Chapter 7

Introduction to Spatial Data Mining

In this chapter we present an overview of some important concepts related to the relatively
new and rapidly developing field of data mining. Our focus, of course, is on the mining of
spatial data, but the set of techniques that we will discuss applies to many different types
of datasets, including temporal, multimedia, and text databases.

Data mining is the process of discovering interesting and potentially useful patterns of
information embedded in large databases. The mining metaphor is meant to convey an
impression that patterns are nuggets of precious information hidden within large databases
waiting to be discovered. Data mining has been quickly embraced by the commercial world
as a way of harnessing information from the large amounts of data that corporations have
collected and meticulously stored over the years.

If data mining is about extracting patterns from large databases, then the largest databases
have a strong spatial component. For example, the Earth Observation Satellites, which are
systematically mapping the entire surface of the earth, collect about one terabyte of data ev-
ery day. Other large spatial databases include the U.S. census, and the weather and climate
databases. The requirements of mining spatial databases are different from those of mining
classical relational databases. In particular, the notion of spatial autocorrelation that similar
objects tend to cluster in geographic space, is central to spatial data mining.

The complete data-mining process is a combination of many subprocesses which are wor-
thy of study in their own right. Some important subprocesses are data extraction and data
cleaning, feature selection, algorithm design and tuning, and the analysis of the output when
the algorithm is applied to the data. For spatial data, the issue of scale the level of aggrega-
tion at which the data are being analyzed, is also very important. It is well known in spatial
analysis that identical experiments at different levels of scale can sometimes lead to contra-
dictory results. Our focus in this chapter is limited to the design of data-mining algorithms.
In particular we describe how classical data-mining algorithms can be extended to model the
spatial autocorrelation property. Here it is important to understand the distinction between
spatial data mining and spatial data analysis. As the name implies, spatial data analysis
covers a broad spectrum of techniques that deals with both the spatial and non spatial
characteristics of the spatial objects. On the other hand spatial data mining techniques are
often derived from spatial statistics, spatial analysis, machine learning and data bases, and
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are customized to analyze massive data sets. This chapter provides an introduction to the
up coming field of spatial data mining often building on the well know techniques in spa-
tial analysis and spatial statistics. More regorous treatment of spatial analysis and spatial
statistics can be found in [Bailey and Gatrell, 1995], [Fotheringham and Rogerson, 1994],
[Goodchild, 1986], [Fischer and Getis, 1997], [Cressie, 1993].

In Section 7.1 we introduce the data-mining process and enumerate some well-known
techniques that are associated with data mining. In Section 7.2 we introduce the important
concept of spatial autocorrelation and show how it can be calculated and integrated into
classical data-mining techniques. In Section 7.3 we discuss classification techniques and
introduce PLUMS model. Section 7.4 deals with association rule discovery techniques and
Section 7.5 deals with various clustering techniques. In Sections 7.6 and 7.7, we discuss
advanced techniques like Markov Random Fields and spatial outlier detection.

7.1 Pattern Discovery

Data mining is the process of discovering potentially interesting and useful patterns of infor-
mation embedded in large databases. A pattern can be a summary statistic, like the mean,
median, or standard deviation of a dataset, or a simple rule like “Beach property is, on
average, 40 percent more expensive than inland property”.

A well-publicized pattern, which has now become part of data mining lore, was discovered
in the transaction database of a national retailer: “People who buy diapers in the afternoon
also tend to buy beer”. This was an unexpected and interesting finding which the company
put to profitable use by rearranging the store. Thus data mining encompasses a set of
techniques to generate hypotheses, followed by their validation and verification via standard
statistical tools. For example, if the store has a modest 100 items, then finding which two
items are correlated, or “go together,” will require 4,950 correlation tests. The promise
of data mining is the ability to rapidly and automatically search for local and potentially
high-utility patterns using computer algorithms.

7.1.1 The Data-Mining Process

The entire data-mining process in shown in Figure 7.1. In a typical scenario a domain
expert (DE) consults a data-mining analyst (DMA) to solve a specific problem. For example,
a manager in a city law enforcement department may want to explain the unusually high
crime rate that the city is witnessing that year. The DE has access to a database which may
provide clues to the specific problem that she wants the DMA to solve. An iterative process
leads the DE and the DMA to agree upon a problem statement whose solution may provide
a satisfactory answer to the original problem.

Now the DMA must decide which technique or combination of techniques is required to
address the problem. For example, the DMA may decide that the problem is best addressed
in the framework of classification, in which case the goal may be to build a model that
predicts the crime rate as a function of other socioeconomic variables. Once an appropriate
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Figure 7.1: Data-mining Process. The data-mining process involves a close interaction be-
tween a domain expert and a data-mining analyst. The output of the process is a set of
hypothesis (patterns), which can then be rigorously verified by statistical tools and visual-
ized using a GIS. Finally the analyst can interpret the patterns and make and recommend
appropriate action.

technique is selected, a suitable data-mining algorithm is chosen to implement the technique.
For classification, the DMA may decide to use linear regression instead of decision trees
because the class attribute is continuous-valued.

In an ideal case the data-mining algorithm should be designed to directly access the
database using SQL (OGIS SQL for spatial databases) but typically a time-consuming ex-
ercise is involved in transforming the database into an algorithm-compatible format. The
selection of a technique and the choice of an appropriate algorithm is also a nondeterminis-
tic, iterative process. For example, most algorithms require the adjustment of user-defined
parameters, and in most cases there is no way to judge beforehand what are the right pa-
rameters to set for a specific database.

The output of a data-mining algorithm is typically a hypothesis which can be in the
form of model parameters (as in regression), rules, or labels. Thus the output is a potential
pattern. The next step is verification, refinement, and visualization of the pattern. For
spatial data this part of the process is typically done with the help of GIS software. The
final part of the data-mining process is the interpretation of the pattern, and where possible,
a recommendation for appropriate action. For example, the conclusion might be that the
high crime rate is directly attributable to a downturn in the city’s economic condition, in
which case the law enforcement manager can direct the result to appropriate authorities in
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the city government. Or the data mining results might indicate that the high crime rate is
a result of exceptionally high crime activity in a few neighborhoods (“hot spots”). In this
case the law enforcement agencies can saturate those neighborhoods with police patrols.

7.1.2 Statistics and Data Mining

The entire data-mining process described above looks suspiciously like statistics! So where
is the difference? One way to view data mining is as a filter step before the application
of rigorous statistical tools. The role of the filter step is to literally plow through reams
of data and generate some potentially interesting hypothesis which can then be verified
using statistics. This is similar to the use of R-trees to retrieve MBRs (minimum bounding
rectangles) to answer range queries. The R-tree and MBRs provided a fast filter to search
the space for potential candidates which satisfy a range query. The difference is that while
R-trees guarantee that there will be no false dismissals, such a concept does not exist in
data mining, at least not yet. A detailed discussion of difference between data mining and
statistics is given in [Hand, 1999).

7.1.3 Data Mining as a Search Problem

Data mining is the search for interesting and useful patterns in large databases. A data-
mining algorithm searches a potentially large space of patterns to come up with candidate
patterns which can be characterized as interesting or useful or both. For example, consider
a 4 X 4 image where we want to classify each pixel into one of two classes, black or white
in Figure 7.2. Then there are a total of 2!® potential combinations. Now if we assert
that each 2 x 2 block can only be assigned to one class, black or white, then the number of
combinations reduces to 24. This restriction, though severe, is not completely unjustified. As
it happens, most neighboring pixels of an image tend to belong to the same class, especially
in a high-resolution image.

