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Abstract
Semantic similarity plays an important role in geographic information systems as it supports the
identification of objects that are conceptually close, but not identical. Similarity assessments are
particularly important for retrieval of geospatial data in such settings as digital libraries, heterogeneous
databases, and the World Wide Web. Although some computational models for semantic similarity
assessment exist, these models are typically limited by their inability to handle such important cognitive
properties of similarity judgments as their inherent asymmetry and their dependence on context. This paper
defines the Matching-Distance Similarity Measure (MDSM) for determining semantic similarity among
spatial entity classes, taking into account the distinguishing features of these classes (parts, functions, and
attributes) and their semantic interrelations (is-a and part-whole relations). A matching process is combined
with a semantic-distance calculation to obtain asymmetric values of similarity that depend on the degree of
generalization of entity classes. MDSM’s matching process is also driven by contextual considerations,
where the context determines the relative importance of distinguishing features. Based on a human-subject
experiment, MDSM results correlate well with people’s judgments of similarity. When contextual
information is used for determining the importance of distinguishing features, this correlation increases;
however, the major component of the correlation between MDSM results and people’s judgments is due to
a detailed definition of entity classes.

1. Introduction
In information systems, similarity assessment is an integral part of such processes as
information retrieval, natural-language processing, information integration, and data
maintenance. For geographic information systems (GISs), similarity assessment is particularly
important because typically users of spatial data have diverse backgrounds and no precise
definitions underlie the matter of discourse. A semantic similarity model facilitates the
comparison among entities and allows information retrieval and information integration to
handle entities that are semantically similar. Traditional methods for information retrieval
have been primarily based on query-string matching and statistical analysis. New trends in of
information retrieval stress the advantages of using domain knowledge and semantic
similarity functions to compare words or documents (Lee et al. 1993, Richardson and
Smeaton 1995, Voorhees 1998). Within this context, the goal of a similarity model is to
obtain flexible and better matches between user-expected and system-retrieved information.
In addition, heterogeneous spatial databases could achieve real information integration,
because they would be able to identify similar objects that can be exchanged, without
compromising semantics. Unlike approaches that integrate different conceptualizations into a
common schema for data integration (Mena et al. 1996, Bergamaschi et al. 1998, Kavouras
and Kokla 2002), the use of semantic similarity measures is a strategy that allows us to
associate dynamically entities from different conceptualizations while keeping these
conceptualizations independently (Rodríguez and Egenhofer 2003).

The Semantic Geospatial Web (Egenhofer 2002, Fonseca and Sheth 2003) is
envisioned as a new information-retrieval environment that will facilitate meaningful access to
geospatial information. While the World Wide Web currently provides good access to data
through a variety of search engines as long as the user knows the keywords that the data



providers used, it falls short as a reliable access mechanism to information when purely
syntactic comparisons cannot resolve ambiguities or fail to build connections to related or
similar items that a data provider did not foresee. The Semantic Web (Berner-Lees et al.
2001) aims to overcome the current limitations by incorporating explicitly-modeled
expressions of semantics into the search process. The provision of such explicit semantics
may be seen as a much richer metadata model, with the goal to offer machine-readable and
machine-executable metadata. The domain of geospatial information is particularly rich in
this respect due to the varieties in human spatial languages for expressing and communicating
spatial information.

In order to address geospatial semantics, one needs computational methods that go
beyond syntax comparisons. In the case of the Semantic Geospatial Web, three types of
geospatial semantics are distinguished, each requiring different computational methods
(Egenhofer 2002):

• Semantics of geospatial entity classes

• Semantics of spatial predicates

• Semantics of geospatial names
This paper investigates cognitively plausible methods for making comparisons of

geospatial entity classes. In combination with geospatial ontologies, (Smith and Mark 2001,
Frank 2001, Kuhn 2000), these methods of spatial similarity provide a flexible framework to
bridge between the conceptual models of the data providers and the conceptual models of the
users (Fonseca et al. 2002). The paper focuses on the semantics of spatial entities and
introduces a measure for assessing semantic similarity among spatial entity classes. Semantic
similarity assessment ignores some of the geometric properties of spatial databases, such as
density, dispersion, and pattern derived from representative subsets (Flewelling 1999) and
extent and location displayed by magic lenses (Schenkelaars and Egenhofer 1997). The
classification of geographic entities, however, is geospatial, even when no geometry is
involved. Non-geometric concepts, such as building, road, and place, are geospatial concepts
that are used for describing the semantics of geospatial objects.

Much past research in geographic information science that is concerned with
similarity assessments has focused on the geometric properties of geospatial information.
Examples of these studies are topological equivalence (Egenhofer and Franzosa 1995),
cardinal direction between extended spatial objects (Goyal and Egenhofer 2001), metric
details of spatial relations (Egenhofer and Shariff 1998), and content-based image retrieval
(El-Kwae and Kabuka 1999, Yoshitaka and Ichikawa 1999). Omitting the geometric
properties of geospatial objects, this paper concentrates on the cognitive properties of the
semantic similarity assessment that relate to the geospatial domain and leaves for future work
the integration of geometric and semantic similarity.

The study of similarity models has been an important area of investigation for
psychologists and computer scientists. While psychologists have pursued the identification of
how people classify objects, form concepts, solve problems, and make generalizations (Rosch
and Mervis 1975, Osherson and Smith 1981, Smith and Osherson 1984, Goldstone et al.
1997), computer scientists have relied on similarity measures in natural-language processing
(Sussna 1993, Resnik 1999), information retrieval (Kim and Kim 1990, Richardson and
Smeaton 1995), and information integration (Mena et al. 1996, Weinstein and Birmingham
1999). Most similarity models defined by psychologists are based on features or descriptors
of concepts (Tversky 1977, Krumhansl 1978, Goldstone 1994). This approach to similarity
modeling is in contrast to the work done by computer scientists, who typically use the concept
interrelations in a hierarchical structure to define a similarity measure (Rada et al. 1989, Lee
et al. 1993, Smeaton and Quigley 1996, Resnik 1999).

Two key characteristics of similarity models are whether or not they are symmetric
and context independent. Although most similarity models based on concepts’ interrelations



assume symmetric evaluations, psychologists argue that similarity is not always a symmetric
relation (Tversky 1977, Krumhansl 1978). For example, the statement “a hospital is similar
to a building” is more generally accepted than “a building is similar to a hospital.” In the
naive view of the world, distance as well as similarity defined in terms of a conceptual distance
are frequently asymmetric (Egenhofer and Mark 1995). Although the similarity evaluation
between a class and its superclass may seem odd, it is not unusual to compare objects whose
classifications have been assigned by different users and with a different degree of
generalization. For example, while one user may classify some objects from a dataset as
buildings, another user may go further in her or his classification and distinguish among
types of buildings in another dataset (e.g., hospital, theater, house, and so on). Then, a
reasonable request is to compare the two datasets.

