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Abstract

Inference mechanisnaboutspatialrelationsconstitutean importantaspectof spatialreasoningas
they allow users to derive unknown spatial information from a set of known spatial reléfioers.
formalizedin the form of algebrasspatial-relationinferencesrepresenta mathematicallysound
definition of the behaviorof spatialrelations,which canbe usedto specify constraintsin spatial
guery languages. Current spatlerylanguagesitilize spatialconceptghat are derivedprimarily
from geometric principles, which do not necessarily match witlcdineeptgpeopleusewhenthey
reasonand communicateabout spatial relations. This paperpresentsan alternative approachto
spatialreasoningby startingwith a small set of spatial operatorsthat are derived from concepts
closelyrelatedto humancognition. This cognitive foundationcomesfrom the behaviorof image
schematayvhich are cognitive structuresor organizingpeople’sexperiencegnd comprehension.
From the operationsand spatial relationsof a small-scalespace,a container-surfacelgebrais
defined with nine basic spatial operators—nside, outside, on, off, their respectiveconverse

relationg] contains excludes,supports separated_fromand the identity relation equal The
container-surfacalgebrawas appliedto spaceswith objectsof different sizesand its inferences
were assessedhrough human-subjecexperiments Discrepanciedetweenthe container-surface
algebraand the human-subjectesting appearfor combinationsof spatial relationsthat result in
more than one possible inference depending on the reitivef objects.For configurationswith
small-scaleand large-scaleobjectslarger discrepanciesvere found becausepeopleuse relations
suchaspart of andat in lieu of in. Basicconceptssuchas containersand surfacesseemto be a
promising approach to define and derive infererasasngspatialrelationsthat are closeto human
reasoning.

1. Introduction

Usersof geographidnformationsystemqGISs) and spatial databasesypically formulate spatial
gueries whose constraints are based on spatial relations (Roussd@pdudidiser 1985, Egenhofer
& Frank 1988, Guting & Schneider 1995). Examples are such requests athé&flacyesttown in
Penobscotounty” and“find all National Parksthat arelocatedon anisland.” Models for spatial
relationsin GISs have beentraditionally derived from geometricpropertiesand often limited to
computationswithin a Cartesiancoordinate space. This approach, however, constrains the
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representation of spatial information, because it assumes the existence of complete caapinate
for each spatiaéntity. Moreover,geometricpropertiesmay not necessarilycaptureall information
that peopleuseto reasonaboutspace.To complementraditional spatial data models, qualitative
representations afpacehavebeeninvestigated Hernandez.994). Within the realmof qualitative
spatial reasoning, the study of algebras for spatial relations has bgenvoig interestin the GIS
community (Smith & Park 1992, Egenhofer& Sharmal993). These algebrasfocus on the
inferences made from compositions of spatial relations, sutdpal®gicalrelations(Randellet al.
1992, Egenhofer& Franzosal991, Egenhoferl994), cardinal directions (Frank 1991, Freksa
1991, Papadias & Sellis 1994), approximditgtancegHernandezt al. 1995, Hong etal. 1995),
and their combinations (Nalgt al. 1995,Sharma& Flewelling 1995). While theseformalizations
are mathematicallysound, there has beenlitle concernas to whether existing spatial-relation
algebras are cognitively plausible (Hirtle 1991, Hernandez 1994).

Naive Geography(Egenhofer& Mark 1995) promotesan alternativepath to modeling space
through the use of concepts that are grounded in human expeier;dserefore are expectedo
matchmore closelywith humanthinking. The consideratiorof suchcommonsenseonceptsmay
lead to new theories for developing GISs with user interfandspatialreasoningcapabilitiesthat
respondto their users’ expectations.In search for alternatives, researchersn geographic
information sciencehave beeninspired by cognitive (Lakoff 1987) and linguistic (Talmy 1983)
theoriesaboutspaceas a foundationfor easier-to-usésISs (Mark & Frank 1991). In cognitive
science the conceptof imageschematgLakoff & Johnson1980, Johnsonl1987) emphasizeshe
experiential dimension of human thinking. Image schemataare recurrent patterns, such as
container surface link, and path, that can be extendedand metaphoricallyprojectedto makenew
experiencesmeaningful. They aim at representingwhat may be common in the way people
understandand think abouttheir perceptionsof the world. Although image schemataare more
abstractconceptsthan visual representationsthey are idealized conceptualmodels of human
perceptionand cognition (Mark 1989) and, therefore they are basisfor the developmenf user
interfaces and visual languages that are ealato and employby many users,particularlyusers
from different disciplines, cultures, and linguistic groups (Mgr&l. 1989).

Since image schematamay provide the structuresfor understandinghe meaningof spatial
relations(Mark 1989, Freundschuh& Sharmal996), we use them here as a foundation for
constructingan intuitive and cognitively-plausiblespatial-relation algebra In the theory of image
schemataall peoplelearn the samebasic spatial conceptsthrough essentiallythe same bodily
experiences and, therefore, can share the &ameledgewithout a needfor detailedexplanations
or instructions.Imageschematare expectedo serveas a basisfor future query languagesand
inference mechanismghat reflect basic human reasoning.For example,a scenarioin which
merchandise on a platform must be transported via the interstateatelaousecan be describedat
a higherlevel of abstractiorthroughthe combinationof the image schematanvolved, given the
mappings that the merchandise alogects the platform is aurface the interstate ia path, andthe
warehouses a container Many imageschemataare fundamentallyspatialin nature(Mark 1989).
The spatial conceptsunderlying image schematahowever, are not necessarilfimited to spatial
applicationssince image schemataare commonly used through metaphoricalprojectionsin non-
spatial domains; therefore, query languagesdevelopedfrom image schematacan be widely
applicable beyond spatial applications.