7.1.4 Unique Features of Spatial Data Mining

The difference between classical and spatial data mining parallels the difference between
classical and spatial statistics. One of the fundamental assumptions that guide statistical
analysis is that the data samples are independently generated, as with successive tosses of
a coin, or the rolling of a die. When it comes to the analysis of spatial data, the assump-
tion about the independence of samples is generally false. In fact spatial data tends to be
highly self-correlated. For example, people with similar characteristics, occupations, and
backgrounds, tend to cluster together in the same neighborhoods. The economies of a region
tend to be similar. Changes in natural resources, wildlife, and temperature vary gradually
over space. In fact this property of like things to cluster in space is so fundamental that
geographers have elevated it to the status of the first law of geography: Everything is related
to everything else, but nearby things are more related than distant things [Tobler, 1979]. In
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Figure 7.2: Search results of data-mining algorithm. (a) One potential pattern out of a
total of 2'6. (b) If we constrain the patterns to be such that each 4 x 4 block can only be
assigned one class, then the potential number of patterns is reduced to 2*. Based on other
information, a data-mining algorithm can quickly discover the “optimal” pattern.

spatial statistics, an area within statistics devoted to the analysis of spatial data, this is
called spatial autocorrelation.

7.1.5 Famous Historical Examples of Spatial Data Exploration

Spatial data mining is a process of automating the search for potentially useful patterns.
Some well-known examples of what we now call spatial data mining occurred well before the
the invention of computers. [Griffith, 1999] provides some examples:

1. In 1855 when the Asiatic cholera was sweeping through London, an epidemiologist
marked all locations on a map where the disease had struck and discovered that the
locations formed a cluster whose centroid turned out to be a water pump. When the
government authorities turned off the water pump, the cholera began to subside. Later
scientists confirmed the water-borne nature of the disease.

2. The theory of Gondwanaland that the all the continents formed one land mass was
postulated after R. Lenz discovered (using maps) that all the continents could be fitted
together into one-piece (like one giant jigsaw puzzle). Later fossil studies provided
additional evidence supporting the hypothesis.

3. In 1909 a group of dentists discovered that the residents of Colorado Springs had
unusually healthy teeth, and they attributed it to high level of natural fluoride in the
local drinking water supply. Researchers later confirmed the positive role of fluoride
in controlling tooth decay. Now all municipalities in the United States ensure that all
drinking water is fortified with fluoride.

The goal of spatial data mining is to automate the discoveries of such correlations, which
can be then be examined by specialists for further validation and verification.
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Attribute Type Role Description

Vegetation Ordinal | Independent | Ordinate scale from 10 to 100
Durability (VD)

Stem Density Numeric | Independent | In number of stems/m?

(SD)

Stem Height (SH) | Numeric | Independent | In centimeters above water
Distance to Numeric | Independent | In meters

Open Water (DOP)

Distance to Numeric | Independent | In meters

Edge (DTE)

Water Depth (WD) | Numeric | Independent | In centimeters

Red-winged Binary | Dependent | Record the presence/abscence
Blackbird of the nest in the cell

Table 7.1: Habitat variables used for predicting the locations of the nests of the red-winged
blackbirds. There are six independent variables and one dependent variable. The type of
the dependent variable is binary.

7.2 Motivating Spatial Data Mining

7.2.1 An Illustrative Application Domain

We now introduce an example which will be used throughout this chapter to illustrate the
different concepts in spatial data mining. We are given data about two wetlands on the
shores of Lake Erie in Ohio, USA, in order to predict the spatial distribution of a marsh-
breeding bird, the red-winged blackbird (Agelaius phoeniceus). The names of the wetlands
are Darr and Stubble, and the data was collected from April to June in two successive years,
1995 and 1996.

A uniform grid was imposed on the two wetlands, and different types of measurements
were recorded at each cell or pixel. The size of each pixel was five meters. The values of
seven attributes were recorded at each cell, and they are shown in Table 7.1. Of course
domain knowledge is crucial in deciding which attributes are important and which are not.
For example, Vegetation Durability was chosen over Vegetation Species because spe-
cialized knowledge about the nesting habits of the red-winged blackbird suggested that the
choice of nest location is more dependent on the plant structure and its resistance to wind
and wave action than on the plant species.

Our aim is to build a model for predicting the location of bird nests in the wetlands.
Typically the model is built using a portion of the data, called the Learning or Training data
and then tested on the remainder of the data, called the Testing data. For example, later on
we show how to build a model using the 1995 data on the Darr wetland and then test it on
either the 1996 Darr or 1995 Stubble wetland data. In the learning data all the attributes
are used to build the model, and in the training data one value is hidden, (in our case the
location of the nests). Using knowledge gained from the 1995 Darr data and the value of the
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independent attributes in the test data, we want to predict the location of the nests in Darr
1996 or in Stubble 1995.

(c) Water depth (d) Distance to open water

Figure 7.3: Darr wetland, 1995. (a) Learning dataset: The geometry of the marshland and
the locations of the nests; (b) spatial distribution of vegetation durability over the marshland;
(c) spatial distribution of water depth; and (d) spatial distribution of distance to open water.

(a) Pixel property with in- (b) Random nest locations
dependent identical distribu-
tion

Figure 7.4: Spatial distribution satisfying random distribution assumptions of classical re-
gression

In this chapter we focus on three independent attributes, namely, vegetation durability,
distance to open water and water depth. The significance of these three variables was estab-
lished using classical statistical analysis. The spatial distribution of these variables and the
actual nest locations for the Darr wetland in 1995 are shown in Figure 7.3. These maps
illustrate two important properties which are inherent in spatial data.

1. The values of attributes which are referenced by spatial location tend to vary gradu-
ally over space. While this may seem obvious, classical data-mining techniques, either
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explicitly or implicitly, assume that the data is independently generated. For exam-
ple, the maps in Figure 7.4 show the spatial distribution of attributes if they were
independently generated. This property of “smoothness” across space is called spatial
autocorrelation.

2. The spatial distribution of attributes sometimes shows distinct local trends which con-
tradict the global trends. This is most vivid in Figure 7.3b, where the spatial distribu-
tion of vegetation durability is jagged in the western section of the wetland compared
to the overall impression of uniformity across the wetland. Thus spatial data is not
only not independent, it is also not identically distributed.

We now show how to quantify the notion of spatial autocorrelation and spatial hetero-
geneity.

7.2.2 Measures of Spatial Form

As discussed in previous chapters, space can be viewed as continuous or discrete. Spatial
continuity is common in most earth science data sets. Often it is difficult to represent data
in continuous form, as an infinite number of samples exist in continuous space. On the other
hand only finite number of samples are enumerated in discrete space. In continuous space
places are identified by coordinates, and in discrete space places are identified as objects.
Spatial statistics are used for exploring geographic information. The term geostatistics is
normally associated with continuous space and the term spatial statistics is associated with
discrete space.

Centrality, dispersion and shape are used to characterize spatial form.

Mean center is the average location, computed as the mean of X and mean of Y coor-
dinates. The mean center is also known as the center of gravity of a spatial distribution.
Often the weighted mean center is appropriate measure for several spatial applications, for
e.g., center of population. The weighted mean center is computed as the ratio between the
sum of the coordinates of each point multiplied by its weight (e.g., number of people in block)
and the sum of the weights. The measure center is used in several forms. It can be used to
simplify complex objects (e.g., to avoid storage requirements and complexity of digitation
of boundaries, a geographic object can be represented by its center), or for identifying the
most effective location for a planned activity (e.g. a distribution center should be located a
central point so that travel to it is minimized).