The literature also indicates that, in addition to such asymmetries, context and frame
of reference should be considered when evaluating similarity assessments (Tversky 1977,
Goldstone et al. 1997, Medin et al. 1993). For example, how similar are an apple and a pear
with respect to taste? In feature-based models, features may be given different weights in
different stimulus contexts (Krumhansl 1978) and these weights could be determined by how
diagnostic the feature is for a particular set of objects under consideration (Tversky 1977,
Goldstone et al. 1997). Models based on semantic distance (Rada et al. 1989, Lee et al.
1993) ignore any contextual dependence of the similarity assessment and rely on a well-
structured hierarchy. Although a recent information-based approach to semantic similarity
shows that the content information of concepts could have some implications for the
consideration of context (Resnik 1999, Lin 1998), no further study has yet been done in this
direction.

This paper extends previous work on semantic similarity (Rodríguez and Egenhofer
1999, Rodríguez et al. 1999) by introducing the Matching-Distance Similarity Measure
(MDSM) to determine semantic similarity among spatial entity classes. It addresses the
asymmetry of similarity judgments as well as the role of context in such judgments. For this
work, entity classes correspond to cognitive representations that people use to recognize and
categorize objects or events (Dahlgren 1988). The work is strongly influenced by studies in
cognitive psychology and natural-language processing. It shares Talmy’s (1983) and
Herskovits’s (1997) assumptions that the language we speak reflects our conceptual system;
that is, we can treat concepts as linguistic terms and represent these terms’ semantics.

Our work synthesizes and expands in two significant ways the work done by
psychologists and computer scientists. First, we supplement the feature-based approach by
systematically treating the asymmetry of the similarity judgments. We obtain asymmetric
values for similarity assessments of spatial entity classes based on their degree of
generalization within a hierarchical structure. Second, we extend the feature-based approach
by explicitly incorporating context into the similarity assessment, where context leads to the
determination of entity classes in the domain of an application and, consequently, determines
the relative importance of distinguishing features in the similarity judgments. Such a new
measure of semantic similarity matches with people’s judgments of similarity, and it is useful
for comparing concepts that are organized by their semantic interrelations and described by
their distinguishing features.

The remainder of this paper is organized as follows. Section 2 describes the
components of spatial entity class representations. Section 3 describes MDSM, followed by
the specification of contextual information in Section 4. An example in Section 5 illustrates
the use of MDSM under different contexts. Section 6 evaluates MDSM with a human-subject
experiment and compares the results with previous similarity models. Conclusions and future
work are addressed in Section 7.

2. Spatial Entity Class Representation
We organize spatial entity classes based on their semantic interrelations and describe the set of
spatial entity classes and their semantic relations as an ontology (Gruber 1995, Guarino and
Giaretta 1995). For this work, we consider an ontology to be a type of knowledge base that



describes concepts through definitions that are sufficiently detailed to capture the semantics
of a domain. In this sense, an ontology captures a view of the world, supports intentional
queries regarding the content of a database, defines semantics independently of data
representation, and reflects the relevance of data without needing to access them (Goñi et al.
1998).

Semantic relations are a typical way to describe knowledge about concepts. In
natural-language communication, for instance, synonymy, antonymy, hyponymy, meronymy,
and entailment are examples of semantic relations used to define terms (Miller 1995). We
refer to entity classes by words or sets of synonyms, which are interrelated by hyponymy and
meronymy relations. The hyponymy relation, usually called is-a relation (Smith and Smith
1977), is the most common relation used in an ontology. The is-a relation is transitive and
asymmetric and defines a hierarchical structure where terms inherit all the characteristics from
their superordinate terms. Mereology, the study of part-whole relations, also plays an
important role in the definition of an ontology (Guarino 1995). Studies have usually assumed
that part-whole relations are transitive, so that if a is part of b and b is part of c, then a is part
of c as well. Linguists, however, have expressed concerns about this assumption (Cruse 1979,
Iris et al. 1988). Explanations of the transitive problem rely on the idea that part-whole
relations are not one type of relation, but a family of relations. Among all types of part-whole
relations, this work considers the component-object and stuff-object relations (Winston et al.
1987) with the properties of asymmetry and, for some cases, transitivity. When describing the
semantic relations among entity classes, MDSM distinguishes the two relations “part-of” and
“whole-of” to account for cases when the converseness of part-whole and whole-part
relations does not hold. For example, we can say that a building complex has buildings (i.e.,
building complex is the whole for a set of buildings); however, we cannot claim that all
buildings are part of a building complex.

Although the general organization of entity classes is given by their is-a and part-
whole interrelations, this information may not be sufficient to distinguish one class from
another. For example, a hospital and an apartment building have a common superclass
building; however, this information falls short when trying to differentiate a hospital from an
apartment building, since the is-a relation does not indicate the important difference in terms
of the entity classes’ functionalities (i.e., a hospital is a building where medical care is given
and an apartment building is a group of apartments that serve as living quarters).

Typically, attributes describe different types of distinguishing features of a class.
Attributes capture details about entity classes, while their values describe the properties of
individual objects (i.e., instances of an entity class). We suggest a finer identification of
distinguishing features and classify them into functions, parts, and attributes. Function
features are intended to represent what is done to or with a class. For example, the function of
a college is to educate. These function features can be related to other terms, such as
affordances (Gibson 1979) and behavior of the object-orientation paradigm (Khoshafian and
Abnous 1990). Parts are structural elements of a class, such as the roof and floor of a
building. It is possible to make a further distinction between “things” that a class may have
(“optional”) or must have (“mandatory”). In this work, we focus exclusively on mandatory
parts, which are associated with part-whole relations. While part-whole relations work at the
level of entity class representations and force us to define all the entity classes involved, part
features can have items that are not always defined as entity classes in this model. For
example, although roof and floor are part features of a building, they may not be necessarily
defined as entity classes in the model. Finally, some attributes can correspond to additional
characteristics of a class that are not considered by either the set of parts or functions. For
example, some of the attributes of a building are age, user type, owner type, and architectural
properties. This classification of distinguishing features into parts, functions, and attributes
attempts to facilitate the implementation of the entity class representation, as well as enable the
separate manipulation of each type of distinguishing feature. Even more, context can affect
the importance of each feature, depending on the role that an object plays in a particular
context (Fonseca et al. 2002).



