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Abstract
Inference mechanisms about spatial relations constitute an important aspect of spatial reasoning as
they allow users to derive unknown spatial information from a set of known spatial relations. When
formalized in the form of algebras, spatial-relation inferences represent a mathematically sound
definition of the behavior of spatial relations, which can be used to specify constraints in spatial
query languages. Current spatial query languages utilize spatial concepts that are derived primarily
from geometric principles, which do not necessarily match with the concepts people use when they
reason and communicate about spatial relations. This paper presents an alternative approach to
spatial reasoning by starting with a small set of spatial operators that are derived from concepts
closely related to human cognition. This cognitive foundation comes from the behavior of image
schemata, which are cognitive structures for organizing people’s experiences and comprehension.
From the operations and spatial relations of a small-scale space, a container-surface algebra is
defined with nine basic spatial operators—inside, outside, on, off, their respective converse
relationscontains, excludes, supports, separated_from, and the identity relation equal. The
container-surface algebra was applied to spaces with objects of different sizes and its inferences
were assessed through human-subject experiments. Discrepancies between the container-surface
algebra and the human-subject testing appear for combinations of spatial relations that result in
more than one possible inference depending on the relative size of objects. For configurations with
small-scale and large-scale objects larger discrepancies were found because people use relations
such as part of and at in lieu of in. Basic concepts such as containers and surfaces seem to be a
promising approach to define and derive inferences among spatial relations that are close to human
reasoning.

1 . Introduction
Users of geographic information systems (GISs) and spatial databases typically formulate spatial
queries whose constraints are based on spatial relations (Roussopoulos & Leifker 1985, Egenhofer
& Frank 1988, Güting & Schneider 1995). Examples are such requests as “find the largest town in
Penobscot county” and “find all National Parks that are located on an island.” Models for spatial
relations in GISs have been traditionally derived from geometric properties and often limited to
computations within a Cartesian coordinate space. This approach, however, constrains the
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representation of spatial information, because it assumes the existence of complete coordinate tuples
for each spatial entity. Moreover, geometric properties may not necessarily capture all information
that people use to reason about space. To complement traditional spatial data models, qualitative
representations of space have been investigated (Hernández 1994). Within the realm of qualitative
spatial reasoning, the study of algebras for spatial relations has been of growing interest in the GIS
community (Smith & Park 1992, Egenhofer & Sharma 1993). These algebras focus on the
inferences made from compositions of spatial relations, such as topological relations (Randell et al.
1992, Egenhofer & Franzosa 1991, Egenhofer 1994), cardinal directions (Frank 1991, Freksa
1991, Papadias & Sellis 1994), approximate distances (Hernández et al. 1995, Hong et al. 1995),
and their combinations (Nabil et al. 1995, Sharma & Flewelling 1995). While these formalizations
are mathematically sound, there has been little concern as to whether existing spatial-relation
algebras are cognitively plausible (Hirtle 1991, Hernández 1994).

Naive Geography (Egenhofer & Mark 1995) promotes an alternative path to modeling space
through the use of concepts that are grounded in human experiences and, therefore, are expected to
match more closely with human thinking. The consideration of such commonsense concepts may
lead to new theories for developing GISs with user interfaces and spatial reasoning capabilities that
respond to their users’ expectations. In search for alternatives, researchers in geographic
information science have been inspired by cognitive (Lakoff 1987) and linguistic (Talmy 1983)
theories about space as a foundation for easier-to-use GISs (Mark & Frank 1991). In cognitive
science, the concept of image schemata (Lakoff & Johnson 1980, Johnson 1987) emphasizes the
experiential dimension of human thinking. Image schemata are recurrent patterns, such as
container, surface, link, and path, that can be extended and metaphorically projected to make new
experiences meaningful. They aim at representing what may be common in the way people
understand and think about their perceptions of the world. Although image schemata are more
abstract concepts than visual representations, they are idealized conceptual models of human
perception and cognition (Mark 1989) and, therefore, they are basis for the development of user
interfaces and visual languages that are easy to learn and employ by many users, particularly users
from different disciplines, cultures, and linguistic groups (Mark et al. 1989).

Since image schemata may provide the structures for understanding the meaning of spatial
relations (Mark 1989, Freundschuh & Sharma 1996), we use them here as a foundation for
constructing an intuitive and cognitively-plausible spatial-relation algebra. In the theory of image
schemata, all people learn the same basic spatial concepts through essentially the same bodily
experiences and, therefore, can share the same knowledge without a need for detailed explanations
or instructions. Image schemata are expected to serve as a basis for future query languages and
inference mechanisms that reflect basic human reasoning. For example, a scenario in which
merchandise on a platform must be transported via the interstate to a warehouse can be described at
a higher level of abstraction through the combination of the image schemata involved, given the
mappings that the merchandise are objects, the platform is a surface, the interstate is a path, and the
warehouse is a container. Many image schemata are fundamentally spatial in nature (Mark 1989).
The spatial concepts underlying image schemata, however, are not necessarily limited to spatial
applications since image schemata are commonly used through metaphorical projections in non-
spatial domains; therefore, query languages developed from image schemata can be widely
applicable beyond spatial applications.