Insteadof analyzingusers’behaviorsin usinga given setof GIS operationswe focus on a
small setof operationghat characterizehe behaviorsof two major imageschematathe container
andthe surface Containerand surfacewere found to be the two mostbasicimageschematan a
complexity ranking derived from the spatial conceptschildren learn (Freundschuh& Sharma
1996). By usingthe behaviorof imageschematathis approachfollows the notion of use-based
semantic{Kuhn 1994), which bettercaptureghe meaningof objectsin termsof the operations
people perform with them than do descriptionsof attributes. Of particular interest are those
inferencesthat can be made from combinationsof image schemataln algebraicterms, such
inferencesare referredto as the compositionof relations. Compositioncombinestwo binary
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relationsover a commonobjectto determinethe relation(s)betweernthe linked objects.A special
caseof compositionoccursif the samerelationsare composedwhich characterizes transitive
relation.

Taking as a case study a room space, spatial relations associated with the bélcavi@miners
and surfaces were derived and specified in termg@haon algebra(Tarski 1941). The influence
of scaleon the sensibility of this algebrais addressedy applying and comparingthe spatial
inferencegderivedfrom the room spacewith similar inferencesn a geographicspace.A human-
subject testing was performed to evaluate if people wsawgbortor rejectinferencesmadeby our
algebra in small-scale and large-scale spaces.

The remainder of this paper is structured as follows: Section 2 describes theharatteristics
of imageschemataSection3 presentghe container-surfacalgebrafor a small-scalespace.This
container-surfacealgebrais then applied to configurations with large-scalescale and with
combinationsof small- and large-scaleobjects(Section4). Descriptionand analysisof a human-
subject testing are given in Section 5. Conclusions and future work are presented in Section 6.

2. Image Schemata

Lakoff and Johnson (1980) definedage schemataas recurrentpatternsthat peoplelearnthrough
physicalrepetitiveexperienceskor example,infants experienceghe image schemaof a container
when they put food inttheir mouths.Oncepeoplehavedevelopedan imageschemathey extend
it, transformit, and metaphoricallyprojectit to producemeaningfulsituations.Johnson(1987)
pointed out that “image schemata are pervasive, well defined, and full of sufficient isteuotire
to constrain our understanding and reasoning.” Image schemata are composed of peletscansd
that allowfor an organizationof many different perceptionsor events.Imageschematamply that
experiencesare organizedinto meaningful structuresbefore and independentlyof concepts;
however, conceptscan impose more constraintsto already existing structures. Contrary to
concepts,jmage schemataare dynamic structuresoperatingat a higher level of abstractionand
generalitythan concreteimages.Thus, they are adaptablestructuresaccordingto the contextfor
organizingsituations;however,they becomerelatively stableby being locatedin our network of
meaning.

Johnson (1987) presented a partial list of imsgfematgTable 1), which coveronly what he
considersto be the most important image schemata.The image schematapresentedthere are
describednformally in naturallanguageand lack the formal rigor in orderto makecomputational
inferencesabout them or to incorporatethem into query languages.With respectto spatial
reasoningjmportantcharacteristic®f image schemataare their limited numberand capacityfor
constraininginferencesTheir metaphoricaprojectionsto conceptsn the real world are the basis
for meaningful relations.



A Comparison of Inferences about Containers and Surfaces in Small-Scale and Large-Scale Spaces
A. Rodriguez and M. Egenhofer
Journal of Visual Languages and Computifid (6): 639-662, 2000.

Container Balance Full-Empty  Iteration Compulsion
Blockage Counterforce Process Surface Restraint Removal
Enablement Attraction Matching Part-Whole =~ Mass-Count

Path Link Collection Contact Center-Periphery
Cycle Splitting Merging Object Scale
Superimposition

Table 1: The partial list of image schemata by Johnson (1987).

Many image schemataare associatedwvith spatial relations. For example,given the image
schemacontainer whose structuralelementsare the interior, boundary,and exterior, the in-out
orientationbecomeghe differentiation, separationand enclosurebetweeninterior and exterior.
People may experience an image schema in different suagsthey may projectthis schemaonto
objects ofdifferent sizes,nature,andtypes.For instance objectsassociatedvith a containerin a
small-scaleor table-topspace(Zubin 1989), such as a box, cup, or drawer, are experiencedy
inserting objects into them. In a large-scale space (Kuipers 1978), on the other hand, anzuntry
also be considered a container as people experience it by traveliogpasihgits borders.In both
small- and large-scalespaces,the samebasic behavior (containment)and structural elements
(interior, boundary, and exterior) are present.

Imageschematanay coexistif they are presentat the sametime, but their meaningsdo not
dependon eachother. A strongernotion is if they are related,i.e., the meaningof one image
schemadependon the presenceof anotherimageschemaA physicalcontainer for example,is
characterizedby virtue of its capacityto haveobjectsinside. Thus, it is constrainedoy the space
availableto containobjects,which refers to the full-empty schema.Moreover, the container’s
boundary may beonsideredasthe peripherywith respecto the centerof the containerwhich is
described by theenterperipheryschemaFinally, the centerperipheryschemarelatesto the near
far schemaas our perceptionextendsfrom the center(i.e., near)to the periphery(i.e., far). A
surfaceis characterizedby the capacityto put on or take off objects.The idealimageof a surface
assumesthat it is possible to put an object on the surface when there is a contiguity
property—eontactschema—betweetine surfaceand the objectand when the surfacecan support
the object. Surface aldmasa capacity(area)associatedvith the contiguity propertyto put objects
on. This is similar to the case of the space ihavwailableto insertobjectsinto a container.In this
sense, a surface is full if its area (capacity of contiguity) is completely covered by objects on it.