Considering that spatial entity classes correspond to nouns in linguistic terms, this
work matches Miller’s (1990) description of nouns, since entity classes are semantically
interrelated by hyponomy and meronomy relations. Likewise, the representation of spatial
entity classes that underlies MDMS relates to the qualia structure of the Generative Lexicon
Theory (GLT) (Pustejovsky 1995). The qualia structure of a lexical meaning in GLT is
composed of CONST (i.e., the role that expresses the relationship between an object and its
parts), FORMAL (i.e., the role that distinguishes an object within a large domain), TELIC (i.e.,
the role that indicates the object’s function or goal), and AGENTIVE (i.e., the origin or
“bringing about” of an object). Although the representation of spatial entity classes used in
MDSM does not explicitly included the AGENTIVE role of the qualia structure, it does so as
it semantically relates entity classes by the is-a relation; for example, if entities are classified
into artifacts and natural kinds.

 Using a lexical categorization, parts are given by nouns, functions by verbs, and
attributes by nouns whose associated values are given by adjectives or other nouns. As with
spatial entity classes, synonym sets identify distinguishing features, because these sets carry
more semantic information than a single term. This work does not address the semantic
matching among distinguishing features. We expect that a set of synonyms can identify a
distinguishing feature with little ambiguity such that a matching among synonym sets can
identify equivalent distinguishing features.

The representation of entity classes used in MDSM can be clearly associated with the
definition of classes in object-oriented theory (Khoshafian and Abnous 1990). Is-a and part-
whole relations are extracted from basic paradigms of object-oriented theory (i.e., inheritance
and composition, respectively), while the distinguishing features of the MSDM entity class
representation, with the exception of parts, correspond to attributes or methods of classes in
object orientation. The definition of spatial entity classes uses the two inclusion relations that
have been considered more relevant in a semantic specification. The hierarchy of inclusion
relations establishes that spatial inclusion, meronymy inclusion, and class inclusion are the
lower, medium, and higher relations, respectively (Winston et al. 1987). The definition of
entity classes excluded the spatial components, because these properties—topology, size,
shape, orientation, distance, and direction—are mostly associated with instantiations rather
than definitions of entity classes.

Table 1 presents a formal syntax of an entity class definition using BNF notation, with
an example of the definition of the entity class stadium that is derived from a combination of
WordNet and SDTS. In this specification, primitives of the MDSM language are pointers and
words.



BNF Notation Example: Stadium
<entity_class>::= entity_class {
name: {<syn_set>}
description: <description>
is_a: <is-a>
part_of: <part_of>
whole_of: <whole_of>
parts: <parts>
functions: <functions>
attributes: <attributes>}

<is_a>::= {}|{<pts_entity_classes>}
<part_of>::= {}|{< pts_entity_classes >}
<whole_of>::= {}{< pts_entity_classes >}
<parts>::= {}|{<syn_sets>}
<functions>::= {}|{<syn_sets>}
<attributes>::= {}|{<syn_sets>}
<syn_sets>::= {<syn_set>}|<syn_sets>,{syn_set}
<syn_set>::= <word>|<syn_set>,<word>
<description>::= <word>|<description> <word>
<pt_to_entity_classes>::= <pointer>|

<pt_to_entity_classes>,
<pointer>

 entity_class {
name: {stadium,ball,arena}
description: large often unroofed structure in

 which athletic events are held
is_a: {construction*}
part_of: {}
whole_of: {athletic_field*}
parts:

{{athletic_field,sports_field,playing_field},
  {dressing_room},{foundation},
  {midfield},{spectator_stands,stands},
  {ticket_office, box_office,ticket_booth}}

functions: {{play,compete},{play,practise},
{recreate,play}}

attributes: {{architectural_property},
{covered/uncovered}, {name},
{lighted/unlighted},{owner_type},
{sports_type},{user_type}}}

Table 1: Entity_class definition in BNF notation and an example with the definition of
stadium. (x* denotes a pointer to the entity class x)

3. The Matching-Distance Measure for Semantic Similarity
We define a new computational model that assesses similarity by combining the comparison
of distinguishing features classified by types. The global similarity function S(c1,c2) is a
weighted sum of the similarity values for parts, functions, and attributes (Equation 1), where
ωp, ωf, and ωa are the weights of the similarity values for parts, functions, and attributes,
respectively. These weights define the relative importance of parts, functions, and attributes
that may vary among different contexts. The sum of the weights must equal 1.

S(c1,c2 ) = ω p ⋅ Sp(c1,c2 ) + ω f ⋅ Sf (c1,c2 ) + ωa ⋅ Sa (c1,c2 ) (1)
For each type of distinguishing feature we use a similarity function St(c1,c2) (Equation

2), which is based on the ratio model of a feature-matching process (Tversky 1977). In
St(c1,c2), c1 and c2 are two entity classes, t symbolizes the type of features, and C1 and C2 are
the respective sets of features of type t for c1 and c2. The matching process determines the
cardinality (| |) of the set intersection (C1 ∩ C2) and the set difference (C1 \C2).

St(c1,c2 ) =
|C1 ∩C2 |

| C1∩C2 | +α (c1,c2 )⋅ | C1 \ C2 | +(1 −α (c1,c2))⋅ |C2 \ C1 |
(2)

Like Tversky’s model (1977), MDSM uses the number of common and different
features between two entity classes; however, it differs from Tversky’s model in that it defines
the relevance of the different features in terms of the distance among entity classes in a
hierarchical structure. Thus, we take further the general formulation of the ratio model by
completely defining a function α that determines the relative importance of different features
between entity classes. This function α is defined in terms of the distance between the entity
classes (c1 and c2) and the immediate superclass that subsumes both classes. The immediate



common superclass corresponds to the least upper bound (lub) between two entity classes in
partially ordered sets (Birkhoff 1967). When one of the concepts is the superclass of the
other, the former is also considered the immediate superclass (lub) between them. For
instance, consider the hierarchical structure shown in Figure 1.

Figure 1: Portion of an Ontology with Is-a and Part-Whole Relations.
The immediate superclass for stadium and house is construction. In like manner, the

immediate superclass for building and museum is building. The distance of each entity class
to the lub is normalized by the total distance between the two classes, such that we obtain
values in the range between 0 and 1. In this calculation, distance is given by the number of
arcs along the shortest path between entity classes. Then, the final value of α is defined by a
symmetric function (Equation 3).