Dispersion is a measure of the spread of a distribution around its center. Often used
measures of dispersion and variability are range, standard deviation, variance and coefficient
of variance. Dispersion measures for geographical distributions are often calculated as the
summation over the ratio of the weight of geographic objects and the proximity between
them. Shape is multi-dimensional, and there is no single measure to capture all of the
dimensions of the shape. Many of shape measures are based on comparison of the shape’s
perimeter with that of a circle of the same area.

Measures of spatial dependence: It is a very common observation in many geospatial ap-
plications that the events at a location are influenced by the events at neighboring locations.
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Figure 7.5: (a) A spatial lattice: (b) its contiguity matrix; (c) its row-normalized contiguity
matrix.

Spatial dependence can be defined as ‘the propensity of a variable to exhibit similar (of
different) values as a function of the distance between the spatial locations at which it is
measured.” Spatial autocorrelation is used to measure spatial dependence.

Spatial autocorrelation is a property that is often exhibited by variables which are sam-
pled over space. For example, the temperature values of two locations near to each other will
be similiar. Similarly, soil fertility varies gradually over space and so do rainfall and pressure.
In statistics there are measures to quantify this interdependence. One such measure is called
Moran’s 1.

Moran’s I: A Global Measure of Spatial Autocorrelation

Given a variable z = {z1,...,z,} which is sampled over n locations, Moran’s I coefficient
is defined as

W2t
1= -
2z
where z = {21 —Z,...,x,—Z}, Z is the mean of z, W is the n x n row-normalized contiguity

matrix, and 2! is the transpose of z. For example, a spatial lattice, its contiguity matrix,
and its row-normalized contiguity matrix are shown in Figure 7.5.

The key point to note here is that Moran’s I coefficient depends not only on the different
values of the variable x but also on their arrangement. For example Moran’s I coefficients
of the two 3 x 3 images shown in Figure 7.6 are different even though the sets of values
of the pixels are identical. Moran’s I coefficients for the four-neighbor relation and the
eight-neighbor relation are shown in Table 7.2.

Local Indicators of Spatial Autocorrelation

With the wide availability of high-resolution image data and the increasing use of Global
Positioning System (GPS) devices to mark the locations of samples in field work, the fact
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Figure 7.6: The Moran’s I coefficient. The pixel value sets of the two images are identical,
but they have different Moran’s I coefficients.

Explanatory Variable | Four-Neighbor | Eight-Neighbor
Distance to edge 0.7606 0.9032
Distance to open water 0.7342 0.8022
Depth 0.6476 0.7408
Vegetation height 0.7742 0.8149
Stem density 0.6267 0.7653
Vegetation durability 0.3322 0.4851

Table 7.2: Moran’s I coefficient of explanatory variables to predict nest locations for the
red-winged blackbird

that spatial autocorrelation exists is often moot. As a consequence, spatial statisticians
often use local measures of spatial autocorrelation to track how spatial dependence varies in
different areas within the same spatial layer. A substantial variation in local autocorrelation
at different locations indicates the presence of spatial heterogeneity, as is evident in the
vegetation durability layer in Figure 7.3b. The local Moran’s I measure defined at location

118
I_Zz'ZVVij o
1 9 7Z7é]
S - Zj
J

where z; = ; — T and s is the standard deviation of x. For example, in Table 7.3 Moran’s
I coefficient is

(75 — 55.82)
Iy = 27 99:9%) iy 1+ 63 — 4(55.82)) = 1.61
75 ey (71485 + 61+ 63 — 4(55.82)) = 1.6109

7.2.3 Spatial Statistical Models

Statistical models are often used to represent the observations in terms of random variables.
These models then can be used for estimation, description, and prediction based on proba-
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40 41 39 44 52 64 T4 67 63 63 57 47 48 359 62 50
48 50 51 45 78 8 92 109 115 98 8 T4 70 76 95 70
40 40 41 46 8 92 79 97 123 107 115 110 101 83 78 56
40 39 38 47 74 103 82 89 94 91 115 121 113 104 88 56
45 44 46 51 82 98 74 72 59 71 83 8 8 103 106 64
50 43 44 44 6v 8 T4 59 45 8 107 8 70 97 115 75
48 40 41 41 71 8 98 82 51 8 118 91 66 8 100 78
48 45 40 47 98 95 8 71 52 81 110 71 45 46 54 53
52 48 56 61 103 91 85 63 72 94 57 37 35 36 39
48 48 79 T8 40 45 51 61 64 58 58 48 53 47 40 43
37 45 47 41 26 25 28 29 31 33 35 37 56 57 46 47
27 28 29 28 27 26 27 29 28 28 29 32 44 45 40 47
29 26 24 27 29 28 27 27 27 28 28 34 41 38 38 47
28 27 25 27 27 27 26 27 27 28 27 38 53 47 36 48
25 27 26 25 28 34 31 27 27 28 28 34 45 48 38 48
25 26 27 28 34 39 32 29 27 29 28 31 37 41 41 47

Table 7.3: A 16 x 16 gray-scale image.

bility theory.

Point process: A point process is a model for the spatial distribution of the points in
a point pattern. Several natural processes can be modeled as spatial point patterns. The
positions of trees in a forest, locations of gas stations in a city, are all examples of point
patterns. A spatial point process is defined as Z(t) = 1;Vt € T or Z(A) = N(A),A C T,
where both Z(.) and T are random. Here T is the index set (7' C R¢), and Z(.) is the
spatial process. Spatial point processes can be broadly grouped into random or non-random
processes. Real point patterns are are often compared with a random pattern (generated by
a Poisson process) using the average distance between a point and its nearest neighbor. For
a random pattern, this (average) distance is expected to be m, where density is the
average number of points per unit area. If for a real process, this computed distance falls
within a certain limit, then we conclude that the pattern is generated by a random process,
otherwise it is non-random process. Patterns generated by a non-random process can be
either clustered (aggregated patterns) or uniformly spaced (regular patterns).

Lattices: A lattice D is denoted by Z(s) : s € D, where the index set D is a countable set
spatial sites at which data are observed. Here the ‘lattice’ referes to a countable collection of
regular or irregular spatial sites. Several spatial analysis functions (e.g., spatial dependence,
spatial autoregression, Markov Random Fields) can be applied on lattice models.

Geostatistics: Geostatistics deals with analysis of spatial continuity which is an in-
herent characteristic of spatial data sets. Geostatics provides a set of statistical tools for
modeling spatial variability and interpolation (prediction) of attributes at unsampled loca-
tions. Spatial variability can be analyzed using variograms. The amount and form of spatial
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autocorrelation can be described by a variogram, which summarizes the relationship between
differences in pairs of measurements and the distance between corresponding pair of points.
Spatial interpolation (prediction) techniques are used to estimate the values at unsampled
locations using the known values at sampled locations. Kriging is a well known estima-
tion procedure used in geostatistics. Kriging uses known values (at sampled locations) and a
semivariogram (estimated from the data) to determine unknown values. Kriging offers better
estimates over conventional interpolation methods (like weighted average, nearest neighbor)
for spatial data sets, because it takes into account the spatial autocorrelation.

7.2.4 The Data-Mining Trinity

Data mining is a truly multidisciplinary area, and there are many novel ways of extracting
patterns from data. Still, if one were to label data-mining techniques, then the three most
noncontroversial labels would be classification, clustering, and association rules. Before we
describe each of these classes in detail, we present some representative examples where these
techniques can be applied.

Location Prediction and Thematic Classification

The goal of classification is to estimate the value of an attribute of a relation based on the
value of the relation’s other attributes. Many problems can be expressed as classification
problems. For example, determining the locations of nests in a wetland based upon the value
of other attributes (vegetation durability, water depth) is a classification problem sometimes
also called the location prediction problem. Similarly, predicting where to expect hot spots
in crime activity can be cast as a location prediction problem. Retailers essentially solve a
location prediction problem when they decide upon a location for a new store. The well-
known expression in real-estate, “Location is everything,” is a popular manifestation of this
problem.

