
length 2. In such a case, there are 162 intersections of three paths with crisp results.
This number does not include double paths of compositions or single compositions
with crisp results (Table 3). All these intersections produce the relation overlap. An
exhaustive analysis shows that for configurations with five objects there exists only
one unique minimum graph.
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Table 3. Crisp results for the 162 intersections of three compositions with path length 3.

Intersections of Three Compositions with Path Length 2
Yielding Crisp Results

Number of Occurrences

∩ ∩ ∩ ∩ 128

∩ ∩
∩ ∩

∩ ∩

∩ ∩

 32

∩ ∩ ∩ ∩  2

Subsequently, the analysis found no further combinations of composition paths
whose intersection would produce a crisp result. Indeed, after the intersection of two
compositions of length 2, no crisp results other than overlap were found. This overlap
relation does not produce any crisp result when it is composed with other topological
relation. So, if we have a configuration with a given set of spatial objects, where one
topological relation exists that is completely derivable from the intersection of all
possible path of length 2 (Equation 5), we have proved that no permutations of
relations that participate in these intersections produce another crisp result.
Consequently, no other relation within this configuration can be derivable, and the
minimum graph that represents the configuration is unique.

4 Neighborhood-Based Pre-Processing

Pre-processing techniques that concentrate on closely related spatial objects follow
Tobler’s First Law of Geography: “Everything is related to everything else, but
nearby things are more related than distant things” [29]. Neighborhood-based pre-
processing keeps only the relations in a query graph that represent physically
connected objects and near-disjoint relations, but eliminates medium- and far-disjoint.
An object is physically connected to another objects if their boundaries are neighbors.
There exist different algorithms to establish the neighborhood of spatial objects. Some
graph structures that consider the spatial distribution of objects are the Minimum
Spanning Tree and the Relative Neighborhood Graph [30, 31].

One of the most widely used methods to connect points in the space is the
Delaunay Triangulation [32]. It partitions the Euclidean space, composed of a set of
points, into triangles such that no four points of this set are co-circular. The dual of
the Delaunay Triangulation, the Voronoi Diagram, represents a partition of space into
regions where points of the Delaunay Triangulation are the nuclei of specific areas.
These areas are bounded by the perpendicular bisectors of the nucleus and the set of
its neighboring points [33].

A Delaunay Triangulation is based on a set of points. Spatial configurations,
however, may be composed of points, lines, or regions. To qualify as neighbors, the
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boundaries of two objects must share one or more Voronoi edges. Because of the dual
characteristics of the Voronoi and Delaunay Triangulation, a shared Voronoi edge is
the same as one or more connecting edges in the Delaunay Triangulation [13]. Figure
4 illustrates two constrained Delaunay Triangulations. They capture the spatial
neighborhood at different levels of detail using either the objects’ boundaries (Figure
4a) or the objects’ MBRs (Figure 4b).

D

C

E

B

A

D

C

E

B

A

(a) (b)

Fig. 4. Delaunay triangulation of a spatial configuration represented by (a) its objects’ edges
and (b) its objects’ MBRs.

Since the detail in the boundary representations affects the space partition, the
Delaunay Triangulation may change depending on the geometric representation of
objects. This effect is even clearer as objects are represented by their MBRs using two
or four extreme points. This work addresses query pre-processing using the objects’
MBRs that are defined by four extreme points. Based on these triangulations we
obtained two different subgraphs (Figure 5), where the graph determined based on
objects’ boundaries represents a subgraph of the graph determined based on objects’
MBR. Consequently, although from a theoretical point of view there is a unique
minimum subgraph derived from the Delaunay Triangulation, this subgraph may not
be the one that is obtained with the Delaunay Triangulation implemented. The
implementation, however, is deterministic in the sense that it always finds the same
subgraph for a spatial configuration with a given representation.

A B

D C

E

A B

D C

E

(a) (b)
Fig. 5. Subgraphs obtained with Delaunay triangulation of a spatial configuration represented
by (a) its objects’ edges and (b) its objects’ MBRs.