The image schema adopted to describe the behaivao objectdetermineghe possiblespatial
relations between this object and other objects within a configuration. For instance, ibatdask
a surface onto whictve canput a book (Figure 1a), the spatialrelation betweenthe deskandthe
book ison. On the other hand, the same desk can be used as a cantaimérich we canmovea
book (Figure 1b) suchthatthe spatial relation betweenthe desk and the book is in. In the first
scenario a person could touch the book without manipulating thdidgskn the secondcase the
book is completely surrounded by the desk dhelefore,a personcannotaccesshe book unless
the deskis opened.Thus, the spatial relation betweenthe book and the desk dependson what
image schemata (container or surface) describes the behavior of the desk.
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Figure 1: Spatial relations between a desk and a book: (a) the book on the desk
and (b) the book in the desk.

A series of recent investigations shares the interest in image schemata in spatial redadning.
and Frank (1996), for instance, used image schemata to describe the experiential andddatsal
of geographic scenes. Likewise, image schemata were used to stepetcefor wayfinding tasks
in airports(Raubalet al. 1997). Image schematamay explain how different spatial relationsare
used in natural language through prepositions (Mark 1#82pusdhey are conceptuamodelsof
human perceptionand cognition; therefore,they form an excellentbasis for describing spatial
scenesand for designingGIS query languagesMark (1989) went further in the use of image
schemata by suggesting thistage schematashouldbe usedto definegooduserinterfaces.Thus,
user interfaces including commands apetry languagesvould be compatiblewith the views that
usershave of the system. Similarly, Kuhn and Frank (1991) and later again Kuhn (1993),
supportedthe idea that image schemataand their metaphoricalmappingsare the fundamental
theories taouild efficient userinterfaces Freundschuland Sharma(1996) linked imageschemata
with the spatial conceptsthat children learn through story books and suggestedhat there is a
progressive process of spatial knowledge understaraidthat someimageschemataeemto be
more fundamentalor basic than others. They also presentechow locative prepositionsrelate to
image schematastating, for example, while in and out correspondto locative prepositions
associatedvith a container on and off correspondto locative prepositionsassociatedwvith a
surface

3. Inferences about Containers and Surfaces in a Small-Scale Space

We pursuea top-downapproacho spatialreasoninghrougha study of a prototypical casewith
semanticallymeaningful objects and their operations,rather than attemptingto derive spatial
relations for geometric parts (points, lines, polygons) froGadesiancoordinatespace.The basis
for the formalizationof the container-surfacalgebrais an analysisof a room space,a concrete
scenarioin which peopleinteractwith spatial objectsthrough bodily experiencegRodriguez&
Egenhoferl997, Egenhofer& Rodriguezn press).A roomis a ubiquitouscaseof a small-scale
space where people manipulate objects and experidaeetsfrom one standpoint(Kuipers 1978,
Zubin 1989). As such, the room spaceconstitutesa representativescenarioin which people
experience recurrent manifestations of image schemata.

This study considersa neatly organizedroom spacewith six major objects:a box, a ball, a
table, a sheetof paper,a pen, and a room itself. These objects embody the image schemata
container—e.g., the tablein the room or the ball in the box—andsurface—e.g., the penon the
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paper or the paper on the table—and allow for inferencesabout their associatedspatial
relations—e.g., the pean the table and the tabie the room implieghat the penis in the room as
well. We assumefor the time being, thatall objectsmay only be completelyon or off a surface,
i.e., nopartof, say, the papermay extendbeyondthe tabletop.Similarly, all objectscanbe only
completely in or oubf a container.The discussiorof partially on and off and partially insideand
outside relates to thgart-wholeimage schema, which would introdutmre complexvariationsof
the simplerbut more fundamentatasesconsiderechere. The ontology of the room spacecan be
generalizedo six configurationsinvolving containersand surfaces(an objectis an item that is
neither a container nor a surface):

. An objectinsidea container.

. An objecton a surface.

. A container (with an objeatside in another container.
. A surface (with an objecn top) on another surface.

. A container (with an objeatside on a surface.

. A surface (with an objea@n top)in a container.

3.1 Primitive Relations of Containers and Surfaces

From the analysisof the room space,the definition of spatial relations follows the formalism
describedby relationalgebrasDefining spatialrelationsas part of a relationalgebraallows us to
userelationsas variablesand propertiesof this algebraas mechanism®f inferencesTo define a
relationalgebra,a setof primitive relationsmustbe defined. This set of primitive relationsmust
contain pairs of converserelations, complementrelations, an identity relation, and an empty
relation.

The analysisof the room spacedistinguisheddifferent spatial relationsfor the containerand
surfaceschemataThe basic spatial relation for the containeris inside which results from the
operation of moving #ésmaller)objectinto a (larger) objectthat playsthe role of a container.The
converse relation timsideis contains—if an object A ignsidea container B then BontainsA, and
vice-versa.The relationsinside and containshave their respectivenegations,called outsideand
excludesif we considertwo different objects.If A is differentto B and A is not inside the
container B, then A must fmeitsideof B. Likewise, if the container Boesnot containsA, thenB
excludesA. To enable a complete setinferencesaboutcontainersthe identity relation equal.. is
introduced, which holds only betwearcontaineranditself or betweenan objectanditself. Since
converse and negation aassociativeoperatordor spatialrelationsbetweentwo different objects,
excludescanbe definedin two ways: (1) asthe negationof the converseof insideand(2) asthe
converse of the negation iokide

The setof the five primitive container-relationsorms the universalrelation, denotedby % .

The elementsf the universalrelation provide a completecoveragg(i.e., any binary configuration
with a containeris describedby one of the five relations) and they are mutually exclusive
(Expression 1). For each relation there exists the complement, which is the umelet®ea minus

that relation. A particularrole plays the complementto equal., as it establisheghe diversity
relation.