Instead of analyzing users’ behaviors in using a given set of GIS operations, we focus on a
small set of operations that characterize the behaviors of two major image schemata: the container
and the surface. Container and surface were found to be the two most basic image schemata in a
complexity ranking derived from the spatial concepts children learn (Freundschuh & Sharma
1996). By using the behavior of image schemata, this approach follows the notion of use-based
semantics (Kuhn 1994), which better captures the meaning of objects in terms of the operations
people perform with them than do descriptions of attributes. Of particular interest are those
inferences that can be made from combinations of image schemata. In algebraic terms, such
inferences are referred to as the composition of relations. Composition combines two binary
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relations over a common object to determine the relation(s) between the linked objects. A special
case of composition occurs if the same relations are composed, which characterizes a transitive
relation.

Taking as a case study a room space, spatial relations associated with the behavior of containers
and surfaces were derived and specified in terms of a relation algebra (Tarski 1941). The influence
of scale on the sensibility of this algebra is addressed by applying and comparing the spatial
inferences derived from the room space with similar inferences in a geographic space. A human-
subject testing was performed to evaluate if people would support or reject inferences made by our
algebra in small-scale and large-scale spaces.

The remainder of this paper is structured as follows: Section 2 describes the main characteristics
of image schemata. Section 3 presents the container-surface algebra for a small-scale space. This
container-surface algebra is then applied to configurations with large-scale scale and with
combinations of small- and large-scale objects (Section 4). Description and analysis of a human-
subject testing are given in Section 5. Conclusions and future work are presented in Section 6.

2 . Image Schemata
Lakoff and Johnson (1980) defined image schemata as recurrent patterns that people learn through
physical repetitive experiences. For example, infants experience the image schema of a container
when they put food into their mouths. Once people have developed an image schema, they extend
it, transform it, and metaphorically project it to produce meaningful situations. Johnson (1987)
pointed out that “image schemata are pervasive, well defined, and full of sufficient internal structure
to constrain our understanding and reasoning.” Image schemata are composed of parts and relations
that allow for an organization of many different perceptions or events. Image schemata imply that
experiences are organized into meaningful structures before and independently of concepts;
however, concepts can impose more constraints to already existing structures. Contrary to
concepts, image schemata are dynamic structures operating at a higher level of abstraction and
generality than concrete images. Thus, they are adaptable structures according to the context for
organizing situations; however, they become relatively stable by being located in our network of
meaning.

Johnson (1987) presented a partial list of image schemata (Table 1), which cover only what he
considers to be the most important image schemata. The image schemata presented there are
described informally in natural language and lack the formal rigor in order to make computational
inferences about them or to incorporate them into query languages. With respect to spatial
reasoning, important characteristics of image schemata are their limited number and capacity for
constraining inferences. Their metaphorical projections to concepts in the real world are the basis
for meaningful relations.
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Many image schemata are associated with spatial relations. For example, given the image
schema container, whose structural elements are the interior, boundary, and exterior, the in-out
orientation becomes the differentiation, separation, and enclosure between interior and exterior.
People may experience an image schema in different ways since they may project this schema onto
objects of different sizes, nature, and types. For instance, objects associated with a container in a
small-scale or table-top space (Zubin 1989), such as a box, cup, or drawer, are experienced by
inserting objects into them. In a large-scale space (Kuipers 1978), on the other hand, a country may
also be considered a container as people experience it by traveling and crossing its borders. In both
small- and large-scale spaces, the same basic behavior (containment) and structural elements
(interior, boundary, and exterior) are present.

Image schemata may coexist if they are present at the same time, but their meanings do not
depend on each other. A stronger notion is if they are related, i.e., the meaning of one image
schema depends on the presence of another image schema. A physical container, for example, is
characterized by virtue of its capacity to have objects inside. Thus, it is constrained by the space
available to contain objects, which refers to the full-empty schema. Moreover, the container’s
boundary may be considered as the periphery with respect to the center of the container, which is
described by the center-periphery schema. Finally, the center-periphery schema relates to the near-
far schema as our perception extends from the center (i.e., near) to the periphery (i.e., far). A
surface is characterized by the capacity to put on or take off objects. The ideal image of a surface
assumes that it is possible to put an object on the surface when there is a contiguity
property—contact schema—between the surface and the object and when the surface can support
the object. Surface also has a capacity (area) associated with the contiguity property to put objects
on. This is similar to the case of the space that is available to insert objects into a container. In this
sense, a surface is full if its area (capacity of contiguity) is completely covered by objects on it.

The image schema adopted to describe the behavior of an object determines the possible spatial
relations between this object and other objects within a configuration. For instance, if a desk acts as
a surface onto which we can put a book (Figure 1a), the spatial relation between the desk and the
book is on. On the other hand, the same desk can be used as a container into which we can move a
book (Figure 1b) such that the spatial relation between the desk and the book is in. In the first
scenario a person could touch the book without manipulating the desk first. In the second case, the
book is completely surrounded by the desk and, therefore, a person cannot access the book unless
the desk is opened. Thus, the spatial relation between the book and the desk depends on what
image schemata (container or surface) describes the behavior of the desk.