Euler’s Equation (Equation 6) [33] can be applied for every convex polyhedron
with mv nodes (vertices), mf faces, and me edges. Each edge in a Delaunay
Triangulation bounds exactly two vertices. Therefore, if all vertices of a Delaunay
Triangulation were substituted with objects and all edges with binary relations, we
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can deduce that for a very large graph the average number of neighbors (av_ng) of an
object is less than six (Equation 7). Since in this work four points represented the
geometry of an object, and in the extreme case all four points connect to different
objects, the number of neighbors of an objects in a very large graph is less than 24,
that is, it grows linearly by O(n), with n being the number of objects. This upper
bound of the number of relations in the final subgraph contrasts the theoretical bound
of O(n2) of a query without pre-processing.

    m me v≤ ⋅ −3 6 (6)

    
av ng

m
m m

e

v v
_ = ≤ −2

6
12 (7)

5 Experimental Comparison

In this experiment, queries are sketches that provide topological relations as well as
metric characteristics of objects. The experiment involves the implementation of a
searching mechanism that is based on a content measure. We also used an
experimental database that could include regular and extreme cases of realizable
configurations, to test whether such cases have an impact on the composition-based or
the neighborhood-based pre-processing techniques.

5.1 Experimental Setting

Our analysis applied three different strategies for pre-processing: (1) pre-processing
using topological composition S(g), (2) pre-processing using Delaunay triangulation
V(g), and (3) pre-processing using Delaunay triangulation followed by composition-
based pre-processing (S(V(g)).

While composition-based S(g) pre-processing acts over relations (i.e., constraints),
neighborhood-based pre-processing V(g) acts over spatial objects. Thus, while
eliminating a constraint affects subsequent eliminations when using composition-
based pre-processing, eliminating a constraint does not affect the subsequent
elimination by the neighborhood-based strategy. This work eliminates only
constraints, so V(S(…()) will not differ from V(g). On the other hand, although it is
known that S(S(…S(g)…) is the same as S(g), it is impossible to eliminate a priori
S(V()).

This study evaluates the quality of the pre-processing techniques by using a
searching process. This evaluation analyzes whether or not by eliminating constraints
through the different pre-processing strategies, the query process can still give good
results. The experiment evaluates queries using a forward checking algorithm [34]
and a content-based similarity evaluation of configurations [4]. The content of
topological relations in a configurations is defined by a quantitative content measure
(Equation 8), which distinguishes the eight topological relations between regions in a
plane and introduces metric refinements to differentiate among sizes and distances
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between objects [24]. This content measure is independent of rotation and horizontal
or vertical flipping of configurations.

    

F A B
area A area A B

area A

A B

diagonal A

F B A
area B area A B

area B

B A

diagona

m

m

( , )
( ) ( )

( )

( , )

( )

( , )
( ) ( )

( )

( , )

=
− ∩

+

=
− ∩

+

2

2

distance

distance

δ δ

δ δ

,

ll B

A B
A B

A B

( )

( , )

   where

 
( A, B) if

( A, B) if

  

 distance
d

d
e

i
δ δ

δ δ
δ δ

=
∩ = ∅

− ∩ ≠ ∅




a

c

b c∩

de

di b

(8)

We define a similarity value between configurations as the inverse of the distances
between content-measure values of pair of objects in the first and second
configuration (Equation 9).

    

D Q S F v v F u u F v v F u um i j m i j m j i m j i
vi v j Q ui uj S

( , ) ( , ) ( , ) ( , ) ( , )
, ; ,

= −( ) + −( )
∈ ∈

∑
2 2 (9)

The forward checking strategy takes the constraints one-by-one and searches for
pairs of objects that satisfy this constraint [22]. Then, it performs a join operation to
combine the results of the search of objects that satisfy individual constraints. A
constraint is considered satisfied if the difference between the content measure of the
objects in a query and the content measure of the objects in the solution is less than or
equal to a threshold (0.01 in this case).