In thematic classification, the goal is to categorize the pixels of satellite images based
upon the values of the “spectral signatures” recorded by receivers on board the satellite. The
problem of thematic classification has deep spatial connections because in most instances
pixels which are neighbors on the image belong to the same class. Thus satellite images
naturally exhibit high spatial autocorrelation.

Determining the Interaction Between Attributes

Rapid pattern detection within a large volume of data that is being continuously generated
and stored in databases is one of the motivations behind data mining. One of the simplest
and probably most well-known data-mining techniques is the discovery of relationships within
attributes of a relation. For example, in the context of supermarket data analysis, a pattern
of the form X — Y means that people who buy the product X also have a high likelihood
of buying product Y. In the context of spatial databases, we have rules of the form of
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is_close(house, beach) — is_expensive(house); that is, houses which are close to the beach
are likely to be expensive. In the context of the bird habitat examples of the rules obtained
were low vegtation durability — high stem density. In Section 7.4.1, we discuss Apriori,
arguably the most well-known algorithm for discovering association rules.

Identification of Hot Spots: Clusters and Outliers

As noted in Section 7.1.1, law enforcement agencies use hot spot analysis to determine areas
within their jurisdiction which have unusually high levels of crime. They do this by recording
the location of each crime and then using outlier detection and clustering techniques to
determine areas of high crime density. Outlier detection and clustering can also be used to
determine hot spots of nest location, disease clusters for cancer.

The goal of outlier detection is to discover a “small” subset of data points which are
often viewed as noise, error, deviations or exceptions. Outlier have been informally defined
as observations which appear to be inconsistent with the remainder of the data set. The
identification of outliers can lead to the discovery of unexpected knowledge and has a number
of practical applications in areas such as credit card fraud, the performance analysis of
athletes, voting irregularities, bankruptcy, weather prediction and “hot spot” detection.

Another practical example of using spatial point clustering is to determine the location of
service stations. For example, suppose a car company has information about the geographic
location of all its customers and would like to open new service centers to cater exclusively to
their customers. Clustering methods can be employed to determine the “optimal” location
of service centers.

Clustering is an example of unsupervised learning, as no knowledge of the labels or the
numbers of labels is known a priori. As a result, clustering algorithms have to work “harder”
to determine the likely clusters. We will discuss two methods of clustering later. The K-
medoid is a deterministic clustering algorithm where each record is placed exclusively in one
cluster. Probabilistic clustering on the other hand species the probability of each record
belonging to any cluster.

In their simplest form, hot spots are regions in the study space which stand out compared
to the overall behavior prevalent in the space. Thus, hot spots can be identified by merely
inspecting the distribution of the data on the map or by thresholding. For example all
regions where the attribute value (e.g., crime rate) is at least two standard deviations away
from the mean can be labeled as hot spots. From a spatial autocorrelation perspective, hot
spots are locations where high local spatial autocorrelation exists. Before we describe each of
the three data-mining techniques in detail, we reiterate that scale (the level of aggregation)
is very important at all levels of data-mining analysis.

In the following three sections we cover three major approaches in data mining, namely,
classification, association rules and clustering.
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7.3 Classification Techniques

Simply stated, the classification is to find a function
f:D— L.

Here D, the domain of f, is the space of attribute data and, L is the set of labels. For
example, in our illustrative bird-habitat domain, D is the three-dimensional space consisting
of wvegetation durability, water-depth, and distance to open water. The set L consists of
two labels: nest and no-nest. The goal of the classification problem is to determine the
appropriate f, from a given finite subset Train C D x L. The success of classification is
determined by the accuracy of f when applied to a data set Test which is disjoint from the
Train data. The classification problem is known as predictive modeling because f is used to
predict the labels L when only data from the set D is given.

There are many techniques available to solve the classification problem. For example,
in maximume-likelihood classification the goal is to completely specify the joint-probability
distribution P(D, L). This is usually accomplished by an application of the Bayes theorem
and is the method of choice in remote-sensing classification. In the business community,
decision-tree classifiers are the method of choice because they are simple to use. The decision-
tree classifiers divide the attribute space (D in our case) into regions and assign a label to
each region. Neural networks generalize the decision-tree classifiers by computing regions
which have non-linear boundaries. Another common method is to use regression analysis to
model the interaction between D and L using an equation. For example, the linear equation
y = mz + c is used for modeling (z, y) in linear regression analysis.

In this chapter our focus is on extending classical data-mining techniques to incorporate
spatial autocorrelation, which is the key distinguishing property of spatial data. Using
linear regression as a proptype, we will show how classification methods can be extended to
model spatial autocorrelation. We have chosen linear regression analysis to expound spatial
classification because this method is most widely known, and spatial regression is probably
the most well-studied method for spatial classification in the spatial statistics community.

7.3.1 Linear Regression

When the class variable is real-valued, it is more appropriate to calculate the conditional
expectation rather than the conditional probability. Then the goal of classification is to com-
pute

E[C|A4, ..., A,

Writing in a more familiar notation, with C replaced by Y and the Als by X/s, and assuming
that all the attributes are identically and independently generated standard normal random
variables, the linear regression equation is

EYX=x|=a+ fx.

where X = (X3,...,X,). This expression is equivalent to the more familiar expression
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Y = X3 +e¢€. Once again, the training data can be used to calculate the parameter vector 3,
which in turn can be used to calculate the value of the class attribute in the test data set.

7.3.2 Spatial Regression

As we have shown before, when variables are spatially referenced, they tend to exhibit spatial
autocorrelation. Thus the above assumption of identical independent distribution (i.i.d) of
random variables is not appropriate in the context of spatial data. Spatial statisticians have
proposed many methods to extend regression techniques that account for spatial autocorre-
lation. The simplest and most intuitive is to modify the regression equation with the help
of the contiguity matrix W. Thus the spatial autoregressive regression (SAR) equation is

Y = pWY + X8 +e

The solution procedure for the SAR equation is decidedly more complex than the classical
regression equation because of the presence of the pI/'Y term on the right side of the equation.
Also notice that the W matrix is quadratic in terms of the data samples. Fortunately very
few entries of W are nonzero, and sparse matrix techniques are used, which exploit this fact,
to speed up the solution process.

7.3.3 Model Evaluation

We have discussed two general models to solve the classification problem, namely, linear
regression and spatial autoregressive regression (SAR). We now show the standard ways to
evaluate the performance of models and explain why the standard ways of evaluation are
not adequate in the context of spatial data mining.

In the case of a two-class classification problem, like nest or no-nest, there are four
possible outcomes that can occur. For example, a nest can be correctly predicted, in which
case it is called a true-positive (TP). A model can predict a nest where actually there was
a no-nest, in which case it is a false-positive (FP). Similarly a no-nest can be correctly
classified, a true-negative (TN), and a no-nest can be predicted where there was actually
a nest, which is a false-negative (FN). All the four combinations are shown in Figure 7.7.

In classification the goal it to predict the conditional probability of one attribute on the
basis of the values of the other attributes. Thus the outcome of a classification techniques
are probabilities. The way the probabilities are converted to actual class labels is to choose
a cut-off probability b, and label all records whose predicted probability is greater than b by
one class label, say nest and label the remaining records as no-nest. By varying b we can get
a good estimate of how two different classifiers are behaving vis-a-vis each other. Thus for
a given cut-off b the True-Positive Rate (TPR(b)) and the False-Positive Rate (FPR(b)) is
defined as

TP(b
TPR(b) = 7TP(b)+%;)‘))N(b)

FP
FPR(b) = FP(b)+TN(b)
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Figure 7.7: The four possible outcomes for a two-class prediction

Now if we plot TPR vs. FPR for the two classifiers under consideration, then the classifier
whose curve is further above the diagonal PR = F'PR is the better model for that specific
data set. These curves are called receiver operating characteristics (ROC) curves. We have
compared the classical regression and spatial autoregressive regression (SAR) model on the
Darr 1995 training set and the Stubble 1995 test set. The results in Figure 7.8 clearly show
that including the spatial autocorrelation term pIWWY leads to substantial improvement in
the learning and predictive power of the regression model.