Container Balance Full-Empty Iteration Compulsion
Blockage Counterforce Process Surface Restraint Removal
Enablement Attraction Matching Part-Whole Mass-Count
Path Link Collection Contact Center-Periphery
Cycle Splitting Merging Object Scale
Superimposition

Table 1:   The partial list of image schemata by Johnson (1987).
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A series of recent investigations shares the interest in image schemata in spatial reasoning. Mark
and Frank (1996), for instance, used image schemata to describe the experiential and formal models
of geographic scenes. Likewise, image schemata were used to structure space for wayfinding tasks
in airports (Raubal et al. 1997). Image schemata may explain how different spatial relations are
used in natural language through prepositions (Mark 1989), because they are conceptual models of
human perception and cognition; therefore, they form an excellent basis for describing spatial
scenes and for designing GIS query languages. Mark (1989) went further in the use of image
schemata by suggesting that image schemata should be used to define good user interfaces. Thus,
user interfaces including commands and query languages would be compatible with the views that
users have of the system. Similarly, Kuhn and Frank (1991) and later again Kuhn (1993),
supported the idea that image schemata and their metaphorical mappings are the fundamental
theories to build efficient user interfaces. Freundschuh and Sharma (1996) linked image schemata
with the spatial concepts that children learn through story books and suggested that there is a
progressive process of spatial knowledge understanding and that some image schemata seem to be
more fundamental or basic than others. They also presented how locative prepositions relate to
image schemata stating, for example, while in and out correspond to locative prepositions
associated with a container, on and off correspond to locative prepositions associated with a
surface.

3 . Inferences about Containers and Surfaces in a Small-Scale Space
We pursue a top-down approach to spatial reasoning through a study of a prototypical case with
semantically meaningful objects and their operations, rather than attempting to derive spatial
relations for geometric parts (points, lines, polygons) from a Cartesian coordinate space. The basis
for the formalization of the container-surface algebra is an analysis of a room space, a concrete
scenario in which people interact with spatial objects through bodily experiences (Rodríguez &
Egenhofer 1997, Egenhofer & Rodríguez in press). A room is a ubiquitous case of a small-scale
space where people manipulate objects and experience objects from one standpoint (Kuipers 1978,
Zubin 1989). As such, the room space constitutes a representative scenario in which people
experience recurrent manifestations of image schemata.

This study considers a neatly organized room space with six major objects: a box, a ball, a
table, a sheet of paper, a pen, and a room itself. These objects embody the image schemata
container—e.g., the table in the room or the ball in the box—and surface—e.g., the pen on the

Figure 1:   Spatial relations between a desk and a book: (a) the book on the desk
                   and (b) the book in the desk.

(a) (b)
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paper or the paper on the table—and allow for inferences about their associated spatial
relations—e.g., the pen on the table and the table in the room implies that the pen is in the room as
well. We assume, for the time being, that all objects may only be completely on or off a surface,
i.e., no part of, say, the paper may extend beyond the tabletop. Similarly, all objects can be only
completely in or out of a container. The discussion of partially on and off and partially inside and
outside relates to the part-whole image schema, which would introduce more complex variations of
the simpler but more fundamental cases considered here. The ontology of the room space can be
generalized to six configurations involving containers and surfaces (an object is an item that is
neither a container nor a surface):

• An object inside a container.

• An object on a surface.

• A container (with an object inside) in another container.

• A surface (with an object on top) on another surface.

• A container (with an object inside) on a surface.

• A surface (with an object on top) in a container.

3.1 Primitive Relations of Containers and Surfaces

From the analysis of the room space, the definition of spatial relations follows the formalism
described by relation algebras. Defining spatial relations as part of a relation algebra allows us to
use relations as variables and properties of this algebra as mechanisms of inferences. To define a
relation algebra, a set of primitive relations must be defined. This set of primitive relations must
contain pairs of converse relations, complement relations, an identity relation, and an empty
relation.

The analysis of the room space distinguishes different spatial relations for the container and
surface schemata. The basic spatial relation for the container is inside, which results from the
operation of moving a (smaller) object into a (larger) object that plays the role of a container. The
converse relation to inside is contains—if an object A is inside a container B then B contains A, and
vice-versa. The relations inside and contains have their respective negations, called outside and
excludes, if we consider two different objects. If A is different to B and A is not inside the
container B, then A must be outside of B. Likewise, if the container B does not contains A, then B
excludes A. To enable a complete set of inferences about containers, the identity relation equalC  is
introduced, which holds only between a container and itself or between an object and itself. Since
converse and negation are associative operators for spatial relations between two different objects,
excludes can be defined in two ways: (1) as the negation of the converse of inside and (2) as the
converse of the negation of inside.

The set of the five primitive container-relations forms the universal relation, denoted by    UC .
The elements of the universal relation provide a complete coverage (i.e., any binary configuration
with a container is described by one of the five relations) and they are mutually exclusive
(Expression 1). For each relation there exists the complement, which is the universal relation minus
that relation. A particular role plays the complement to equalc , as it establishes the diversity
relation.

                  

A is a container B is container A inside B A contains B

A outside B A excludes B

A equal BC

 or xor xor

xor xor

⇔
(1)
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The relations for a surface are defined similarly. The prototyping relation for a surface is on,
which results from moving an object onto a surface. The negation of on is off, and the converse to
on and off are called supports and separated_from respectively. The relation equalS  forms the
identity relation between two surfaces or objects, and the five relations on, off, supports,
separated_from, and equalS  form the universal relation for surfaces,   US .