Alisacontainer or Biscontainer = Ainside B xor A contains B xor
A outside B xor A excludes B xor (1)
Aequal. B
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The relationsfor a surfaceare definedsimilarly. The prototypingrelationfor a surfaceis on,
which results from moving an object onto a surface. The negationisfoff, andthe converseo
on and off are called supportsand separated_fronrespectively.The relation equalg forms the
identity relation betweentwo surfacesor objects, and the five relations on, off, supports,
separated_fromand equal form the universal relation for surfaces,.

In the container-surface algebra, both types of relations occur simultaneously, whichhaeans
thereexistsa universalrelation as the integrationof the universalrelation of containersand the
universal relation of surfaces.The definitions and properties of the individual relations stay
unchangedhowever,only one single identity relation existsin this set of combinedcontainer-
surfacerelations,denotedby equal., . The complementof a relationis basedon its definition,

i.e., the universalrelation minusthat particularrelation. So while the complementof the relation
inside in the containeralgebraconsistsof the four relations outside, contains excludes and
equal., it encompasses the combined container-surfacelgebrathe eight relations outside,
contains excludeson, off, supports separated_fromand equal ., ;. The nine basicrelationsof

the container-surface algebra are depicted graphically through a set of icangtisgprototypical
cases (Table 2).
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Result of
Image Schema  Relation olfsll'lati(())n f;ﬁilﬁ?; Se(l)gtsi'g;se Complement
A di ® |Qo| = | =
container A inside B o oﬁgivlfer 11§1t0 ® © ©|Qg=|=
([ )
A df ® |[Oo| = | =
) ) removed from -
container A outside B container B Qe Qo ©|Qg=|=
[ )
A di ® Qo = | =
container B contains A cogigivneer 1]§1t0 © ® @ |Qg=|=
( J
A df ® Qo = | =
. removed from -
container B excludes A container B Oo Oe © Qo =|=
( J
A d ® Qo = | =
surface AonB Surrffl;);eB onto - - ©|Qg=|=
( J
A df ® Qo = | =
removed from =
surface A off B curface B ] = ©|Qg=|=
( J
A d ® |Qe| = | =
surface B supports A sugla(l)c‘;eB onto = = @|Od=|=
( J
A df ® |Qe| = | =
surface B separated_from A suigrclg‘g’ om- g = © |09 =| =
( J
(ai ® |Qe| = | =
container or -
surface Aequal oo B ¢ o O el
[ J

Table 2: Basic relations of the container-surface algebra (dark boxes denote complement
relations) (Egenhofer & Rodriguez in press).
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3.2 Compositions

Much of the semanticsof thesespatial relationsis capturedby the compositionoperation, also
called the relative product, of a relation algebra. Compositioncombinestwo relationsover a
commonargumentto determinethe relation betweenthe linked arguments(Expression2). For
example, the composition ofsidewith outsideimpliesoutside(becausef A is insideof B andB
is outsideof C, thenA mustbe outsideof C aswell). Compositionmay resultin more than one
possiblerelation (e.g., the compositionoff with on resultsin on xor off). If the composition
Imposes no constraints, then it results in the universal relatiothe@nherend of the scale,if the
composition is impossible, then it results in the empty relation.

x;y={<ac> [ <ab>0Ox O<bc>0¥} (2)

The composition of spatiaklationswas derivedfrom separateontainerand surfacealgebras,
which got integrated into a single container-surface algebra (Babeiven the compositiontable,
the necessary properties of a relation algebra (Tarski 1941) can be assessed. Rropeelsion
algebra were examined for the container-surface algebra by using a pragtamin C++. Using

the set-theoretic operations, i.enion (+), intersection(s), andcomplemeni-), and considering
the binary operator corresponding to composition (;), the unary opeaatespondingo converse
(), the universalrelation U, s, and the identify relation equal,s, the sevenpropertiesof the
container-surface algebra are:

. Each composition with the identity relation is idempotent (kgegual ., s = X).

. The composition with a union of relations is equal to the uafahe compositionswith each
of the elements of the union (i.€x+y);z = x;z+y;2).

. The converse of a converse relation is equal to the original relatiofXf.E.= x).

. The converse of a union of relations is equal tauthien of the converserelationsof eachof
the elements of that union (i.€x + y)° = x° + y°).

. The converse relation of a composition is equal to the composition of the conversesvof the
relations, taken in reverse order (i.gx;y)° = y°;x°).

. A variation of De Morgan’s Theorem K (i.e;;—(x;y) + =y = y) holds.

«  Theassociativepropertyof the composition(i.e., (x;y);z = x;(y;z)) that appliesto the
containerand surface algebrasis no longer applicablefor the container-surfacealgebra.
Although the container-surfacelgebrais not associative,it is a semiassociativeelation
algebra (Maddux 1982, Andréeka et al. 1988), because it satisfies
X UcesiUces = (XU s)iUg s = X (UgesiUces) = XU g s

Since the container-surfacealgebra is semiassociativejt is possible to draw different
conclusionsfrom two different reasoningpaths, where one of them producesa subsetof the
possiblespatial relations derived from the other one. For instance,the composition operation
(inside ; inside) ; inside resultsin the set{inside on, outside off}, whereasthe composition
operationinside; (inside; inside)results inthe set{inside outside off}. Somereasonghat make
the associativeaxiom fail are the behavioraldifferencesbetweencontainersand surfaces.For
instance, an assumption of this work has tbabhan objectcanbe a surfacefor anotherobject of
the same size (e.g., two papefshe samesize); however,an objectcannotbe a containerfor an
object of the same or bigger si@g., suchastwo boxesof the samesize cannotbe put oneinto
the other).

c&s
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Table 3: Composition table of the container-surface algebra for objects playing only one role, being either a container
or a surface (dark boxes denote possible inferred relations) (Egenhofer & Rodriguez in press).
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When analyzing the compositionof spatial relations within the room space,an important
assumption has been that within a configuration objgeisonly onerole, eitheras a containeror
as a surface. For example we exclude situations much like the deigkire 1, wherea book may
have_offanotherbook thatis inside a desk. While the deskis a containerfor the secondbook, it
may also be a surfacefor the first one. In addition, the compositiontable reflects only spatial
relationsthat havebeenderived from configurationsinvolving containersand surfaces.Thus, it
assumeghat betweentwo different objects,thereis always one object that plays the role of a
container or surface with respect to the other. For example, the compositiothaaset consider

the composition of peimsidebox ; box containsball since betweenthe penandthe ballll noneof

them being a container arsurfacé] no spatialrelationcanbe derivedfrom the container-surface
algebra.