    

α(c1,c2 ) =

d (c1, lub)
d(c1,c2 )

d(c1, lub) ≤ d (c2, lub)

1 −
d(c1, lub)
d(c1,c2 )

d (c1, lub) > d (c2, lub)

 

 
 
 

 

 
 

, where d(c1,c2 ) = d(c1, lub)+ d(c2 , lub) (3)

The parameter α weighs the importance of difference with respect to common
distinguishing features of entity classes, considering that difference should be less important
than commonality in a similarity assessment (Tversky 1977, Krumhansl 1978). The values of
α are between 0 and 0.5, where a value of 0 represents the case when differences of one entity
with respect to the other entity are the only important differences for the similarity evaluation,
whereas a value of 0.5 represents the case when differences of both entity classes and equally
important. The determination of α  is based on the observation that similarity is not
necessarily a symmetric relation. Cognitive psychologists have given different explanations
for the asymmetric evaluations of similarity. Asymmetry can be explained by the relative size
and salience of distinctive features sets (Tverski 1977), by potential stimulus biases, such as
density and prototypicality (Krumhansl 1978, Holman 1979), by a natural reference point or
landmark for members of a category (Rosch 1975), and by the direction of maximum
informativity (Bowdle and Gentner 1997). Common to all these explanations is the different
role that the target1 and base positions play in a similarity evaluation. The most salient term,
the item with larger bias, the prototypical term, and the term that provides information to
understand the target are always in the base position. Our work assumes that a prototype used

                                                
1 The first term of a comparison is referred to as the target and the second term as the base.
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as a base of a similarity evaluation is generally a superclass for a variant and that the
perceived similarity from the variant to the prototype is greater than the perceived similarity
from the prototype to the variant. Thus, the common, as opposed to the different, features
between a subclass with respect to its superclass have a larger contribution to the similarity
evaluation than the common features in an inverse direction. Using this assumption, we
provide a systematic approach to determine the asymmetry of a similarity evaluation that is
based on the distance from the target and base terms to the immediate superclass that
subsumes both terms.

The similarity function (Equation 2) yields values between 0 and 1. The extreme
value 1 represents the case when everything is common between two entity classes, or when
the non-common features do not affect the similarity value (i.e., the coefficient of the non-
common feature is zero). The value 0, on the other hand, occurs when nothing is common
between two entity classes.

 To illustrate the behavior of the model, consider the hierarchical semantic structure in
Figure 1 and the definitions of the entity classes building, building_complex, sports arena,
and theater given by the set of distinguishing features in Table 2. A set of similarity
assessment evaluations between pairs of these entity classes is shown in Table 3. An interesting
case occurs when comparing a class with its superclass or vice versa (e.g., theater versus
building or vice versa). Since subclasses inherit features from their superclasses, the set
difference between a subclass and its superclass may be greater than zero, whereas the set
difference between the superclass and the subclass is zero. It can be easily seen that for this
pair of entity classes the weight associated with the non-common features of the first
argument α is 0 and the weight for the non-common features of the second argument (1−α)
is 1, because the immediate superclass between a class and its superclass is this superclass
itself. By considering the direction of the similarity evaluation, a class is seen to be more
similar to its superclass than that same superclass is to the class. For entity classes at the same
level of generalization (e.g., theater versus sports arena or vice versa), on the other hand, the
same weight is assigned to the different features of entity classes and, therefore, a symmetric
evaluation of similarity that depends on the number of common and different distinguishing
features is performed.



Entity Class Parts Functions Attributes
Building Foundation

 Roof
 Wall

Architectural properties
External material construction
Height
location
Name
Owner type
Structure type
User type

Building complex Building
Foundation
 Roof
 Wall

Architectural properties
Area
External material construction
location
Name
Number of buildings
Owner type
Structure type
User type

Theater Dressing room
Entrance hall
Foundation
Orchestra
Roof
Spectator stands
Stage
Ticket office
Wall

Perform
Present
Recreate

Architectural properties
External material construction
Height
location
Name
Owner type
Structure type
User type

Sport arena Court
Dressing room
Foundation
Roof
Spectator stands
Wall

Play
Practice
Recreate

Architectural properties
External material construction
Height
location
Name
Owner type
Structure type
User type

Table 2: Example of Distinguishing Features for Building, Building Complex, Theater,
and Sport Arena.



a versus b α S p(a,b) S f(a,b) S a(a,b)

a = building
b = building complex

0.0 0.75 0.0 0.78

a = building complex
b = building

0.0 1.0 0.0 0.85

a = theater
b = building

0.0 1.0 0.0 1.0

a = building
b = theater

0.0 0.33 0.0 1.0

a = sport arena
b = theater

0.5 0.53 0.33 1.0

a = theater
b = sport arena

0.5 0.53 0.33 1.0

Table 3: Examples of Similarity among Parts, Functions, and Attributes.



In the calculation of α  we use as basis not only the hierarchical nature of is-a
relations, but also the hierarchical structure of part-whole relations. To determine a class that
subsumes two classes under comparison, the is-a relation as well as the part-of and whole-of
relations are checked. In Figure 1, the immediate superclass for building and building
complex is building complex, since the closest path between the two classes is given by the link
building complex has always building(s). Considering only is-a relations, however, would
yield the superclass construction. Although we consider is-a and part-whole relations in the
same way to determine the immediate superclass, we cannot infer that the similarity between a
part to its whole will be always greater than the similarity between a whole to its part, since
part-whole relations do not always have the strict inheritance properties that is-a relations do.

MDSM is based on the comparison of distinguishing features rather than on the
shortest path in a hierarchical structure. It only uses this shortest path for determining the
relative importance of the differences between distinguishing features. The lack of
distinguishing features in an entity class’s definition, however, produces a similarity value of
zero with respect to any other entity class in the ontology. This is a common situation for
entity classes that are general concepts located at the top level of the hierarchical structure,
such as entity and natural entity. Although this can be seen as a drawback of MDSM, the
MDSM’s strength is its capability to assess the similarity among concepts located at or below
Rosch’s (1975) basic level of a hierarchical structure, such as building, office building, road,
and lake. In MDSM, different concepts should have at least one different feature that
distinguishes them. So, even if a class inherits all features from its superclass, we expect to
have distinguishing features in the class representation that differ from the features in its
superclass’s representation; otherwise, they are considered equivalent. These characteristics of
MDSM are in contrast to previous models based on semantic distance (Rada et al. 1989).
While semantic distance can determine similarity among general concepts of a hierarchical
structure, it usually assigns the same similarity value to any pair of entity classes that have a
common superclass.

4. Integrating Context into the Similarity Model
Using common-sense definitions, one could expect to obtain a good approximation of the
similarity assessment among entity classes by considering the essential properties of
distinguishing features as equally important. Some features, however, may be more important
than others, depending on context (Tversky 1977, Krumhansl 1978), since the classificatory
significance of features varies with the set of entity classes under consideration. Similar to the
analysis of word meaning within statements (Leacock et al. 1993), we analyze the similarity
assessment within an application domain. This work defines the application domain as the set
of entity classes that are subjects of the user’s interest. Since an application domain may
change among applications, the value of similarity assessment can change as well.