In the container-surface algebra, both types of relations occur simultaneously, which means that
there exists a universal relation as the integration of the universal relation of containers and the
universal relation of surfaces. The definitions and properties of the individual relations stay
unchanged, however, only one single identity relation exists in this set of combined container-
surface relations, denoted by equalC&S . The complement of a relation is based on its definition,
i.e., the universal relation minus that particular relation. So while the complement of the relation
inside in the container algebra consists of the four relations outside, contains, excludes, and
equalC , it encompasses in the combined container-surface algebra the eight relations outside,
contains, excludes, on, off, supports, separated_from, and equalC&S . The nine basic relations of
the container-surface algebra are depicted graphically through a set of icons that expose prototypical
cases (Table 2).
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equal

A on B

A off B

B supports A

B separated_from A

A inside B

A outside B

B contains A

B excludes A

Relation Converse
relation ComplementResult of

operation

A moved into
container B

A removed from
container B

A moved onto
surface B

A removed from
surface B

Image Schema

container

container

container

container

surface

surface

surface

surface

container or
surface

Icon for
relation

A moved into
container B

A removed from
container B

A moved onto
surface B

A removed from
surface B

C&SA B

Table 2:   Basic relations of the container-surface algebra (dark boxes denote complement
                 relations) (Egenhofer & Rodríguez in press).
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3.2 Compositions

Much of the semantics of these spatial relations is captured by the composition operation, also
called the relative product, of a relation algebra. Composition combines two relations over a
common argument to determine the relation between the linked arguments (Expression 2). For
example, the composition of inside with outside implies outside (because if A is inside of B and B
is outside of C, then A must be outside of C as well). Composition may result in more than one
possible relation (e.g., the composition off with on results in on xor off). If the composition
imposes no constraints, then it results in the universal relation. On the other end of the scale, if the
composition is impossible, then it results in the empty relation.

                                        x y a c a b x b c yb; { , : , , }= < > ∃ < > ∧ < >∈ ∈ (2)

The composition of spatial relations was derived from separate container and surface algebras,
which got integrated into a single container-surface algebra (Table 3). Given the composition table,
the necessary properties of a relation algebra (Tarski 1941) can be assessed. Properties of a relation
algebra were examined for the container-surface algebra by using a program written in C++. Using
the set-theoretic operations, i.e., union (+), intersection (•), and complement (–), and considering
the binary operator corresponding to composition (;), the unary operator corresponding to converse
(c), the universal relation UC S& , and the identify relation equalC&S, the seven properties of the
container-surface algebra are:

• Each composition with the identity relation is idempotent (i.e., x equal xC S; & = ).

• The composition with a union of relations is equal to the union of the compositions with each
of the elements of the union (i.e., x + y( ) ; z = x ; z + y ; z ).

• The converse of a converse relation is equal to the original relation (i.e., ( )x xc c = ).

• The converse of a union of relations is equal to the union of the converse relations of each of
the elements of that union (i.e., ( )x y x yc c c+ = + ).

• The converse relation of a composition is equal to the composition of the converses of the two
relations, taken in reverse order (i.e., ( ; ) ;x y y xc c c= ).

• A variation of De Morgan’s Theorem K (i.e., x x y y yc ; ( ; )− + − = ) holds.

• The associative property of the composition (i.e., x ; y( ) ; z = x ; y ; z( ) ) that applies to the
container and surface algebras is no longer applicable for the container-surface algebra.
Although the container-surface algebra is not associative, it is a semiassociative relation
algebra (Maddux 1982, Andréka et al. 1988), because it satisfies
x U U x U U x U U x Uc s c s c s c s c s c s c s; ; ( ; ); ;( ; ) ;& & & & & & &= = = .

Since the container-surface algebra is semiassociative, it is possible to draw different
conclusions from two different reasoning paths, where one of them produces a subset of the
possible spatial relations derived from the other one. For instance, the composition operation
(inside ; inside) ; inside results in the set { inside, on, outside, off}, whereas the composition
operation inside ; (inside ; inside) results in the set { inside, outside, off}. Some reasons that make
the associative axiom fail are the behavioral differences between containers and surfaces. For
instance, an assumption of this work has been that an object can be a surface for another object of
the same size (e.g., two papers of the same size); however, an object cannot be a container for an
object of the same or bigger size (e.g., such as two boxes of the same size cannot be put one into
the other).



A
 C

o
m

p
a

riso
n

 o
f In

fe
re

n
ce

s a
b

o
u

t C
o

n
ta

in
e

rs a
n

d
 S

u
rfa

ce
s in

 S
m

a
ll-S

ca
le

 a
n

d
 L

a
rg

e
-S

ca
le

 S
p

a
ce

s
A

. R
o

d
ríg

u
e

z a
n

d
 M

. E
g

e
n

h
o

fe
r

      Jo
u
rn

a
l o

f V
isu

a
l L

a
n
g
u
a
g
e
s a

n
d
 C

o
m

p
u
tin

g
, 11 (6): 639-662, 2000.

inside

outside

contains

excludes

on

off

supports

separated_from

equal C&S

Table 3:   Composition table of the container-surface algebra for objects playing only one role, being either a container
                 or a surface (dark boxes denote possible inferred relations) (Egenhofer & Rodríguez in press).

inside contains excludes on off supports separated_fromoutside equalC&S
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When analyzing the composition of spatial relations within the room space, an important
assumption has been that within a configuration objects play only one role, either as a container or
as a surface. For example we exclude situations much like the desk in Figure 1, where a book may
have_off another book that is inside a desk. While the desk is a container for the second book, it
may also be a surface for the first one. In addition, the composition table reflects only spatial
relations that have been derived from configurations involving containers and surfaces. Thus, it
assumes that between two different objects, there is always one object that plays the role of a
container or surface with respect to the other. For example, the composition table does not consider
the composition of pen inside box ; box contains ball since between the pen and the ballnone of

them being a container or a surface no spatial relation can be derived from the container-surface
algebra.