3.3 Inferences with the Container-Surface Algebra for Small-Scale Objects

Based on the container-surface algebra, a number of inferences can be made. These migtnces
satisfy consistencyconstraints (Maddux 1990, Mackworth 1977) to avoid any contradictions
among the spatial relations that descrilse@ne Given a scenerepresenteds a directedgraph,in
which nodes represent objects, directed edges represent binary spatial relatipathsegresent
sequenceof edgesthat follow a direction, consistencyconstraintscan be formulated as a
satisfaction opath consistencgMackworth 1977)To guaranteeonsistencyof compositionsthe

final setof possiblerelationsbetweentwo objectsmust be derivedfrom the intersectionof all
possible compositions that reldteesetwo objects.The setof possiblerelationsbetweenobjectsi

and j (R), can be derived from Expression 3 (Egenhofer & Sharma 1993).

0,R =RuR, N RyRy ... RyiR, = @Rk:&j 3)

For an incomplete description of a scene, the process taumfeownspatialrelationsmay be
defined for the following steps:

»  Construct a node-consistent network, iR, = R; nequal and I, . R; = R

*  Construct a arc-consistent network, i€,R; =R n R,

. An iterative procesghat satisfiesthe path consistencyExpressiord). This iterative process
ends whera new iterationdoesnot produceany changein the spatialrelationsbetweenany
two objects.

0,R =(1R;R (4)
k=a

To illustrate this process, consider a databagie threefactsdescribinga scene:a penis on a
table, the table supportsa box, anda room containsa table. Figure 2a representghis sceneas a
directedgraph. To ensurenode-consistencgnd arc-consistencythe equaland converserelations
areaddedto theinitial setof known spatial relations.From the compositionoperationand path-
consistency constraints, possible inferences are:

. R penbox = penontable ; tablesupportsbox
= peninsidebox xor peroutsidebox xor peronbox xor peroff box xor

pen contains box xor pen excludes box xor pen supports box xor
peseparated_fronbox xor perequal.,s box

= UC&S
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. R boxpen = bOXontable ; tablesupportspen
= Uces

. R room box= roomcontainstable ; tablesupportsbox
= roomcontainsbox

. R box.room= DOX0ntable ; tablensideroom

= boxinsideroom

. R pen,room= (P€NUeq bOX ; boxinsideroom)n (penontable s tablénsideroom)
= (peninsideroom xor peroutsideroom xor percontainsroom xor
penexcludesoom xor persupportsroom xor perseparated_fronnoom xor

penequal,s room)n peninsideroom
= peninsideroom

. R room,pen= (roomcontainsbox ; boxU .5 pen)n
(roomcontainstable ; tablesupportspen)
= roomcontainspen

The final directed graph (Figure 2b) showed that refinemertteea@fompositionoperationscan
be made. A pen is not the same as a bwerefore the relationequal.. is impossiblebetweenthe
box andthe pen. Sinceit is known that a pen can be neithera containernor a surface,we can
discard the possible spatial relations that ingptg of theserolesfor the pen.If the penis smaller
than the box, we can reduce the possible spatial relations between the perbanddhmeninside
box xor peroutsidebox.

contains

inside .
contains

inside

(a) (b)

Figure 2: Inferences with small-scale objects: (a) initial scene description and (b) completed
scene description that satisfies node-, arc-, and path-consistency constraints
(P1is a pen, B is a box, T is a table, and R is a room).
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4. The Container-Surface Algebra for Large-Scale Space

Variationsin the types of objects—solidvs. liquid (Hayes 1990)—their nature—physicals.
administrativeor fiat objects(Smith 1995)—or their sizes—microscopiws. table top vs. large-
scale space(Zubin 1989, Montello 1993)—may affect the coherenceof the container-surface
algebra.The basic propertiesof the container-surfacalgebrawere derived from a setting with
manipulableobjects.While sucha settingcorrespondso the theoryof acquiringimage schemata
through bodily experiences, it would beaiting if the applicability of the algebrawas restrictedto
settings with the same properties. To explore the application range and consistencywotaner-
surface inferences, we analyzed different configurationsctiraprisedifferent spatialobjectswith
respectto their type, nature,and sizes. Using objectsof different sizescould lead to different
senses of spatial relations (Herskovits 1986), such as a luggage is inside of a container aad a lake
inside of a county. Thus, thanalysismay indicatewhetherthe basicbehaviorof imageschemata
canbe basisfor the integrationamongdifferent geometricconceptualization®f spatial relations.
Like in the small-scale space, selected configurations combine the spatial retatoteand on for
situations between surfaces and containEnen, inferencesvere appliedasthey did applyin the
small-scale space to complement the possible spatial relations between objects.