5.2 Data Domain

To perform the experiment we created a database of 2,025 elements from all possible
objects that fit in a 9x9 box, considering objects whose edge lengths vary from 1 to 9.
From this database of 2,025 objects we created a domain of topological relations with
a total of 758,614 disjoint, 192,464 meet, 851,328 overlap, 25,200 coveredBy, 2,024
inside, 173,620 covers, and 44,100 contains relations. In order to speed up the
searching process, binary relations, which are defined as tuples of the content measure
(F(oi,oj),F(oj,oi)), were indexed using an R-Tree-like structure [4]. Unlike the
traditional use of the R-Tree structure, which organizes objects by their physical
locations, the R-tree structure is used here for organizing content values of topological
relations [4]. In this experiment, 98 queries with five objects were randomly created,
52 configurations when the pre-processing based on composition reduces the number
of constraints, and 46 configurations when pre-processing based on composition does
not change the initial configurations.
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Table 4. Topological queries and their pre-processing results with relations disjoint (d), meet
(m), overlap (o), inside (i), contains (c), covers (cv), coveredBy (cb), and equal (e).

G Query S(g) V(g) S(V(g))

a 5

2

4
3

1 - d d d o
- - d m m
- - - d o
- - - - cb
- - - - -

S(a) ⊃  S(V(a))

- d d d o
- - - m m
- - - d o
- - - - cb
- - - - -

V(a) ⊂  S(a)

- d d d o
- - - m m
- - - d o
- - - - cb
- - - - -

S(V(a)) = V(a)

b 1 52 3 4

- d d d d
- - d d d
- - - d o
- - - - d
- - - - -

S(b) ⊃  S(V(b))

- d -  - -
- - d - -
- - - d -
- - - - d
- - - - -

V(b) ⊂  S(b)

- d - - -
- - d - -
- - - d -
- - - -  d
- - - - -

S(V(b)) = V(b)

c
1

2
3

4

5
- - d o -
- - i - cv
- - - cb -
- - - - -
- - - - -

S(c) = S(V(c))

- d d o d
- - i i cv
- - - cb c
- - - - c
- - - - -

V(c) ⊃  S(c)

- - d o -
- - i - cv
- - - cb -
- - - - -
- - - - -
S(V(b)) ⊂  V(c))

d

1

2

3
5

4 - - d m -
- - cb - -
- - - d -
- - - - c

- - - - -
S(d) ⊃ S(V(d))

- - d m d
- - cb - -
- - - - -
- - - - c

- - - - -
V(d) ≠ S(d)

- - d m -
- - cb - -
- - - - -
- - - - c
- - - - -
S(V(d)) ⊂  V(d))

e

1

2
5

3

4 - - d m -
- - i - c
- - - - -
- - - - cv
- - - - -

S(e) ≠ S(V(e))

- d m - -
- - i o c
- - - o -
- - - - cv
- - - - -

V(e) ≠ S(e)

- - d - -
- - i - c
- - - o -
- - - - cv
- - - - -

S(V(e)) ⊂  V(e)

f

1

5
2 3

4

- - d o cb
- - d i d
- - - i m
- - - - -
- - - - -

S(f) ≠ S(V(f))

- d d o cb
- - d i -
- - - i -
- - - - o
- - - - -

V(f) ≠ S(f)

- d d o cb
- - d i -
- - - i -
- - - - o
- - - - -

S(V(f)) = V(f)
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Table 4 presents six of the total of queries (g) analyzed by using S(g), V(g), and
S(V(g)) pre-processing. Queries represent different combinations of results after
applying the pre-processing strategies. The first two queries do not have any change
after S(g) pre-processing, while they have one or six less relations after V(g) pre-
processing. In particular, the second query is an extreme case by using neighborhood-
based preprocessing with six eliminations. The opposite situation occurs for the third
query, where V(g) composition has no changes and S(g) pre-processing eliminates
five relations. The last tree queries have fewer relations after both S(g) and V(g) pre-
processing; however, they differ in how S(g), V(g), and S(V(g)) are related.