4.1 Determining the Domain of an Application
This work derives the domain of discourse from the user’s intended actions or operations.
These operations may be abstract, high-level intentions (e.g., “analyze” or “compare”) or
detailed plans (e.g., “purchase a house”). From a linguistic point of view, the user’s intended
operations are associated with verbs that denote actions. Verbs alone, however, may not be
enough to completely describe these operations, since they can change the operations’
meaning depending on the kinds of noun arguments with which they co-occur (Fellbaum
1990).

Contextual information (C ) is specified as a set of tuples over operations (opi)
associated with their respective noun arguments (ej) (Equation 4). The nouns correspond to
entity classes in MDSM, while the operations refer to verbs that are associated with methods of
these classes.



C = op1,{e1, ..., em}( ),..., opn ,{e1,..., el}( ) (4)

Since the context specification uses operations and entity classes, the ontology used
by MDSM can be extended to contain all components of the context specification. The
context specification defines the domain of the application based on the operations that
characterize the entity classes and the semantic relations among entity classes. These semantic
relations provide a flexible way to describe context since the specification of one entity class
can be used to obtain other entity classes that are semantically related. Following a top-down
approach in the hierarchical structure of interrelated entity classes, the domain of the
application is given by:

• entity classes whose functions correspond to the intended user’s operations,
• entity classes that are parameters of the operations in the context specification, and
• entity classes derived from a recursive search of parts and subclasses of the entity classes

found in the previous steps.
For example, if a user is looking for sports facilities , she can specify

C = <(search, {sports facility})>. Using the hierarchical structure, the system will associate the
domain of application with the entity class sports facility and its subclasses or parts. Another
contextual specification is C = <(search, {athletic field, ball park, tennis court, sports arena,
stadium})>. This specification is a more extensive description of the user’s interests since it
contains explicitly the entity classes that are part of the application domain. A contextual
specification based on only operations is C = <(play, {})>. In this case, the operation play
corresponds to a common function that characterizes the entity classes the user is looking for.

Like the topical context of word-sense disambiguation (Gale et al. 1992), the domain
of the application helps to select among senses of a term with multiple meanings (i.e.,
polysemous terms). Since the domain of the application is usually a subset of the entire
knowledge base, the contextual specification decreases the number of entity classes that
possess the same name and are part of the application domain. Unfortunately, this approach
may not distinguish polysemous terms that are semantically similar and belong to the same
application domain.

4.2 Determining Feature Relevance
Tversky (1977) and later Goldstone et al. (1997) pointed out that the relevance of a feature is
associated with how diagnostic the feature is for a particular set under consideration. The
diagnosticity of features refers to the classificatory significance of features, which is highly
sensitive to the particular entity classes under consideration. The previous section presented a
method to derive the entity classes of interest for an application (i.e., application domain).
This application domain may or may not be the set of entity classes that are compared in the
similarity assessment. For example, a user may be looking for places where to play a sport
and so chooses a stadium as the prototypical entity to search in a database. In an information
retrieval process, stadium will be compared with any entity in the database, where these entities
may be either inside or outside the application domain. Based on the characteristics of the
application domain and the database, two different approaches to determining features’
relevance are variability and commonality.

4.2.1 Variability
This approach relates the relevance of a feature to the degree of the feature’s informativeness,
such that a feature’s relevance decreases if it is shared by all entity classes of the domain. For
example, consider a small domain with buildings that have a common function (e.g., they all
serve as sports facilities), but differ in their structural characteristics. Based on this approach,
the buildings’ structural characteristics are more relevant for the similarity assessment than
the buildings’ functional characteristics.
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This approach defines weighted values for the similarity among parts, functions, and
attributes (ω p , ωf, and ωa in Equation 1) by analyzing the variability of distinguishing
features within the application domain. In this sense, the type of distinguishing features that
presents greater variability among definitions of entity classes is considered more important
in the similarity assessment than the type of features that does not contribute significantly to
distinguish these entity classes. The variability of a type of feature t ( Pt

v) is based on the
inverse of the frequency with which each distinguishing feature of this type characterizes an
entity class in the domain (Equation 5). In Pt

v,  oi is the number of occurrences of a feature in
the entity class representations, n is the number of entity classes, and l is the number of
features in the application domain.

(5)

The final weights ωp, ωf, and ωa (Equation 1) are functions of the variability of a type
of feature with respect to the variability of the other two types of features (Equations 6a-c).
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As an example, consider the set of entity class definitions in Table 2. Assuming that
the application domain is formed only by these entity classes, the number of entity classes in
the application domain is 4 (n), the number of different parts, functions, and attributes in this
domain (l) are 12, 5, and 10, respectively, and Pa

v , Pf
v , and Pa

v  are 0.54, 0.67, and 0.15,
respectively. Finally, weights ωp, ω f, and ωa of Equations 6a-c are 0.40, 0.49, and 0.11,
respectively.

When the application domain has maximum variability (i.e., when no feature is shared
by entity classes or only one entity class is part of the application domain) the weights for
parts, functions, and attributes turn out to be equal. Similar results occur when the application
domain has no variability.

4.2.2 Commonality
This approach associates the relevance of distinguishing features with the feature’s
contribution to the characterization of the application domain. When users specify an
application domain, they are implicitly classifying entity classes that are of interest to the
application. These entity classes share some features that make them subjects of interest. For
example, when the user’s intention is to find a place where to play a sport, a greater weight
for this feature in the similarity assessment results in higher similarity values among those
entity classes where people can play a sport.

This approach defines weighted values for the similarity among parts, functions, and
attributes (ω p, ωf, and ω a in Equation 1) by analyzing the frequency with which each
distinguishing feature of this type characterizes an entity class in an application domain, that
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is, the inverse of the measure given by the variability approach (Equation 7). High frequency
translates into high relevance. In Pt

c , oI is the number of occurrences of a feature in the entity
class definitions, n is the number of entity classes, and l is the number of features in an
application domain.

(7)

As in the variability approach, the final weights (ωp, ωf, and ωa in Equation 1) are
functions of the frequency of occurrence of a type of feature with respect to the frequency of
occurrence of the other two types of features (Equations 8a-c).
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Consider again the example given by the set of entity class definitions in Table 2. The
parameters n and l of Equation 5 are also applicable to Equation 7, c

pP , c
fP , and c

aP  result in
0.46, 0.33, and 0.85, respectively, and weights ωp, ωf, and ωa in Equations 8a-c are 0.28, 0.20,
and 0.52, respectively.

A special case is when the maximum variability occurs, that is, each distinguishing
feature characterizes only one entity class. In such a case, the commonality among parts,
functions, and attributes is zero and the model assigns equal importance to parts,, functions,
and attributes. The same weights are also obtained when either an application domain has
only one entity class or entity classes share all features. When there are no common features
among the entity classes, the similarity values are zero, regardless of the assignment of
weights. Likewise, when features are shared by all entity classes, the similarity values are 1.0,
independent of the assignment of weights.