4.1 Inferences with Large-Scale Objects

In a first instancegonfigurationswith only large-scaleobjectswere analyzed A setof large-scale
objects, a mountain, a national park, a county, a peninsula, a fordst|ake, was selectedLike

in the room space,theseobjectswere combinedto provide all possible combinationsbetween
surfacesand containersFigure 3a presentsa partial scenedescription,as a directedgraph, with

known relations among these objects. The scene after applying composition operationsand

consistencyconstraintss shownin Figure 3b. For this scene,it is alsopossibleto make further

refinementsof the inferenceswhen information aboutrelative sizesand roles of the objectsis

consideredFor example,if it is known that the peninsulais smallerthan the county, the only

possible spatial relation betwettremwould be that peninsulais inside the county and, therefore,
the forest would be alsosidethe county.
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inside xor contains xor outside
xor excludes xor on xor o,

inside xor contains Xor outside xor
excludes xor supports Xor separed_from

(b)

Figure 3: Inferences with large-scale objects: (1) initial scene description and (b)
completed scene description that satisfies node-, arc-, and path-consistency

constraints (N is a national park, F is a forest, P is a peninsula, and C is
a county).

4.2  Reasoning with Small-Scale and Large-Scale Objects

The next analysisconsidersconfigurationswith a combinationof objects belonging clearly to
different scales Following the sameapproacho the large-scalespace six objects(entities) were
selected:passengerluggage,runway, container,airplane, and airport. An initial scenewith a
subsetof known relationsthatis presenteds a directedgraphis shownin Figure 4a. The final
sceneafter applying compositionoperationsand consistencyconstraintsis shownin Figure 4b.
Like in the previouscasesfurther refinementof the inferencescanbe madeaswe considersizes
and roles of the objects within the scene. For example, knowing that the risnsvagllerthanthe
airport, we can infer that the runway can only be inside the airport.
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3 *PZ'Q@

(a)

inside xor contains xor outside
xor excludes xor on xor off

inside Xor contains Xor outside
xor excludes xor supports xor
separed_from

equal

Figure 4: Inferences with small- and large-scale objects: (a) initial scene description
and (b) completed scene description that satisfies node-, arc-, and path-
consistency constraints ( A is an airplane, C is a container, R is a runway,
and P is an airport).

5. Evaluation of Inferences

To determine whether the inferences of ¢batainer-surfacalgebracorrespondo the way people
reason about spatial relations, we performed a human-subjectstcaiyparepeople’sinferences
with those of the container-surfacelgebra.We were particularly interestedin evaluating the
applicability of thealgebraacrossscalesand detectingwhetherpeople’sinferencesmatchwith the
properties of the compositions operations.
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5.1 Survey
We designed a survey that presented three different scenes described a sets of facts such as:
. The lake isnsidethe national park.
. The national park issidethe county.
. The forest i©n the mountain.
. The mountain i®nthe peninsula.
. The national park isnthe peninsula.

No pictorial clues, such as a map of the settimgye given. Subjectswere thenaskedto name
the relations between given pairs of objects, such as

. The lake the county.

Subjects needed to derive theskationsby combiningpredicatesalthougheachquestionnaire
included one case in which the answes given by a single fact. Oneinferenceper setcould not
be determinedby the algebrasince the inferenceassociateswo objectsthat can be classifiedas
neither container nor surface. The inferences represent different led#fecafties by considering
single as well as double compositions, and compositions that produce unique or amtagulsis
The subjectswereinstructedto answer‘no relation” wherethey believedno relation betweenthe
objectsexists. In order to allow the subjectsto answerthe survey within 15 minutes, only a
representativesubsetof all possibleinferenceswas asked. Each survey containedthree scene
descriptionspne describinga small-scalespace,the seconda large-scalespacewith large-scale
objects, and the third described small-scale and large-scale objects embedded in a large-scale spe

Table 4 showsthe set of compositionsand the referenceresult from the container-surface
algebra.Refinementby relative size and role of objects was applied to eliminate unrealistic
answers. For example, although the compostgigoports; inside resultsin two possibleanswers
(inside xor support3, the relationsupportswas not consideredas correctfor the compositionof
table supports box ; box inside room, becauserooms and airports are bigger than tables.
Refinements by size led to different inferences depending on the particular setting.
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Composition

Inferred Relations

Small Scale
ball-room
pen-table
ball-table
table-room
pen-room
paper-room
pen-ball

Large Scale
lake-county
forest-peninsula
lake-peninsula
peninsula-county
forest-county
mountain-county
lake-forest

Mixed Scale
luggage-airport
passenger-runway
luggage-runway
runway-airport
passenger-airport
airplane-airport
passanger-luggage

inside ; inside
on;on

inside ; on

supports ; inside

on ; supports ; inside
on ; supports ; inside
undefined

inside ; inside
on;on

inside ; on

supports ; inside

on ; supports ; inside
on ; supports ; inside
undefined

inside ; inside
on;on

inside ; on

supports ; inside

on ; supports ; inside
on ; supports ; inside
undefined

inside

on

on

inside
inside
inside

no relation

inside

on

on

insidelsupports

insideloutside
insideloutsidelsupports/separated_from
no relation

inside

on

on

inside
inside
inside

no relation

Table 4: Survey description: compositions and reference inferred relations
from the container-surface algebra (/ denotes exclusive or).

Thirty-eight students of two undergraduate classes at the University of paingpatedn the
survey. For the analysis,only those 30 studentswere consideredwvhose mothertongueis US
English. We recordedthe subjects’ gender(1/3 female, 2/3 male) and found no significant
differencesbetweentheir responsesThe ordering of the sceneand facts for each scenewas
changedamongthe surveysto evaluateits effect on the answers.There were also no significant
differences due to the different orderings of the questions posed.