ROC Curve for learning data(Darr marshland 1995)
T T T T

ROC Curve for testing data(Stubble marshland 1995)

Truth Positive Rate
°
@
T

- — - Classical Regression
oal )/ e Spatial Regression

. . . . . . . . . . .
0.7 0.8 09 1 o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
False Posilive Rate False Positive Rate

(a) Training Data (b) Test Data

Figure 7.8: ROC curves.(a) Comparison of the ROC curves for classical and spatial autoreg-
gression regression (SAR) models on the 1995 Darr wetland data. (b) Comparison of the
two models on the 1995 Stubble wetland data.

The model evaluation technique described above is not particularly suited for the context
of spatial data. Consider the example shown in Figure 7.9. Here the goal is to predict
the locations marked A using regression analysis. The ROC curves will fail to distinguish
between the model which predicts the locations shown in Figure 7.9 ¢ and another model
which predicts locations shown in Figure 7.9d, even though the predictions in Figure 7.9d
are closer to the actual locations than those predicted by Figure 7.9c . We have used this



7.3. CLASSIFICATION TECHNIQUES 253
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Figure 7.9: Problems of ROC curves with spatial data. (a)The actual locations of nest’s;
(b)pixels with actual nests; (c)location predicted by a model; (d)location predicted by an-
other mode. Prediction (d) is spatially more accurate than (c). Classical measures of classi-
fication accuracy will not capture this distinction.

observation to design a new framework to solve the two-class spatial classification problem
in the context of the location prediction problem, which we describe next.

7.3.4 Predicting Location Using Map Similarity (PLUMS)

The location prediction problem is a generalization of the nest-location prediction problem.
It captures the essential properties of similar problems from other domains, including crime
prevention and environmental management. The problem is formally defined as follows:

Given: e A spatial framework S consisting of sites {si,...,s,} for an underlying geo-
graphic space G.

e A collection of explanatory functions fy, : S — RF kK =1,... K, where R* is the
range of possible values for the explanatory functions.

e A dependent class variable fo : S — C =c¢q,...cup

e An value for parameter «, relative importance of spatial accuracy.
Find: Classification model: f€: R' x ...RF — C.

Objective: Maximize similarity (mapsiES(fC(ley - fx.)), map(fc))
= (1 — «) classification_accuracy(fc, fc) + (o )spatial accuracy((fc, fc)

Constraints: 1. Geographic space S is a multidimensional Euclidean space. *

2. The values of the explanatory functions, fx,,..., fx,, and the dependent class
variable, fc, may not be independent with respect to the corresponding values of
nearby spatial sites (i.e., spatial autocorrelation exists).

3. The domain R* of the explanatory functions is the one-dimensional domain of
real numbers.

4. The domain of dependent variable, C' = 0, 1.

IThe entire surface of the earth cannot be modeled as a Euclidean space, but locally the approximation
holds true.
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The above formulation highlights two important aspects of location prediction. It ex-
plicitly indicates that (i) the data samples may exhibit spatial autocorrelation and, (ii) an
objective function (i.e., a map similarity measure), is a combination of classification accuracy
and spatial accuracy. The similarity between the dependent variable fo and the predicted
variable fc is a combination of the “traditional classification” accuracy and representation-
dependent “spatial classification” accuracy. The regularization term « controls the degree
of importance of spatial accuracy and is typically domain dependent. As o — 0, the map
similarity measure approaches the traditional classification accuracy measure. Intuitively, «
captures the spatial autocorrelation present in spatial data.

7.3.5 Markov Random Fields

Markov random field based Bayesian classifiers estimate classification model fc using MRF
and Bayes’ rule. A set of random variables whose interdependency relationship is represented
by an undirected graph (i.e., a symmetric neighborhood matrix) is called a Markov Random
Field. The Markov property specifies that a variable depends only on its neighbors and is
independent of all other variables. The location prediction problem can be modeled in this
framework by assuming that the class label, [; = fo(s;), of different locations, s;, constitute
an MRF. In other words, random variable /; is independent of I; if W (s;, s;) = 0.

The Bayesian rule can be used to predict /; from feature value vector X and neighborhood
class label vector L; as follows:

Pr(X)

Prl;| X, L;) = (7.1)

The solution procedure can estimate Pr(l;|L;) from the training data, where L; denotes
a set of labels in the neighborhood of s; excluding the label at s;, by examining the ratios
of the frequencies of class labels to the total number of locations in the spatial framework.
Pr(X|l;, L;) can be estimated using kernel functions from the observed values in the train-
ing dataset. For reliable estimates, even larger training datasets are needed relative to those
needed for the Bayesian classifiers without spatial context, since we are estimating a more
complex distribution. An assumption on Pr(X|l;, L;) may be useful if the training dataset
available is not large enough. A common assumption is the uniformity of influence from
all neighbors of a location. For computational efficiency it can be assumed that only lo-
cal explanatory data X (s;) and neighborhood label L; are relevant in predicting class label
l; = fc(s;)- Tt is common to assume that all interaction between neighbors is captured via
the interaction in the class label variable. Many domains also use specific parametric proba-
bility distribution forms, leading to simpler solution procedures. In addition, it is frequently
easier to work with a Gibbs distribution specialized by the locally defined MRF through the
Hammersley-Clifford theorem.

Both SAR and MRF Bayesian classifiers model spatial context and have been used by
different communities for classification problems related to spatial datasets. Now we compare
these two approaches to modeling spatial context, using a probabilistic framework.
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Figure 7.10: Spatial datasets with salt and pepper spatial patterns

Comparison of SAR and MRF Using a Probabilistic Framework

We use a simple probabilistic framework to compare SAR and MRF in this section. We will
assume that classes [; € (cy, ¢o, ..., cpr) are discrete and that the class label estimate fc(si)
for location s; is a random variable. We also assume that feature values (X) are constant
since there is no specified generative model. Model parameters for SAR are assumed to be

constant, (i.e., 8 is a constant vector and p is a constant number). Finally, we assume that
the spatial framework is a regular grid.

We first note that the basic SAR model can be rewritten as follows:
y=XpB+pWy—+e
(I=pW)y=XB+e

y=I=pW)"XB+ (- pW) e = (QX)B + Qe (7.2)

where Q = (I — pW)~! and 3, p are constants (because we are modeling a particular
problem). The effect of transforming feature vector X to QX can be viewed as a spatial
smoothing operation. The SAR model is similar to the linear logistic model in terms of the
transformed feature space. In other words, the SAR model assumes the linear separability
of classes in transformed feature space.

Figure 7.10 shows two datasets with a salt and pepper spatial distribution of the feature
values. There are two classes, ¢; and ¢y, defined on this feature. Feature values close to 2



256 CHAPTER 7. INTRODUCTION TO SPATIAL DATA MINING

map to class ¢y and feature values close to 1 or 3 will map to ¢;. These classes are not linearly
separable in the original feature space. Local spatial smoothing can eliminate the salt and
pepper spatial pattern in the feature values to transform the distribution of the feature values.
In the top part of Figure 7.10, there are few values of 3 and smoothing revises them close to
1 since most neighbors have values of 1. SAR can perform well with this dataset since classes
are linearly separable in the transformed space. However, the bottom part of Figure 7.10
shows a different spatial dataset where local smoothing does not make the classes linearly
separable. Linear classifiers cannot separate these classes even in the transformed feature
space assuming @ = (I — pWW)~! does not make the classes linearly separable.