3.3 Inferences with the Container-Surface Algebra for Small-Scale Objects

Based on the container-surface algebra, a number of inferences can be made. These inferences must
satisfy consistency constraints (Maddux 1990, Mackworth 1977) to avoid any contradictions
among the spatial relations that describe a scene. Given a scene represented as a directed graph, in
which nodes represent objects, directed edges represent binary spatial relations, and paths represent
sequence of edges that follow a direction, consistency constraints can be formulated as a
satisfaction of path consistency (Mackworth 1977). To guarantee consistency of compositions, the
final set of possible relations between two objects must be derived from the intersection of all
possible compositions that relate these two objects. The set of possible relations between objects i
and j (Rij), can be derived from Expression 3 (Egenhofer & Sharma 1993).

                                   
  
∀ = ∩ ∩ ∩ =

=
i j ij ia aj ib bj in nj ik kj

k a

n

R R R R R R R R R, ; ; ; ;K I  (3)

For an incomplete description of a scene, the process to infer unknown spatial relations may be
defined for the following steps:

• Construct a node-consistent network, i.e., ∀ = ∩ ∀ =≠i ii ii i j i j ij ijR R equal R R'
,

' and 

• Construct a arc-consistent network, i.e., ∀ = ∩ij ij jiR R R
ij

' ' ' '

• An iterative process that satisfies the path consistency (Expression 4). This iterative process
ends when a new iteration does not produce any change in the spatial relations between any
two objects.

             
  
∀ =

=
i j

k a

n

R R R
ij ik kj,
' ' ' ' ' ' ';I (4)

To illustrate this process, consider a database with three facts describing a scene: a pen is on a
table, the table supports a box, and a room contains a table. Figure 2a represents this scene as a
directed graph. To ensure node-consistency and arc-consistency, the equal and converse relations
are added to the initial set of known spatial relations. From the composition operation and path-
consistency constraints, possible inferences are:

• R pen,box = pen on table ; table supports box

 = pen inside box xor pen outside box xor pen on box xor pen off box xor

 pen contains box xor pen excludes box xor pen supports box xor
                              pen separated_from box xor pen equalC&S box

= UC&S
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• R box,pen = box on table ; table supports pen

= UC&S

• R room,box= room contains table ; table supports box

= room contains box

• R box,room= box on table ; table inside room

= box inside room

• R pen,room= (pen UC&S box ; box inside room) ∩ (pen on table s table inside room)

= (pen inside room xor pen outside room xor pen contains room xor

   pen excludes room xor pen supports room xor pen separated_from room xor

   pen equalC&S room) ∩ pen inside room

= pen inside room

• R room,pen= (room contains box ; box UC&S pen) ∩
   (room contains table ; table supports pen)

= room contains pen

The final directed graph (Figure 2b) showed that refinements of the composition operations can
be made. A pen is not the same as a box, therefore, the relation equalC&S is impossible between the
box and the pen. Since it is known that a pen can be neither a container nor a surface, we can
discard the possible spatial relations that imply one of these roles for the pen. If the pen is smaller
than the box, we can reduce the possible spatial relations between the pen and the box to pen inside
box xor pen outside box.

(a) (b)

P B

T R

on
supports

contains

on

supports

inside

equal equal

equalequal
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Uc&s

inside contains

contains
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Figure 2:   Inferences with small-scale objects: (a) initial scene description and (b) completed
    scene description that satisfies node-, arc-, and path-consistency constraints

                  (P is a pen, B is a box, T is a table, and R is a room).
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4 . The Container-Surface Algebra for Large-Scale Space
Variations in the types of objects—solid vs. liquid (Hayes 1990)—their nature—physical vs.
administrative or fiat objects (Smith 1995)—or their sizes—microscopic vs. table top vs. large-
scale space (Zubin 1989, Montello 1993)—may affect the coherence of the container-surface
algebra. The basic properties of the container-surface algebra were derived from a setting with
manipulable objects. While such a setting corresponds to the theory of acquiring image schemata
through bodily experiences, it would be limiting if the applicability of the algebra was restricted to
settings with the same properties. To explore the application range and consistency of the container-
surface inferences, we analyzed different configurations that comprise different spatial objects with
respect to their type, nature, and sizes. Using objects of different sizes could lead to different
senses of spatial relations (Herskovits 1986), such as a luggage is inside of a container and a lake is
inside of a county. Thus, this analysis may indicate whether the basic behavior of image schemata
can be basis for the integration among different geometric conceptualizations of spatial relations.
Like in the small-scale space, selected configurations combine the spatial relations inside and on for
situations between surfaces and containers. Then, inferences were applied as they did apply in the
small-scale space to complement the possible spatial relations between objects.