5.2 Results

Out of a total of 510 expectedanswersthat are defined in the container-surfacealgebra, 342
matchedexactly with the inferencesof the relation algebra(67%), and another47 (9%) gavea
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subsetof the possiblecorrectanswers.Two questionswere not answered(0.3%). In 71 cases
(14%), a relation otherthanthe predicatenamesusedin the relation algebrawas given. Only 10
answergq2%) hada relationthat was part of the predicatenamesusedin the relationalgebra,but
differentfrom the correctlyinferredrelation.In 15 caseq3%), subjectsstatedthat there was no
relation, althoughthe relationalgebrawould infer one. Of the 90 caseshat had multiple possible
answers,'no relation” was givenin 23 answerg26%). None of subjectsuseda relation defined
within the container-surface algebra to describe the 90 cases that were undefined by the algebra.

In counting matchebetweenthe subjects’answersand the referenceresultswe consideredas
correctanswerghosethat coincidewith the referenceanswerof the container-surfacelgebraor
those that were a subset of correct answers for questionsxaiithan one possibleresult. Table
5 showsthe distribution of the matchesbetweenthe algebraand the subjects’answersfor each
question.

Configuration Answers Number of %0
correct answers

Small Scale

ball-room 19 19 100 %

pen-table 30 29 97 %

ball-table 30 29 97 %

table-room 30 28 93 %

pen-room 30 27 90 %

paper-room 30 27 90 %

Large Scale

lake-county 21 20 95 %

forest-peninsula 30 27 90 %

lake-peninsula 30 22 73 %

peninsula-county 30 12 40 %

forest-county 30 19 63 %

mountain-county 30 17 57 %

Mixed Scale

luggage-airport 20 14 70 %
passenger-runway 30 28 93 %
luggage-runway 30 27 90 %
runway-airport 30 14 47 %
passenger-airport 30 16 53 %
airplane-airport 30 14 47 %

Table 5: Number of answers that match reference results.

We defined four hypotheses to be evaluated by statistics tests. While thggothesischecks
every individual question,the rest three hypothesesgroup the question by scale, type, and
complexity.

Hypothesis 1: Peopleevaluateall inferencesaccordingto the container-surfacealgebra,
independent of the scale of the objects and the embedding space.

This hypothesisvasrejected By usinga normal approximationto the binomial distribution,
individual questionswere analyzedo testwhetherthe probability of correctanswersis equalto
0.75 (null hypothesis) with respect to the alternative hypothesis that the probability is dffterent
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0.75. The resultssuggesthat for small-scalespacedhe algebramatcheswith people’sreasoning
aboutspatialrelation(Table 6). For small-scalespacesthe probability that the algebragives the

correctanswerss over 0.75, reachingfor somecasesprobabilitiesof over 0.90, with a level of

significanceof 0.05. For configurationswith large-scalebjectsonly, there were two out of six

inferences that deviated significantly from the algebra. Similarlyixed-scalespace threeof six

inferences were significantly different from the subjects’ assessments.

Configuration ~Answers  Observation Test Conclusion
(n) (0) -1607<Z % <1607

Small Scale

ball-room 19 19 2521 p>0.75
pen-table 30 29 2741 p>0.75
ball-table 30 29 2740 p>0.75
table-room 30 28 2319 p>0.75
pen-room 30 27 1.897 p>0.75
paper-room 30 27 1.897 p>0.75
Large Scale

lake-county 21 20 2142 p>0.75
forest-peninsula 30 2 1.897 p>0.75
lake-peninsula 30 2 -0.211 p=075
peninsula-county 30 12 4427 p<0.75
forest-county 30 19 -1.476 p=075
mountain-county 30 17 -2.319 p<0.75
Mixed Scale

luggage-airport 20 14 -0.516 p=0.75
passenger-runway 30 28 2319 p>0.75
luggage-runway 30 27 1.897 p>0.75
runway-airport 30 14 -3.584 p<0.75
passenger-airport 30 16 -2.741 p<0.75
airplane-airport 30 14 -3.584 p<0.75

Table 6: Test (Ho: p = 0.75) for individual questions.

Hypothesis 2: Peoplemakethe samekinds of inferencesn small-scaleand in large-scale
space.

This hypothesis was rejected. We used a chi-squared distribution for a non-parameitrc test,
a test that does not consider parameters of the distribtgienaluatewhetherthe surveysuggests
any conclusioraboutthe correctnes®f answergaking questionsas groupsof small-scalejarge-
scale, and mixed-scalespaces.The null hypothesiswas that the number of observedcorrect
answers is equal to thmumberof expectedcorrectanswers Every testuseda probability of 0.05
that we reject the null hypothesis when in fact it is true.

As expectedrom the first test, the small-scaleinferenceswere acceptedwhereasthe large-
scale and mixed-scale inferences were rejected (Table 7).
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Configuration Test Conclusion
X = i(o’ D <1107

Small scale 0.8 accepted

Large scale 22.9476 rejected

Mixed scale 25.8333 rejected

Table 7: Test for groups of questions based on scale.

Hypothesis 3: The agreemenif people’sinferenceswith the container-surfacealgebra
depends on the complexity of the composition.

This hypothesiswas acceptedThis test also useda non-parametridest with a chi-squared
distribution to assess whether there sigmificancedifferencesbetweenthe observedanswersand
the expected answefsr inferenceghat represen(1) transitivecompositions{2) binary but non-
transitive compositions, and (3) ternary and higher compositions that were not traAsiilyeing
the answers by clagsd compositionand numberof inferredrelations,it is clearthat the transitive
property is suggested in all cases (Table 8). Binary composgimisasinside; on that give only
one answer are likely tbe consistentwith peopleinferencesDouble andtripe compositionssuch
ason; supports; insideandon ; on ; supports; inside presentmajor difficulties to derive correct
answers.This observationis consistentwith the fact that the container-surfacealgebrais non-
associative and its results are given by the intersection of both possible lines of reasoning.