Although MRF and SAR classification have different formulations, they share a common
goal, estimating the posterior probability distribution: p(l;|/X). However, the posterior for
the two models is computed differently with different assumptions. For MRF the posterior
is computed using Bayes’ rule. On the other hand, in logistic regression, the posterior
distribution is directly fit to the data. For logistic regression, the probability of the set of
labels L is given by:

Pr(L|X) = [ p(t:1X) (7.3)

i=1

One important difference between logistic regression and MRF is that logistic regression
assumes no dependence on neighboring classes. Given the logistic model, the probability
that the binary label takes its first value ¢; at a location s; is:

PriX) = 1o (1_ ~G (7.4)

where the dependence on the neighboring labels exerts itself through the W matrix, and
subscript 4 (in @;) denotes the i row of the matrix Q. Here we have used the fact that y
can be rewritten as in equation 7.2.

To find the local relationship between the MRF formulation and the logistic regression
formulation (for the two class case ¢; = 1 and ¢, = 0), at point s;

_ _ Pr(X|l =1,L)Pr(l =1, L)) .
Pr((l=1)X, L) = Pr(X|l; =1,L)Pr(l; =1,L;) + Pr(X|l; = 0, L;) Pr(l; = 0,L§j'5)

1
1+ exp(—=Q: X B)

which implies

X0 =1
QX8 = I =0, ) Pri, = 0, 1)

) (7.6)

This last equation shows that the spatial dependence is introduced by the W term through
;- More importantly, it also shows that in fitting 8 we are trying to simultaneously fit the

relative importance of the features and the relative frequency (%) of the labels. In
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contrast, in the MRF formulation, we explicitly model the relative frequencies in the class
prior term. Finally, the relationship shows that we are making distributional assumptions
about the class conditional distributions in logistic regression. Logistic regression and logistic
SAR models belong to a more general exponential family. The exponential family is given

by

Pr(ulv) = A0+ Blum+osu (7.7)

where u,v are location and label respectively. This exponential family includes many
of the common distributions such as Gaussian, Binomial, Bernoulli, and Poisson as spe-
cial cases. The parameters 6, and 7 control the form of the distribution. Equation 7.6
implies that the class conditional distributions are from the exponential family. More-
over the distributions Pr(X|l; = 1,L;) and Pr(X|l; = 0, L;) are matched in all moments
higher than the mean (e.g., covariance, skew, kurtosis, etc.), such that in the difference
In(Pr(X|l; = 1,L;)) — In(Pr(X|l; = 0, L;)), the higher order terms cancel out, leaving the
linear term (#Xu) in equation 7.7 on the left hand-side of equation 7.6.
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7.4 Association Rule Discovery Techniques

Association rules are patterns of the form X — Y. One of the more famous patterns in data
mining, Diapers — Beer, is an example of an association rule. Association rules, as they
are currently expressed, are a weaker form of correlation, since they do not discover negative
associations. For example, the rule Tofu 5 Beef (people who buy tofu are not likely to buy
beef) may hold true but is not considered an association rule. In probabilistic terms an
association rule X — Y is an expression of conditional probability, P(Y|X).

An association rule is characterized by two parameters: support and confidence. Formally
let I = {i1,1s,...,0x} be a set of items, and T = {t1,ts,...,t,} be a set of transactions,
where each t; is a subset of I. Let C be a subset of I. Then the support of C' with respect
to T is the number of transactions that contain C: o(C) = {|t|t € T,C C t. Then i; — iy if
and only if the following two conditions hold:

U(il/\iz)
T

Support: i; and 73 occur in at least s percent of the transactions:

Confidence: Of all the transactions in which #; occurs, at least ¢ percent of them contain
. O'(il /\i2)
b2t oy

Rule Support | Confidence
A= B 0.50 1.0
B=~C 0.25 0.33
F=F 0.25 1.0

Table 7.4: Support and confidence of three rules

For example, consider a set I = {A, B,C, D, E, F'} of letters and a transaction set 7" =
{ABC,ABD, BDE,CEF} of words where the intra word ordering is irrelevant (i.e., ABC =
BCA = CAB). Table 7.4 shows the support and confidence of three rules: A = B,
B = C, F = E. For another example, see Figure 7.11, which shows a snapshot of sales
at an electronics store. Also shown are examples of item sets which enjoy high support and
association rules with high confidence. We now describe Apriori, an algorithm to rapidly
discover association rules in large databases.

7.4.1 Apriori: An Algorithm for Calculating Frequent Itemsets

The Apriori algorithm is probably the most well-known algorithm for discovering frequent
item sets. Frequent item sets are sets which satisfy the support threshold as defined above.
The algorithm exploits a simple but fundamental property of the support measure: If an
itemset has high support, then so do all its subsets. The outline of the Aprior: algorithm is
shown below.

FrequentItemSet := () ;
k:=1;
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FREQUENT ITEMSETS

ITEMS
SUPPORT ITEMSETS
Car CD Player D
100% (6) A
83% (5) C,AC
Car Alarm A
67% (4) C,T,V, DA, DC,
AT, AV, DAC
TV T
50% (3) DV, TC, VC, DAV,
VCR V
DVC, ATC, AVC,
DAVC
Computer C
DATABASE ASSOCIATION RULESWITH CONFIDENCE = 100%
1 DAV C D—>=A@4) | D—>A@4) | VC—= A(3/3)
D-—>=C(44) | D—>=A(33) | bv—=A(3/3)
2 ATC
D —=AC4)| D —=A(33) | vVC—= A (3/3)
3 DAVC T —=C(4/4) | D —=A(44) |DAV— A (33)
V —=A(4/4) | D —=A(3/3) |DVC— A (3/3)
4 DATC AVC
C—>=A(GBb5 | D—=A(@3R3) — A (3/3)
5 DATVC
6 ATV ASSOCIATION RULESWITH CONFIDENCE >=80%
C—=D@5 | A—=C(5/6) | C— DA (45

Figure 7.11: Example database, frequent itemsets, and high-confidence rules

While CandidateSet, # () do
Create counter for each itemset in CandidateSet;,
forall transactions in database do
Increment counter of itemset in CandidateSety,
which occurs in the transaction;
Level;, := All elements in CandidateSet;, which
exceed the support threshold
FrequentltemSet : = FrequentltemSet ULevely;
CandidateSety, 1 : = All k+1-itemsets whose k-item subsets
are in Levely,.
k:=k-+1;
end
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Apriori first discovers all the 1-itemsets (singletons) which are frequent (i.e, which exceed
the support threshold). The second step is to combine all frequent itemsets to form 2-
itemsets: CandidateSet;. The algorithm then parses this set to search for frequent 2-
itemsets. This process goes on: frequent 2-itemsets are combined to form 3-itemsets, until
the set C'landidateSety is empty.

After all the frequent itemsets have been calculated, the next step is to search for rules
which satisfy the minimum confidence requirement. This is done as follows. Given a frequent
itemset { ABC, } all combinations are checked to see if they satisfy the confidence parameter
c. For example for each of the following rules,

{AB} = {C}

{BC} — {A}

{CA} — {B}
the confidence measure is to be checked. Those that cross the threshold ¢ are legitimate
association rules.

There are two approaches towards generating spatial association rules. In the first ap-
proach the focus is on spatial predicates rather than items. The second approach generalizes
the notion of a transaction to include neighborhoods (called co-location rules).