The use of frequency for the determination of weights in the similarity model
resembles the weight determination in models for information retrieval (Baeza-Yates and
Ribeiro-Neto 1999). Unlike information retrieval models that calculate weights independently
of a domain application by considering always the whole set of documents in a data
collection, this work makes the determination of weights context-dependent, since the domain
of concepts from where the frequency of distinguishing features is determined changes
depending on the user’s intention.

5. Using the Matching-Distance Similarity Measure
To illustrate how contextual information is specified and used to derive the domain of an
application, we use an example with an ontology derived from the combination of definitions
in WordNet (Miller 1990) and in the Spatial Data Transfer Standard (SDTS) (USGS 1998).
This ontology focuses on the spatial domain and contains 257 definitions of entity classes
that are associated with the entities defined in SDTS, complemented with synonyms, part-
whole relations, and is-a relations obtained from WordNet. Functions of entity classes were



determined by analyzing the natural-language definitions and extracting the verbs in those
definitions, augmented by common sense. For example, Table 4 gives an example of the
definition of a stadium that was derived from the combination of WordNet and SDTS.
Attributes of stadium were derived from the attributes of stadium and semantically related
entities in SDTS. These semantically related entities were determined by using the semantic
relations defined in WordNet. For example, some attributes were added to the definition of
stadium, because they were inherited as attributes coming from a superclass (e.g., attributes of
construction). The distinguishing feature function was derived as an action (verb) associated
with sports and entertainment events.

Stadium (WordNet + SDTS) Stadium (WordNet)
entity_class  {
name: {stadium,ball,arena}
description: large structure for open-air sports

entertainments
is_a: {structure*}
part_of: {}
whole_of: {athletic_field*, sports_arena*}
parts: {{athletic_field,sports_field,playing_field},

{foundation},{midfield},{plate},
{sports_arena,field_house},{stands},
{structural_elements},
{standing_room},{tiered_seats}}

functions: {}
attributes: {}}

Stadium (SDTS)

entity_class {
name: {stadium,ball,arena}
description: large often unroofed structure in

which athletic events are held
is_a: {construction*}
part_of: {}
whole_of: {athletic_field*}
parts: {{athletic_field,sports_field,playing_field},

 {dressing_room},{foundation},
 {midfield},{spectator_stands,stands},
 {ticket_office, box_office,ticket_booth}}

functions: {{play,compete},{play,practise},
{recreate,play}}

attributes: {{architectural_property},
{covered/uncovered}, {name},
{lighted/unlighted},{owner_type},
{sports_type},{user_type}}}

entity_class  {
name: {stadium}
description: large often unroofed structure in

which athletic events are held
is_a: {anything*}
part_of: {}
whole_of: { }
parts: { }
functions: {}
attributes: {covered/uncovered},

{sports type},{name}}

Table 4: Entity_class definition of stadium in WS and WordNet. (x* denotes a pointer
to the entity class x)



Based on this ontology, we consider three different scenarios of contextual
information:
• Context-1: The user’s intention is to play a sport.
• Context-2: The user’s intention is to compare downtowns.
• Context-3: The user’s intention is to assess a transportation system.

The first scenario (Context-1) represents a domain of entity classes where a person
can play a sport. The contextual information for this scenario could be expressed by an
intentional specification of context (i.e., by specifying that all entity classes in the domain
have the function play) (Figure 2a), or by an extensional specification of context (i.e., by
listing all the entity classes in the ontology that are of the user’ interest) (Figure 2b).

(a) (b)

Figure 2: Context Specification for a User who Searches for a Place to Play a Sport: (a)
Intentional Specification of Context and (b) Extensional Specification of
Context.

What matters is to obtain an application domain with all the entity classes that are in
fact of interest to the user. The latter context specification is more tedious, and in some cases,
impractical. It may be, on the other hand, a more accurate specification of the user’s interest
than an intentional context specification. A portion of the application domain derived from
the intentional context specification is shown in Figure 3. In this case, the application domain
corresponds to 3% of the entire ontology.



Figure 3: Application Domain for a User who Searches for a Place to Play a Sport.



In the same way that Context-1 was specified, Context-2 and Context-3 were defined
in an intentional manner. The specification is done with a general operation (i.e., compare
and assess for Context-2 and Context-3, respectively) and a general entity class whose
subclasses or parts are included in the application domain (i.e., downtown and transportation
system for Context-2 and Context-3, respectively). The application domain in the case of
Context-2 represents 30% of the ontology and in the case of Context-3, it represents 7% of
the ontology.

Table 5 displays the sets of weights for parts, functions, and attributes that result from
the definition of the three scenarios and using the variability and commonality approaches.

Commonality Variability

Context ω p ω f ω a ω p ω f ω a

(play,{sport}) 9% 62% 29% 46% 19% 35%

(compare,{downtown}) 10% 13% 77% 36% 35% 29%

(assess,{transportation_system}) 4% 29% 67% 45% 35% 20%

Table 5: Weights (%) for Different Specifications of Context Based on the
Commonality and Variability Approaches.

Table 6 presents results of the similarity evaluations between a stadium and a portion
of the entire ontology based on the commonality and variability approaches. While variability
highlights differences that decrease the similarity values, commonality emphasizes similarities
that increase the similarity values. Similarity values among entity classes vary not only in
terms of absolute values, but also in terms of ranks. These results suggest that changes occur
depending on context specification as well as in terms of approaches to determining weights.
In terms of weight determination, the commonality approach produces more variation in the
ranks than the variability approach. Overall, drastic changes in terms of ranks are rare, and it
is still possible to distinguish the group of most similar entity classes.