4.1 Inferences with Large-Scale Objects

In a first instance, configurations with only large-scale objects were analyzed. A set of large-scale
objects, a mountain, a national park, a county, a peninsula, a forest, and a lake, was selected. Like
in the room space, these objects were combined to provide all possible combinations between
surfaces and containers. Figure 3a presents a partial scene description, as a directed graph, with
known relations among these objects. The scene after applying composition operations and
consistency constraints is shown in Figure 3b. For this scene, it is also possible to make further
refinements of the inferences when information about relative sizes and roles of the objects is
considered. For example, if it is known that the peninsula is smaller than the county, the only
possible spatial relation between them would be that peninsula is inside the county and, therefore,
the forest would be also inside the county.
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4.2 Reasoning with Small-Scale and Large-Scale Objects

The next analysis considers configurations with a combination of objects belonging clearly to
different scales. Following the same approach to the large-scale space, six objects (entities) were
selected: passenger, luggage, runway, container, airplane, and airport. An initial scene with a
subset of known relations that is presented as a directed graph is shown in Figure 4a. The final
scene after applying composition operations and consistency constraints is shown in Figure 4b.
Like in the previous cases, further refinement of the inferences can be made as we consider sizes
and roles of the objects within the scene. For example, knowing that the runway is smaller than the
airport, we can infer that the runway can only be inside the airport.

(b)

N

F P

C

equal

equal

equal

equal

Figure 3:  Inferences with large-scale objects: (1) initial scene description and (b)
       completed scene description that satisfies node-, arc-, and path-consistency

               constraints (N is a national park, F is a forest, P is a peninsula, and C is
                   a county).
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5. Evaluation of Inferences
To determine whether the inferences of the container-surface algebra correspond to the way people
reason about spatial relations, we performed a human-subject study to compare people’s inferences
with those of the container-surface algebra. We were particularly interested in evaluating the
applicability of the algebra across scales and detecting whether people’s inferences match with the
properties of the compositions operations.

(b)

equal

equal

A C

R

on P

equal

equalsupports

(a)

A C

R

on P

inside

on

inside

on supports

contains

inside xor supports

contains xor on

Uc&s

Uc&s

inside xor contains xor outside
  xor excludes xor on xor off

  inside xor contains xor outside
   xor excludes xor supports xor
              separed_from

Figure 4:   Inferences with small- and large-scale objects: (a) initial scene description
               and (b) completed scene description that satisfies node-, arc-, and path-
                 consistency constraints ( A is an airplane, C is a container, R is a runway,
                   and P is an airport).
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 5.1 Survey

We designed a survey that presented three different scenes described a sets of facts such as:

• The lake is inside the national park.

• The national park is inside the county.

• The forest is on the mountain.

• The mountain is on the peninsula.

• The national park is on the peninsula.

No pictorial clues, such as a map of the setting, were given. Subjects were then asked to name
the relations between given pairs of objects, such as

• The lake ___________ the county.

Subjects needed to derive these relations by combining predicates, although each questionnaire
included one case in which the answer was given by a single fact. One inference per set could not
be determined by the algebra since the inference associates two objects that can be classified as
neither container nor surface. The inferences represent different levels of difficulties by considering
single as well as double compositions, and compositions that produce unique or ambiguous results.
The subjects were instructed to answer “no relation” where they believed no relation between the
objects exists. In order to allow the subjects to answer the survey within 15 minutes, only a
representative subset of all possible inferences was asked. Each survey contained three scene
descriptions, one describing a small-scale space, the second a large-scale space with large-scale
objects, and the third described small-scale and large-scale objects embedded in a large-scale space.

Table 4 shows the set of compositions and the reference result from the container-surface
algebra. Refinement by relative size and role of objects was applied to eliminate unrealistic
answers. For example, although the composition supports ; inside results in two possible answers
(inside xor supports), the relation supports was not considered as correct for the composition of
table supports box ; box inside room, because rooms and airports are bigger than tables.
Refinements by size led to different inferences depending on the particular setting.
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Thirty-eight students of two undergraduate classes at the University of Maine participated in the
survey. For the analysis, only those 30 students were considered whose mother tongue is US
English. We recorded the subjects’ gender (1/3 female, 2/3 male) and found no significant
differences between their responses. The ordering of the scene and facts for each scene was
changed among the surveys to evaluate its effect on the answers. There were also no significant
differences due to the different orderings of the questions posed.

5.2 Results

Out of a total of 510 expected answers that are defined in the container-surface algebra, 342
matched exactly with the inferences of the relation algebra (67%), and another 47 (9%) gave a

Table 4:   Survey description: compositions and reference inferred relations
                 from the container-surface algebra (/ denotes exclusive or).

Configuration Composition       Inferred Relations

Small Scale
ball-room inside ; inside      inside
pen-table on ; on      on
ball-table inside ; on      on
table-room supports ; inside      inside
pen-room on ; supports ; inside      inside
paper-room on ; supports ; inside      inside
pen-ball undefined      no relation

Large Scale
lake-county inside ; inside       inside
forest-peninsula on ; on       on
lake-peninsula inside ; on      on
peninsula-county supports ; inside      inside/supports
forest-county on ; supports ; inside      inside/outside
mountain-county on ; supports ; inside      inside/outside/supports/separated_from
lake-forest undefined      no relation

Mixed Scale
luggage-airport inside ; inside      inside
passenger-runway on ; on      on
luggage-runway inside ; on      on
runway-airport supports ; inside      inside
passenger-airport on ; supports ; inside      inside
airplane-airport on ; supports ; inside      inside
passanger-luggage undefined      no relation
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subset of the possible correct answers. Two questions were not answered (0.3%). In 71 cases
(14%), a relation other than the predicate names used in the relation algebra was given. Only 10
answers (2%) had a relation that was part of the predicate names used in the relation algebra, but
different from the correctly inferred relation. In 15 cases (3%), subjects stated that there was no
relation, although the relation algebra would infer one. Of the 90 cases that had multiple possible
answers, “no relation” was given in 23 answers (26%). None of subjects used a relation defined
within the container-surface algebra to describe the 90 cases that were undefined by the algebra.