7.4.2 Spatial Association Rules

Spatial association rules are defined in terms of spatial predicates rather than items. A
spatial association rule is a rule of the form

where at least one of the P/s or Qs is a spatial predicate. For example, the rule

is_a(z, country) A touches(x, Meditteranean) s iSq(z, wine — exporter)

(i.e., a country which is adjacent to the Meditteranean Sea is a wine-exporter) is an associ-
ation rule with support s and confidence ¢. Table 7.5 shows examples of association rules
that were discovered in the Darr 1995 wetland data. Association rules were designed for
categorically valued datasets, and therefore their application to datasets which are numeri-
cally valued is limited. This is because the transformation from numeric to categorical data
involves a process of discretization which in most instances is quite arbitrary. For example,
in the Darr wetland example, what is a high Stem-Height? Actually, because of spatial
autocorrelation, the choice of discretization is probably less arbitrary, because if a location
has high Stem-Height, then so do its neighboring locations.

7.4.3 Co-location Rules

Co-location rules attempt to generalize association rules to data sets which are indexed by
space. There are several crucial differences between spatial and non-spatial associations
including
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‘ Spatial Association Rule ‘ Sup. ‘ Conf. ‘
Stem_height(z, high) A Distance_to_edge(z, far) — Vegetation_Durability(z, moderate) 0.1 0.94
Vegetation_Durability(xz, moderate) A Distance to_water(z, close) — Stem_Height(z, high) | 0.05 | 0.95
Distance_toyater(z, far) A Water_Depth(z, shallow) — Stem_Height(z, high) 0.05 | 0.94

Table 7.5: Examples of spatial association rules discovered in the 1995 Darr wetland data

1. The notion of an atomic transaction is absent in spatial situations. This is because
spatial events are influenced by those in their neighborhood. For example, there is a
high likelihood that regions with high per-capita income tend to tightly cluster near
each.

2. Spatial data sets are item sparse, i.e., there are much fewer items in a spatial situation
than in a non-spatial situation. For example, in a retail setting it is common to deal
with distinct items which run into the tens of thousands. This is not the case for
spatial data sets where the equivalent of spatial items are almost never more than
one hundred. This implies that level-wise approaches, like Apriori, are not necessarily
applicable in spatial situations.

3. In most instances, spatial items are discreteized version of continuous variables. For
example, in the United States high per-capita income regions may be defined as regions
where the mean yearly income is greater than fifty thousand dollars.

In this approach of spatial association rules discovery, the notion of a transaction is
replaced by nighborhood. We explain this approach with the help of an example. The
co-location pattern discovery process finds frequently co-located sub-sets of spatial event
types given a map of their locations (see Figure 7.12). For example, analysis of habitats
of animals and plants may identify co-location of predator-prey species, symbiotic species,
and fire events with ignition sources. Readers may find it interesting to analyze the map in
Figure 7.12 to find co-location patterns. There are two co-location patterns of size 2 in this
map.
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Figure 7.12: Sample co-location patterns
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7.5 Clustering

Clustering is a process for discovering “groups”, or clusters, in a large database. Unlike
classification, clustering involves no a priori information either on the number of clusters
or what the cluster labels are. Thus there is no concept of training or test data data in
clustering. This is the reason that clustering is also referred as unsupervised learning.

The clusters are formed on the basis of a “similarity” criterion which is used to determine
the relationship between each pair of tuples in the database. Tuples which are similar are
usually grouped together, and then the group is labeled. For example, the pixels of satellite
images are often clustered on the basis of the spectral signature. This way a remotely sensed
image can be quickly segmented with minimal human intervention. Of course a domain
expert does have to examine, verify, and possibly refine the clusters. A famous example
of population segmentation occurred in the 1996 U.S. presidential election when political
pundits identified “Soccer Moms” as the swing electorate who were then assiduously courted
by major political parties. Clustering is another technique to determine the “hot spots” in
crime analysis and disease tracking.

Clustering is a very well-known technique in statistics and the data-mining role is to
scale a clustering algorithm to deal with the large datasets which are now becoming the
norm rather than the exception. The size of the database is a function of the number of
records in the table and also the number of attributes (the dimensionality) of each record.
Besides the volume, the type of the data, whether it is numeric, binary, categorical, or ordinal
is an important determinant in the choice of the algorithm employed.

It is convenient to frame the clustering problem in a multidimensional attribute space.
Given n data objects described in terms of m variables, each object can be represented as a
point in an m-dimensional space. Clustering then reduces to determining high-density groups
of points from a set of non-uniformly distributed points. The search for potential within the
multidimensional space is then driven by a suitably chosen similarity criterion.

For example, the counties in the United States can be clustered on the basis of, say,
four attributes: rate-of-unemployment, population, per-capita-income, and life-expectancy.
Counties which have similar values for these attributes will be grouped or clustered together.

When dealing with attribute data that is referenced in physical space, the clustering
problem can have two interpretations. Consider the plot shown in Figure 7.13, which shows
the variation of an attribute value (e.g., population density) as a function of location shown
on the z-axis. Now what are the clusters, and how do we interpret them? For example, if
our goal is to identify central cities and their zones of influence from a set of cities which
dominate other cities as measured by the variance of an attribute value across the landscape,
then we are looking for spatial clusters marked S1 and S2 in Figure 7.13. On the other
hand, if our goal is to identify pockets in the landscape where an attribute (or attributes)
are homogeneously expressed, then we are looking for clusters marked Al and A2. While
the second interpretation is essentially nonspatial, the spatial aspects exist because of the
spatial autocorrelation that may exist in the attribute data. The clusters identified should
be spatially homogeneous and not “speckled.” These two interpretations of the clustering
problem are formally defined as below:
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Figure 7.13: Two interpretations of spatial clustering. If the goal is to identify locations
which dominate the surroundings (in terms of influence), then the clusters are S1 and S2. If
the goal is to identify areas of homogeneous values, the clusters are A1 and A2.

Definition 1:

Given: A set S ={si,...,s,} of spatial objects (e.g., points) and a real-valued, nonspatial
attributes f evaluated on S, (i.e., f: S — R).

Find: Two disjoint subsets of S, C, and NC = S — C, where C = {sy,...,s:}, NC =
{neci,...,n¢}, and k < n.

. . . l k i
Objective: minccs Zj:l |fnej) =iy %P
Where: dist(a,b) is the Euclidean or some other distance measure.

Constraints:

1. The dataset conforms to the theory of central places, which postulates that the
influence of a central city decays as the square of the distance.

2. There is at most one nonspatial attribute.

Definition 2:

Given: (1) A set S = {s1,...,,} of spatial objects (e.g., points) and a set of real-valued,
nonspatial attributes f; i = 1,...,I defined on S, (i.e., for each i, fx : S — R); and
(2) neighborhood structure E on S.

Find: Find K subsets C, C S,k =1,..., K such that

Objective: ming,cs >, 5.0, s,ec, Wst(F(si), F(s5)) + 32, ; nbddist(Ci, Cj)
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Where: (1) F is the cross-product of the fls, i =1,...,n; (2) dist(a,b) is the Euclidean or
some other distance measure and (3) nbddist(C, D) is the number of points in C' and
D which belong to E.

Constraints: |Cy| >1forallk=1,..., K.