5.3 Results

With respect to the sets of constraints obtained after the query pre-processing, the
experiment shows that S(V(a)) can reduce the number of edges more than S(a) and
V(a) do (Query d). For all three strategies, the maximum number of eliminated edges
in a query with five objects was six. For all pre-processing strategies, converse and
identity operators over topological relations were applied, such that the experiment
considers topological relations only in one direction (upper half of the matrix that
represents the graph). Six association rules were derived from the analysis of the
results (Equations 10-15).

    ( ( ) ) ( ( ) ( ( )))S g g V g S V g= → = (10)

    ( ( ) ) ( ( ) ( ( )))V g g S g S V g= → = (11)

    ( ( ) ( )) (( ( ) ( ( ))) ( ( ( )) ( )))S g V g S g S V g S V g V a⊂ → = ∧ ⊂ (12)

    ( ( ) ( )) (( ( ) ( ( ))) ( ( ) ( ( ))))S g V g V g S V g S g S V g= → = ∧ = (13)

    ( ( ) ( )) (( ( ) ( ( ))) ( ( ( )) ( )))V g S g V g S V g S V g S g⊂ → = ∧ ⊂ (14)

    ( ( ) ( )) ( ( ) ( ( )))V g S g S g S V g≠ → ¬ = (15)

With respect to the results of the search process, for all six queries the algorithm
with or without query pre-processing finds the right solutions, that is, configurations
that are equal to the queries (i.e., optimal solutions). Since the content measure
considers the relative size and position of objects, while it disregards differences due
to rotation and flipping, the algorithm finds more than one optimal solution. These
additional optimal solutions are equivalent to the query if configurations are rotated or
flipped over the horizontal or vertical axis.

Results of the search process vary among queries (Table 5). The number of
solutions in each query increases as pre-processing eliminates constraints. This
increment depends not only on the number of constraints eliminated, but on the type
of these constraints. Disjoint and overlap relations are far more frequent and,
therefore, constraints based on these relations will have more candidate solutions. In
terms of the satisfaction of topological constraints, while composition-based pre-
processing guarantees that topological constraints are satisfied, neighborhood-based
cannot guarantee this satisfaction. In the worst case, neighborhood-based pre-
processing obtains solutions where 4 of the constraints were not satisfied and, in the
worst average, 2 constraints where not satisfied. It is important to note that although
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neighborhood-based pre-processing may loose information of the query, the algorithm
will always find the optimal solutions, if they exist, and the ranking of the solutions
will place optimal solutions first.

Table 5. Search results in terms of number and similarity values (distance 0 stands for an
optimal solution).

Query G S(g) V(g) S(V(g))
Solutions 45 45 45 45
Solutions with constraint violations 0 0 0 0
Maximum constraint violations 0 0 0 0
Average Distance 0 0 0 0

a

CPU time [seconds] 399.24 399.24 406.57 406.57
Solutions 876 876 45,648 45,648
Solutions with constraint violations 0 0 0 0
Maximum constraint violations 0 0 0 0
Average Distance 0 0 1.45 1.45

b

CPU time [seconds] 25.35 25.35 4.66 4.66
Solutions 24 720 24 720
Solutions with constraint violations 0 0 0 0
Maximum constraint violations 0 0 0 0
Average Distance 0 0.08 0 0.08

c

CPU time [seconds] 0.16 0.08 0.16 0.08
Solutions 5 1,024 982 65,996
Solutions with constraint violations 0 0 790 501.88
Maximum constraint violation 0 0 4 4
Average Distance 0 0.32 0.96 1.13

d

CPU time [seconds] 594.22 591.71 596.61 587.49
Solutions 94 244 450 594
Solutions with constraint violations 0 0 300 416
Maximum constraint violations 0 0 1 1
Average Distance 0 0.06 0.24 0.27

e

CPU time [seconds] 0.44 0.76 0.11 0.01
Solutions 48 96 96 96
Solutions with constraint violations 0 0 48 48
Maximum constraint violations 0 0 1 1
Average Distance 0 0.001 0.07 0.07

f

CPU time [seconds] 19.72 79.03 8.78 8.78

In terms of performance, there is no clear relationship between time and number of
constraints. Since queries are of small number of objects, time pre-processing does
not affect the overall time. Although in most cases, neighborhood-based pre-
processing tends to reduce the CPU time of query evaluation, composition-based pre-
processing is not always efficient in doing so. In all cases CPU time is strongly
influenced by the number of constraints in the query and the frequency of relations in
the database. As the number of candidate relations in the database that correspond to a
query constraint increases, the computational cost grows, since more candidate
objects have to be combined. In addition, less constrained queries may also increase
the CPU Time. This is the case, for example, of Query a, where the CPU time for the
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original query was less than the reduced query (V(a)), since an elimination of a
constraint (i.e., disjoint) may increases the domain of search.