Entity Context-1 Context-2 Context-3

c v c v c v

Sports arena 0.86 0.69 0.68 0.75 0.74 0.75

Athletic field 0.91 0.66 0.85 0.73 0.90 0.68

Theater 0.23 0.45 0.54 0.36 0.45 0.35

Ball park 0.88 0.67 0.73 0.74 0.79 0.72

Commons 0.43 0.29 0.52 0.32 0.53 0.27

Museum 0.20 0.36 0.50 0.29 0.42 0.27

Tennis court 0.86 0.48 0.77 0.59 0.84 0.52

Transportation 0.10 0.07 0.15 0.06 0.13 0.04

Library 0.19 0.31 0.48 0.25 0.41 0.22

Building 0.21 0.34 0.54 0.27 0.46 0.23

House 0.18 0.30 0.46 0.24 0.39 0.21

Table 6: Example of Similarity Values between a Stadium and a Portion of the
WordNet-SDTS Ontology for Three Different Scenarios of Contextual
Information. (Symbol c denotes the commonality approach and symbol v
denotes the variability approach)

A characteristic of the commonality and variability approaches is their sensitivity to
the set of entity classes defined in the ontology. This sensitivity becomes more important for
a narrow application domain, where the omission of one entity class may affect the
determination of common and different features of the application domain. To check this
sensitivity, we performed similarity evaluations that involve the same narrow application
domain (i.e., Context-1), but using slightly different ontologies. The first case contains the
default ontology that contains seven entity classes in the application domain: sports arena,
stadium, athletic field, swimming pool, golf course, ballpark, and tennis court. Subsequent
cases eliminate one by one entity classes of the ontology to reduce the application domain
(i.e., sports arena, golf course, tennis court, and athletic field are eliminated). Table 7 shows
the changes of weights for parts, functions, and attributes based on the commonality and the
variability approaches, using subsets of the default application domain.

Commonality Variability

Case Application Domain ω p ω f ω a ω p ω f ω a

1  Default 9% 62% 29% 46% 19% 35%

2 (1) – sports arena 8% 57% 35% 48% 20% 32%

3 (2) – golf course 12% 52% 36% 47% 22% 31%

4 (3) – tennis court 15% 52% 33% 44% 23% 33%

5 (4) – athletic field 19% 56% 25% 37% 27% 36%

Table 7: Weights Based on the Same Context Specification and Different Ontologies.



The main trend in the weights of distinguishing features for Context-1 remains stable
across different application domains (i.e., commonality highlights functions whereas
variability highlights parts). Although changes may occur depending on the set of entity
classes in the ontology, MDSM is robust enough to capture the main property of the
application domain and allows a systematic way to determine the features’ relevance for
similarity assessment.

The next section describes a human-subject experiment that tests whether the results
given by MDSM are compatible with people’s judgments.

6. Assessing the Matching-Distance Similarity Measure
Previous studies on similarity assessment have studied the correlation between computational
similarity models and people’s judgments of similarity. The models have used the WordNet’s
taxonomy (Miller et al. 1990) and the Brown Corpus of American English (Francis and
Kucera 1982) for the determination of word frequency. For the human-subject experiment,
these studies have used the experiment by Miller and Charles (1991), which gave to 38
undergraduate subjects 30 pairs of nouns that were chosen to cover high, intermediate, and
low levels of similarity as determined by a previous study (Rubenstein and Goodenough
1965). These studies found a correlation of 0.60 using a semantic-distance approach, 0.79
using an information-content approach, and 0.83 using an extended-distance approach (Jiang
and Conrath 1997, Resnik 1999).

In assessing MDSM, we designed a new experiment, because our goal was to evaluate
similarity under different contexts and because previous studies have not analyzed similarity
within a specific domain (i.e., entity classes of a specific domain that are semantically related).
The experiment consisted of five questions with sets of entity classes that subjects were asked
to rank according to their judgments of similarity with a specified base entity class. Four of
the five questions involved entity classes of a constructed kind, such as a building and a road.
The last question addressed the similarity assessment among large geographic entities, such as
a lake, a desert, and a forest. In this sense, the experiment attempted to capture any divergence
in the similarity assessment of objects of different kindsnatural vs. constructed. We
explored this divergence between natural and constructed objects, because we had previously
detected differences in how people describe and relate objects from different scale and nature
(Rodríguez and Egenhofer 2000). We expect, for example, that characterizing objects in
terms of what a user can do with them may be easier for constructed objects than for natural
objects.

The first three questions asked users to judge the same set of entity classes, but using
different contextual information. Question 1 represented the default case of similarity
assessment with no explicit contextual information. Questions 2 and 3 specified context
defined as desired operations (i.e., “play a sport” and “compare constructions,”
respectively). Question 4 used a set of transportation-type entities, which became the
contextual information for this question. As in the first question, the last question assumed the
default case of a similarity assessment (i.e., no explicit contextual information). Questions
also differed in the relation between the set of entity classes that were actually compared and
the application domain that was derived from the context specification in MDSM. This
relationship may yield some interesting conclusions, since the sets of entity classes that were
actually compared in each question were described as contextual information that may
influence the similarity evaluations (Tversky 1977, Krumhansl 1978). For instance, Question
2 contains ballpark (i.e., an entity class in the application domain) and library (i.e., an entity
class outside of the application domain). Among all entity classes evaluated, Question 2
includes 50% of entity classes that are outside of the application domain, Question 3 has 45%
of entity classes that are outside of the application domain, and Question 4 contains only
entity classes in the application domain.

Two questionnaires were prepared (Survey A and Survey B) with the same set of
entity classes, but with different targets for the similarity evaluations. These different targets
are related by either an is-a relation or a part-whole relation. For example, Questions 1-3 in



Survey A asked for entity classes that are similar to a stadium, while Questions 1-3 in Survey
B asked for entity classes that are similar to an athletic field, which is part of a stadium.
Likewise, Question 4 in Survey A asks for entity classes that are similar to a travelway,
whereas Question 4 in Survey B asked for entity classes similar to a path, which is a subclass
of travelway. Each entity class used in the experiment has its corresponding definition in the
ontology of the similarity measure. As in the example of the previous section, we used the
ontology derived from the combination of WordNet and SDTS, since it contains all desired
components of the entity class representation. Since the goal of the experiment was to
evaluate the similarity measure rather than the entity class definitions per se, subjects were
asked to judge similarity based on the set of definitions that were provided to them during the
experiment and used by MDSM.

Seventy-two students (forty-three female and twenty-nine male) of an undergraduate
English class participated in the experiment. A group of thirty-seven students (twenty female
and seventeen male) answered Survey A and a group of thirty-five students (twenty-three
female and twelve male) answered Survey B. For all subjects U.S. English was their mother
tongue, and their ages ranged from 18 to 36 years. Each subject was paid for participating in
the experiment and answered the questions at the same time and in less than twenty minutes.

We analyzed the results by Kendall’s coefficient of concordance for studying the
association among subjects’ responses and by the Spearman rank correlation coefficient for
studying the correlation between the model and subjects’ responses (Gibbons 1976, Daniel
1978). We normalized tied ranks by using the mean of the ranks for which they tie, assuming
a number of ranks equal to the number of entity class comparisons. As the best estimator of
the true similarity rank of entity classes, we consider the average rank assigned to an entity
class by subjects. Table 8 summarizes these results for each question in each survey. For the
similarity evaluations with MDSM we use the default setting, in which distinguishing features
are equally important, and we use the settings obtained from the commonality and variability
approaches to weigh determination.