In counting matches between the subjects’ answers and the reference results we considered as
correct answers those that coincide with the reference answer of the container-surface algebra or
those that were a subset of correct answers for questions with more than one possible result. Table
5 shows the distribution of the matches between the algebra and the subjects’ answers for each
question.

We defined four hypotheses to be evaluated by statistics tests. While the first hypothesis checks
every individual question, the rest three hypotheses group the question by scale, type, and
complexity.

Hypothesis 1: People evaluate all inferences according to the container-surface algebra,
independent of the scale of the objects and the embedding space.

This hypothesis was rejected. By using a normal approximation to the binomial distribution,
individual questions were analyzed to test whether the probability of correct answers is equal to
0.75 (null hypothesis) with respect to the alternative hypothesis that the probability is different from

Configuration Answers              Number of            %

Small Scale
ball-room 19 19       100 %
pen-table 30 29                97 %  
ball-table 30 29                97 %
table-room 30                                28                93 %
pen-room 30                                27                90 %
paper-room 30                                27                90 %

Large Scale
lake-county 21 20                 95 %
forest-peninsula 30 27                 90 %
lake-peninsula 30 22          73 %
peninsula-county 30 12                 40 %
forest-county 30 19                 63 %
mountain-county 30 17                 57 %

Mixed Scale
luggage-airport 20 14                  70 %
passenger-runway 30 28                  93 %
luggage-runway 30 27                  90 %
runway-airport 30 14           47 %
passenger-airport 30 16                  53 %
airplane-airport 30 14                  47 %

Table 5:   Number of answers that match reference results.

   correct answers
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0.75. The results suggest that for small-scale spaces the algebra matches with people’s reasoning
about spatial relation (Table 6). For small-scale spaces the probability that the algebra gives the
correct answers is over 0.75, reaching for some cases probabilities of over 0.90, with a level of
significance of 0.05. For configurations with large-scale objects only, there were two out of six
inferences that deviated significantly from the algebra. Similarly, in mixed-scale space, three of six
inferences were significantly different from the subjects’ assessments.

Hypothesis 2: People make the same kinds of inferences in small-scale and in large-scale
space.

This hypothesis was rejected. We used a chi-squared distribution for a non-parametric test, i.e.,
a test that does not consider parameters of the distribution, to evaluate whether the survey suggests
any conclusion about the correctness of answers taking questions as groups of small-scale, large-
scale, and mixed-scale spaces. The null hypothesis was that the number of observed correct
answers is equal to the number of expected correct answers. Every test used a probability of 0.05
that we reject the null hypothesis when in fact it is true.

As expected from the first test, the small-scale inferences were accepted, whereas the large-
scale and mixed-scale inferences were rejected (Table 7).

aaaa

Small Scale
ball-room       19           19 2.527 p > 0.75       
pen-table      30           29                         2.741 p > 0.75
ball-table     30           29 2.740 p > 0.75
table-room     30                  28 2.319 p > 0.75
pen-room     30                      27              1.897 p > 0.75
paper-room     30                      27 1.897 p > 0.75

Large Scale
lake-county      21           20  2.142 p > 0.75               
forest-peninsula      30           27 1.897 p > 0.75
lake-peninsula       30           22            -0.211 p = 0.75
peninsula-county      30           12                         -4.427 p < 0.75
forest-county      30           19            -1.476 p = 0.75
mountain-county      30           17            -2.319 p < 0.75

Mixed Scale
luggage-airport      20           14            -0.516               p = 0.75  
passenger-runway      30           28             2.319 p > 0.75
luggage-runway      30           27             1.897 p > 0.75
runway-airport      30           14            -3.584 p < 0.75
passenger-airport      30           16            -2.741 p < 0.75
airplane-airport      30           14            -3.584 p < 0.75

Table 6:   Test  (H0: p = 0.75) for individual questions.

Configuration      Answers      Observation          Test       Conclusion
−1.607 < Z =

(o− n*0.75)

n*0.75*0.25
< 1.607(n) (o)



A Comparison of Inferences about Containers and Surfaces in Small-Scale and Large-Scale Spaces
A. Rodríguez and M. Egenhofer

      Journal of Visual Languages and Computing, 11 (6): 639-662, 2000.

Hypothesis 3: The agreement of people’s inferences with the container-surface algebra
depends on the complexity of the composition.

This hypothesis was accepted. This test also used a non-parametric test with a chi-squared
distribution to assess whether there are significance differences between the observed answers and
the expected answers for inferences that represent (1) transitive compositions, (2) binary but non-
transitive compositions, and (3) ternary and higher compositions that were not transitive. Analyzing
the answers by class of composition and number of inferred relations, it is clear that the transitive
property is suggested in all cases (Table 8). Binary compositions such as inside ; on that give only
one answer are likely to be consistent with people inferences. Double and tripe compositions such
as on ; supports ; inside and on ; on ; supports ; inside present major difficulties to derive correct
answers. This observation is consistent with the fact that the container-surface algebra is non-
associative and its results are given by the intersection of both possible lines of reasoning.

Configuration              Test    Conclusion

Small scale                 0.8                                accepted
Large scale                    22.9476                          rejected 
Mixed scale                               25.8333                          rejected

Table 7:   Test for groups of questions based on scale.