The metric refinements make further distinctions among topological relations that
allow us to reduce the time needed to find a candidate solution. For example, since
disjoint relations are more frequent in the database, one could think that queries based
on this relation will need more processing time. The metric refinements of topological
constraints, however, differentiate among types of disjoint relations, reducing
candidate solutions of query constraints and, therefore, reducing the processing time
(e.g., Query b).

Table 6. Best and worst results of six test queries

Query Result with Best Match Worst Result

a
5

2

4
3

1

4 5

2

13

b 1 52 3 4 1 52 3 4

2

3

5

4

1

c

1
2

3

4

5

52

4

3

1

1
2

3

4

5

d
1

2

3
5

4

1

2
3

5
4

1

2

3

4
5

e

1

2
5

3

4
1

2
5

3

4

2
3

5 4

1

f
1

5
2 3

4 1

5

3

2
4

2 3

5

4
1
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A possible explanation for the better performance with the neighborhood-based
pre-processing—when both strategies eliminate constraints—is that objects may have
many disjoint relations; however, closely disjoint objects are less frequent than far
apart objects. Neighborhood-based pre-processing will always keep closely disjoint
objects, while it eliminates far apart objects. Composition-based pre-processing, on
the hand, will not distinguish between far or closely disjoint objects. So, while for
many queries neighborhood-based preprocessing keeps disjoint relations, these
disjoint relations are less common and, therefore, they tend to keep the evaluation cost
low.

Table 6 shows the results of the searching process. We selected a random solution
among the optimal solutions and a random solution among the solutions with worst
confidence (i.e., larger number of constraints violated when they occur, or larger
distance with respect to the query when no violation occur). A visual analysis of the
results shows good matches, confirming that the forward-checking algorithm, which
enforces that all constraints evaluated must be satisfied, is an appropriate choice for
this experiment. The performance of this algorithm, however, decreases drastically
depending on the number of occurrences of topological relations in the database.

6 Conclusions

This paper derived and compared composition-based and neighborhood-based pre-
processing strategies for reducing the number of topological constraints that need to
be satisfied in spatial query processing. The setting is tailored for similarity-based
retrieval where a target configuration is either given by an existing spatial scene or
derived from a sketch. Results of this study are that neighborhood-based (V(g)) pre-
processing provides a good mechanism for reducing topological constraints that tends
to reduce the computational cost of query evaluation. Although neighborhood-based
pre-processing does not guarantee that topological constraints will be satisfied,
solutions ranked by a similarity measure place optimal solutions first. Thus, similarity
queries that are formulated in a visual language should exploit the metric
characteristics of the configuration (i.e., distances between objects), even if only
topological constraints are considered for making matches. In the case that
topological queries are expressed with a command language [35], the composition-
based pre-processing can only be used, as it always ensures that constraints that were
not evaluated are satisfied.

In this work, pre-processing strategies were analyzed considering time and results
of a similarity-based query process. The findings have implications on future work as
they are useful not only for pre-processing queries, but for processing a whole
database in order to create an indexing schema that organizes spatial interrelations
between objects. Because only physically close interrelations are needed, one could
drastically reduce the number of interrelations that need to be stored by a database.
An aspect to be considered for future work is the potential of systematically selecting
pre-processing strategies depending on the database and/or the query’s characteristics.
For example, constraints that were eliminated by both pre-processing strategies may
indicate that there is a good chance of having a good balance between quality of
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results and performance of query evaluation by using neighborhood-based
preprocessing.
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