Question Association Correlation

Target Context D C V

Stadium Null Context 0.70 0.96 - -

Stadium Play a Sport 0.76 0.83 0.85 0.68

Stadium Compare constructions 0.37 0.95 0.87 0.96

Path Compare transportation
systems

0.45 0.90 0.78 0.96Su
rv

ey
 A

Lake Null context 0.64 0.78 - -

Athletic field Null context 0.69 0.92 - -

Athletic field Play a Sport 0.64 0.87 0.87 0.88

Athletic field Compare constructions 0.33 0.90 0.87 0.91

Travelway Compare transportation
systems

0.45 0.88 0.84 0.91Su
rv

ey
 B

Lake Null context 0.70 0.86 - -

Table 8: Association Among Subjects’ Responses and Correlation between MDSM and
Subjects’ Responses. (Symbol D denotes default setting, C denotes settings
obtained from the commonality approach, and V denotes settings obtained
from the variability approach)



The results of the human-subject experiment support the use of MDSM for semantic
similarity among entity classes. We found a correlation between 0.78 and 0.96 with the
default setting. Taking one of the surveys and evaluations that do not consider contextual
information, Table 9 shows the Spearman rank correlation coefficient between subjects’
responses and the results in ranks of MDSM, a basic semantic-distance model (Rada et al.
1989), and an information-content model (Resnik 1999). An important observation is that
although subjects’ responses are associated, the degree of concordance among subjects’
answers is lower than the degree of concordance of previous experiments on semantic
similarity (e.g., 0.90 in Resnik’s (1999) experiment). This low degree of concordance may
be due to the larger number of entity classes that were evaluated with respect to the same
target and due to the use of entity classes that are semantically related.

Question Target Semantic distance Information content Matching distance
Stadium -0.37 -0.37 0.96
Path  0.78  0.87 0.90
Lake  0.82  0.80 0.78

Table 9: Spearman Rank Correlation Coefficient Using a Semantic-Distance Model, an
Information-Content Model, and the Matching-Distance Model.

The experiment shows a small improvement in performance (6% in the best case)
when weights of distinguishing features were determined based on contextual information.
This improvement is still relevant, since the results are nearing the observed upper bound (i.e.,
1.0); however, the major determinant for the high correlation between MDSM and subjects’
answers seems to be the correct identification of distinguishing features of entity classes. For
example, an important difference between the model and the subjects’ answers was the entity
class least similar to a lake. While the model assigns a bridge as the least similar entity class,
subjects selected a desert as the least similar entity class to a lake. This suggests that not only
the existence of a prototypical feature, but also the negation of this feature may affect
considerably the similarity assessment. In this example, a characteristic of a desert is the lack
of water, whereas water is the common feature of all entity classes that are similar to a lake.

In Question 4 subjects identified a road as the most similar entity class to a path and
travelway. This result suggests that although definitions that were given to subjects indicate
that travelway is a more general concept than path and road, subjects considered road as the
prototypical entity for the class transportation. This type of result could lead to a further
study that considers the classification of entities in terms of prototypical characteristics rather
than necessary and sufficient conditions (Rosch 1975, Mark et al. 1999).

The commonality and variability approaches have opposite effects on the results.
While one of the approaches increases the correlation, the other one decreases it. Based on the
characteristics of the context specification, the commonality approach worked better for
context specifications that used specific features, such as playing a sport, whereas the
variability approach is appropriate for context specification defined in terms of type of entity
classes, such as a construction or transportation type.

7. Conclusions and Future Work
We described the Matching-Distance Similarity Measure (MDSM), a new semantic similarity
measure among entity classes. MDSM compares spatial entity classes that are defined in an
ontology. Definitions of spatial entity classes are composed of semantic relations (i.e., is-a
relations and part/whole relations) and distinguishing features (i.e., attributes, functions, and
parts). MDSM combines a feature-based with a distance-based model of similarity. The
feature-based model evaluates similarity in terms of distinguishing features that are common
or different between definitions, whereas the distance-based model compares entity classes in



terms of their distances in the semantic structure that is defined by the semantic relations. In
MDSM, the concept of semantic distance is used as an indicator of the level of abstraction of
entity classes that affects the relevance of different features between entity classes.

 The main characteristics of MDSM are (1) the handling of asymmetric evaluations
for entity classes by taking into account levels of abstraction in the hierarchical structure; (2)
the use of is-a and part-whole relations in the entity class representation; (3) the treatment of
synonymy and polysemy of entity class names; (4) the weighted contribution to the similarity
assessment of distinguishing features; and (5) the systematic use of contextual information
for weight determination. An assessment of the similarity measure by using a human-subject
experiment showed that the model correlates with people’s judgments of similarity.

There are several interesting and useful studies that remain for future work. An
important and practical issue in using MDSM is the construction of the ontology. The
ontology used in this work was created semi-automatically, by complementing manually, what
WordNet and SDTS provide in their concepts’ definitions. Functions, however, were added
manually. It would be interesting to explore systematic ways for constructing this ontology.
Another aspect for future study is an extension of the context specification that considers
additional features of entity classes. For example, a user may want to search for sports
facilities that have spectator stands. In these cases, although context is still determined by an
intended operation, parts and attributes may also describe the desired domain of entity
classes. Another interesting area is concerned with similarity reasoning, since such reasoning
may allow inferences about the similarity relations among entity classes by using a subset of
known similarity relations. For reasoning about similarity, we envision two lines of
investigations that are worthwhile to follow. From a cognitive point of view, research could
address properties of the composition of semantic relations. In particular, the research
question is whether there is any situation or context in which inferences and composition of
semantic relations (i.e., is-a and similarity relations) could be solved. From a mathematical
point of view, it is interesting to compose measures that result in ranges of possible values of
similarity. In this sense, a potential approach is the study of Boolean combinations of graded
sets (Fagin 1999) using fuzzy logic (Zadeh 1965). A graded set could be associated with the
set of entity classes that have a value of similarity (i.e., grade) with respect to a target.

 This study motivates a future area of investigation that is concerned with the semantic
comparison of distinguishing features. For example, parts are also entity classes that could be
semantically compared in a recursive process. Verbs could be related by the semantic relation
entailment (Fellbaum 1998) (e.g., buy and pay) or could be formally specified such that they
could be semantically compared. Likewise, the specification of attributes in terms of their
domains (i.e., the set of possible values) could lead to exhaustive similarity evaluations among
entity classes.

Finally, we are currently working on the use of MDSM for similarity evaluations of
spatial scenes. When scenes are evaluated, an important issue is the structural alignment of
objects within these scenes (Goldstone 1994, Markman and Gentner 1993, Gentner and
Markman 1997). This structural alignment could be determined based on spatial relations
(Bruns and Egenhofer 1996) or based on the role of objects within the scenes.
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