χ2 =
(oi − π i )2

π ii=1

6

∑ < 11.07

Configuration                   Test    Conclusion

Table 8:   Test for groups of questions based on type of composition.

inside ; inside and on ; on
            

in ; on and supports ; inside         

Transitive compositions

χ2 =
(oi − π i )2

π ii=1

6

∑ < 11.07

accepted      2.313

      21.934 rejected

on ; supports ; inside         

25.333 rejected

Binary composition

Ternary composition
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Hypothesis 4: The agreement of the people’s inferences with the container-surface algebra
depends on the complexity of the result of the composition.

This hypothesis was accepted. Like hypotheses 2 and 3, we used a non-parametric test with a
chi-squared distribution to evaluate whether observed answers match the expected answers for
groups of questions classified by the number of inferred relations. For compositions that result in
multiple answers people do not infer any relation or give wrong answers (Table 9).

5.3 Discussion

The small number of incorrect inferences within the domain (10 out of 510) is evidence that the
basic principles of the container-surface algebra—converseness of relations and the composition
operation to capture the interplay between containers and surfaces—match with human intuition.

Based on the algebra, inferences from the small-scale and mixed-scale configurations should
give crisp results (i.e., compositions without any ambiguity), since the objects’ relative size is
implicit and a refinement of the algebra can be done for compositions with possible multiple results.
The large scale-space scenario, however, includes 3 inferences with single result and 3 inferences
that have multiple possible result. Subjects gave 341 correct answers for inferences of crisp results,
representing 81% of the expected number. These 341 correct answers correspond to 99% of the
total of 342 correct answers obtained from the survey. Thus, it is clear that the complexity of result
has a great effect on the subjects’ answers. In a few cases (15), the algebra actually provides more
crisp results than the subjects’ inferences. On the other hand, the algebra considered a larger set of
answers (i.e., additional relations the subjects did not consider) in 47 cases.

Configuration               Test                     Conclusion

Table 9:   Test for groups of questions based on number of inferred relations.

inside ; inside
on ; on,
inside ; on

            

supports ; inside
on ; supports ; inside         

Single result accepted4.781

   44.8 rejectedMultiple results

χ2 =
(oi − π i )2

π ii=1

9

∑ < 15.5
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The number of inferences outside of the domain of the container-surface algebra (71 out of 510)
were largely due to the use of the prepositions at (32 times) and part of (7 times)—with another two
terms (i.e., near and leaves) used four times, four terms (i.e., above, overlap, divide, and by) used
twice, and sixteen terms (e.g., includes, surround, around, fills, over, and next) that were used
once. The preposition at was used only in the context of the mixed-scale scenario, and there in
inferences with expected answer inside. When considering preposition at as a synonym of inside,
the statistical analyses for mixed-scale space accept both the first and second hypothesis. This
deviation from the other references can be explained as a linguistic choice of predicates, as
explained by Herskovits (1986) where at is defined as “a point to coincide with another.” Although
the reference, such as the airport, and the located objects, such as the passenger, are not actually
points, they are viewed as such.  In a later work, Herskovits (1997) extends her definition by
stating that at is “coincidence of a movable point objects with a point place in a cognitive map.”
Hence, at can not be used in large-scale spaces. The mixed-scale scenario could be interpreted in
such a way that the airport does not necessarily surround the passenger and it is considered as a
point in the cognitive map. Thus, the preposition at better represents the configuration between
passenger and airport.

The relation part  was used in both large-scale space (5) and mixed-scale space (2). From the 7
times when part was used only once it was used when the expected result was on. Winston et. al.
(1987) discussed the usual confusion between meronymic relation (part of) and the topological
inclusion.  In some cases, meronymy involves a spatial inclusion, since a located object may
completely overlap the reference object and at the same time be part of the reference object (for
example, a peninsula that is inside of a county and it is at the same part of the county).

6 . Conclusions and Future Work
This study defined a spatial-relation algebra with a small set of spatial operators (inside, on,
outside, off, and their respective converse relations). The container-surface algebra provides an
inference mechanism to derive spatial relations from the composition of individual as well as
combinations of image schemata.

The human-subject testing suggests that spatial inferences derived from the container-surface
algebra seem to be sensible for small-scale configurations; however, the applicability of this algebra
may require an adaptation to configurations with objects of large or mixed sizes. Future studies
should analyze whether there exists another set of spatial relations that better describe large-scale or
mixed-scale configurations. For example, the distinction between inside and at needs further
investigation. Likewise, part of is usually confused or combined with the spatial relation inside and
on. The complexity of the composition (i.e., the combination of spatial relations) and the results of
the composition (i.e., the number of possible inferences) affects the agreement of the people’s
inferences with the container-surface algebra. Transitive compositions, such as inside ; inside, are
consistent with people’s judgment. Compositions with different spatial relations, such as
on ; supports and inside ; on, give consistent results when there is only one possible inference.

An area for further investigation is to explore how the spatial-relation algebra is affected by
incorporating the part-whole image schemata. The part-whole schema appears to be an important
factor for discriminating spatial relations. What portion of an object needs to be inside or on another
object to consider the object inside or on, respectively? Is shape and predominance of a portion
relevant for distinguishing if an object is inside or on?

The container-surface algebra constitutes an alternative approach to spatial reasoning. Thus, a
further study should confirm or dismiss whether these inferences match with any of the inference
made with the traditional spatial reasoning approaches. Do the different approaches provide
complementary answers? Can we map the container-surface algebra onto an algebra that uses
topological or geometric properties?
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