Configuration Test Conclusion
S (o,-m)?
X' =3 <10
Transitive compositions 2.313 accepted

inside ; inside and on ; on

Binary composition 21.934 rejected

in ; on and supports ; inside
Ternary composition 25.333 rejected

on ; supports ; inside

Table 8: Test for groups of questions based on type of composition.
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Hypothesis 4: The agreementf the people’sinferenceswith the container-surfacalgebra
depends on the complexity of the result of the composition.

This hypothesis was acceptédke hypothese® and 3, we useda non-parametri¢estwith a
chi-squareddistribution to evaluatewhetherobservedanswersmatch the expectedanswersfor
groups of questionslassifiedby the numberof inferredrelations.For compositionghat resultin
multiple answers people do not infer any relation or give wrong answers (Table 9).

Configuration Test Conclusion
. (0, -T)?
X' =y <1ss
Single result 4781 accepted
inside ; inside
on; on,
inside ; on
Multiple results 44.8 rejected

supports ; inside
on ; supports ; inside

Table 9: Test for groups of questions based on number of inferred relations.

5.3 Discussion

The small numberof incorrectinferenceswithin the domain(10 out of 510) is evidencethat the
basicprinciplesof the container-surfacalgebra—conversenesd relationsand the composition
operation to capture the interplay between containers and surfaces—match with human intuition.

Basedon the algebra,inferencedrom the small-scaleand mixed-scaleconfigurationsshould
give crisp results(i.e., compositionswithout any ambiguity), since the objects’ relative size is
implicit and a refinement of the algebra can be done for compositions with possible mettigts.
The large scale-spaseenario however,includes3 inferenceswith singleresultand 3 inferences
that have multiple possible result. Subjects gave 341 correct answers for inferesrcgsresults,
representing1% of the expectechumber.These341 correctanswerscorrespondo 99% of the
total of 342 correct answers obtained from the survey. Thus, it istobgdine complexity of result
has a great effect on the subjects’ answers féwacaseq15), the algebraactually providesmore
crisp results than the subjects’ inferences. On the bidned, the algebraconsidereda larger set of
answers (i.e., additional relations the subjects did not consider) in 47 cases.
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The number of inferences outside of the domain of the container-surface algebra (73100t of
were largely due to the use of the prepositetr(82 times) angbart of (7 times)—with anothetwo
terms (i.e., near and leaves) used four times, four terms (i.e., above, overlap adfigiolg), used
twice, and sixteenterms(e.g., includes,surround,around,fills, over, and next) that were used
once.The prepositionat was usedonly in the contextof the mixed-scalescenario,and therein
inferences with expecteahswerinside When consideringprepositionat asa synonymof inside
the statisticalanalysesfor mixed-scalespaceacceptboth the first and secondhypothesis.This
deviation from the other referencescan be explainedas a linguistic choice of predicates,as
explained by Herskovits (1986) wheatis defined as “a point tooincidewith another.”Although
the referencesuchasthe airport, andthe locatedobjects,suchasthe passengerare not actually
points, they are viewed as such. In a later work, Herskovits(1997) extendsher definition by
statingthat at is “coincidenceof a movablepoint objectswith a point placein a cognitive map.”
Hence,at cannot be usedin large-scalespacesThe mixed-scalescenariocould be interpretedin
sucha way thatthe airport doesnot necessarilysurroundthe passengeandit is consideredas a
point in the cognitive map. Thus, the prepositionat better representghe configurationbetween
passenger and airport.

The relatiorpart was used in both large-scale spacea(® mixed-scalespace(2). From the 7
times wherpart was used only oncewas usedwhenthe expectedesultwas on. Winstonet. al.
(1987) discussedhe usual confusionbetweenmeronymicrelation (part of) and the topological
inclusion. In somecases,meronymyinvolves a spatial inclusion, since a located object may
completelyoverlapthe referenceobjectand at the sametime be part of the referenceobject (for
example, a peninsula thatimsideof a county and it is at the saart ofthe county).

6. Conclusions and Future Work

This study defined a spatial-relationalgebrawith a small set of spatial operators(inside, on,
outside, off, and their respectiveconverserelationg. The container-surfacalgebraprovidesan
inferencemechanisnto derive spatial relations from the compositionof individual as well as
combinations of image schemata.

The human-subjectestingsuggestghat spatial inferencesderived from the container-surface
algebra seem to be sensible for small-scale configurations; however, the applicathilgyatfebra
may requirean adaptatiorto configurationswith objectsof large or mixed sizes. Future studies
should analyze whether there exists another set of spatial relatiobstthadlescribelarge-scaleor
mixed-scaleconfigurations.For example,the distinction betweeninside and at needs further
investigation. Likewisepart ofis usually confused or combined with tgatialrelationinside and
on. The complexity of the composition (i.e., the combinatiospstialrelations)andthe resultsof
the composition(i.e., the numberof possibleinferences)affectsthe agreemenof the people’s
inferences with theontainer-surfacalgebra.Transitivecompositionssuchasinside; inside are
consistentwith people’s judgment. Compositions with different spatial relations, such as
on; supportsandinside; on, give consistent results when there is only one possible inference.

An areafor further investigationis to explore how the spatial-relationalgebrais affectedby
incorporatingthe part-wholeimageschemataThe part-wholeschemaappearso be an important
factor for discriminating spatial relations. What portion of an object needsrieitéeor on another
objectto considerthe objectinside or on, respectively?s shapeand predominanceof a portion
relevant for distinguishing if an objectirsideor on?

The container-surfacalgebraconstitutesan alternativeapproachto spatialreasoning.Thus, a
further studyshouldconfirm or dismisswhethertheseinferencesnatchwith any of the inference
made with the traditional spatial reasoningapproachesDo the different approachesprovide
complementaryanswers?an we map the container-surfacealgebraonto an algebrathat uses
topological or geometric properties?
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