Categories of Clustering Algorithms

Cluster analysis is one of most often performed data analysis technique in many fields. This
has resulted in a multitude of clustering algorithms, so it is useful to categorize them into
groups. Based on the technique adopted to define clusters, the clustering algorithms can be
categorized into four broad categories:

1. Hierarchical clustering methods starts with all patterns as a single cluster, and succes-
sively performs splitting or merging until a stopping criterion is met. This results in
a tree of clusters, called dendograms. The dendogram can be cut at different levels to
yield desired clusters. Hierarchical algorithms can further be divided into agglomera-
tive and divisive methods. Some of the hierarchical clustering algorithms are: balanced
iterative reducing and clustering using hierarchies (BIRCH), clustering using represen-
tatives (CURE), and robust clustering using links (ROCK).

2. Partitional clustering algorithms start with each pattern as a single cluster and iter-
atively reallocates data points to each cluster until a stoping criterion is met. These
methods tend to find clusters of spherical shape. K-Means and K-Medoids are com-
monly used partitional algorithms. Squared error is the most frequently used crite-
rion function in partitional clustering. Some of the recent algorithms in this category
are: partitioning around medoids (PAM), clustering large applications (CLARA), clus-
tering large applications based on randomized search (CLARANS), and expectation-
maximization (EM).

3. Density-based clustering algorithms tries to find clusters based on density of data points
in a region. These algorithms treat clusters as dense regions of objects in the data space.
Some of the density-based clustering algorithms are: density-based spatial clustering
of applications with noise (DBSCAN), and density based clustering (DENCLUE).

4. Grid-based clustering algorithms first quantize the clustering space into a finite num-
ber of cells and then perform the required operations on the quantized space. Cells
that contain more than certain number of points are treated as dense. The dense
cells are connected to form the clusters. Grid-based clustering algorithms are pri-
marily developed for analyzing large spatial data sets. Some of the grid-based clus-
tering algorithms are: statistical information grid-based method (STING), STING+,
WaveCluster, BANG-clustering, and clustering in quest (CLIQUE).

Some times the distinction among these categories are diminishing, and some algorithms
can even be classified into more than one group. For example, clustering in quest (CLIQUE)
can be considered as both density-based and grid-based clustering method.
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We now describe two well-known approaches to clustering, the K-medoid algorithm and
mixture analysis using the expectation-maximization (EM) algorithm. We will also briefly
discuss how the EM algorithm can be modified to account for the special nature of spatial
data.

7.5.1 K-medoid: An Algorithm for Clustering

We will restrict our attention to points in the two-dimensional space R?, though the tech-
nique can be readily generalized to a higher dimensional space. Given a set P of n data
points, P = {p1,ps,...,pn} in R? the goal of K-medoid clustering is to partition the data
points into k£ clusters such that the following objective function is minimized:

J(M)=J(my,...,mg) = ZZd(p,mi)

i=1 pecC;

In J(C), m; is the representative point of a cluster C;. If m; is restricted to be a member
of P, then it is called a medoid. On the other hand, if m; is the average of the cluster points
and not necessarily a member of P, then it is called the mean. Thus the K-mean and the
K-medoid approaches are intimately related. Even though the K-mean algorithm is better
well-known, we focus on the K-medoid approach because the medoid, like the median, is less
sensitive to outliers.

The K-medoids characterize the K clusters, and each point in P belongs to its nearest
medoid. Since we have restricted the ambient space to be R2, the distance function d is the
usual Euclidean distance.

D=

d(p,mi) = ((p(x) — mi(x))” + (p(y) — ma(y))*)?.

Thus the K-medoid approach transforms the clustering problem into a search problem.
The search space X is the set of all k-subsets M of P (i.e., |[M| = k), and the objective
function is J(M). X can be modeled as a graph, where the nodes of the graph are the
elements of X. Two nodes M, and M, are adjacent if |My N My| =k —1 (i.e., they differ by
one and only one data point).

The K-medoid algorithm consists of the following steps:

1. Choose an arbitrary node M, in X.

2. Tteratively move from current node M, to an adjacent node My, such that J(M;,1) <
J(M;). The move from current node to adjacent node consists of replacing a current
medoid m with a data point p € P. Thus My, = M, U {p} — {m}.

3. Stop when J(M;,1) > J(M;) for all adjacent nodes.

Step 2 is the heart of the algorithm. There are many options available to move from a
node to its adjacent node. Table 7.6 lists some of the options. The table includes the name
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of each option as it is referred to in the literature, the strategy for moving, and whether the
option will guarantee a local optima. All the options are examples of local search because
only the adjacent nodes are explored.

Local Search Strategy to move from M; | Guarentee
to My = My U {p} — {m} local optima
Global hill climbing (HC) | Move to the best neighbor Yes
Randomized HC Move to best of No
sampled neighbors
Local HC Move to a new neighbor Yes
as soon as it is found
Distance-restricted Move to best neighbor No
HC within a specified distance

Table 7.6: Four options for local search in clustering

7.5.2 Clustering, Mixture Analysis, and the EM Algorithm

One drawback of the K-medoid (or K-mean) approach is that it produces “hard” clusters;
that is, each point is uniquely assigned to one and only one cluster. This can be a serious
limitation because it is not known a priori what the actual clusters are. In the statistics
literature the clustering problem is often recast in terms of mizture models. In a mixture
model the data is assumed to be generated by a sequence of probability distributions where
each distribution generates one cluster. The goal then is to identify the parameters of each
probability distribution and their weights in the overall mixture distribution. In a mixture
model each instance of the database belongs to all the clusters but with a different grade
of membership, which is quantified by the weights of the individual distributions in the
mixture model. Thus the mixture model framework is more flexible than the K-medoid
approach. Typically each probability distribution is represented as a normal distribution,
and the challenge is to determine the mean, variance, and weight of each distribution. The
assumption of normality is not as restrictive as it might appear because a statistics theorem
guarantees that any probability distribution can be expressed as a finite sum of normal
distributions.

A Finite Mixture Example

Consider the gray-scale 4 x 4 image shown in Figure 7.14. Assume we want to partition
the set of pixels into two clusters, A and B, where each cluster is modeled as a Gaussian
distribution. The finite mixture problem is to calculate the parameters (4, g, 04,08,04, PB-

For the moment, assume the cluster membership of each pixel is given as shown in Figure
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Figure 7.14: (a) A gray-scale 4 x 4 image. (b) The labels of the image generated using the
EM algorithm and (c) The labels generated for the same image using the Neighborhood EM
algorithm. Notice the spatial smoothing attained by modifying the objective function.

7.14b. Then all the parameters can be easily calculated. For example,

1241042+1841145+4749+13 _ 9.7

HaA = 9
o4 = (12—M1)2+(10—M§)2+---+(13—N1)2 — 4.7
pa = 19—6

Similarly up = 17.6,05 = 4.1, and py = % Computing the probability of a given pixel
value belonging to cluster is then a simple exercise using Bayes’s Theorem. For example,
given a pixel value x, the probability that it belongs to cluster A is

P(Alz) = P(z|A)pa

P(x)

P(z|A)pa
P(z|A)pa+P(z| B)pp
N(z,na,04)P4
N(z,44,04)pa+N(z,uB,08)PB

where . e
Mo b)) = e ™
A

Now in our case the cluster labels are not known and neither are the distribution pa-
rameters. All we know is that there are two clusters and that each cluster is modeled as
a Gaussian distribution. At first this problem may appear to be unsolvable because there
are too many unknowns: cluster labels for each pixel and the distribution parameters of
the cluster. Problems of this type can be solved using the expectation-maximization (EM)
algorithm. The EM algorithm, like the K-medoid algorithm, is an iterative algorithm which
begins with the guess estimate of the distribution parameters. It then computes the “ex-
pected values” of the data given the initial parameters. The new, expected, data values are
then used to calculate the maximum likelihood estimate for the distribution parameters(see
the appendix for a brief discussion of maximum likelihood estimation). This procedure is
iterated until some convergence criterion is met. The EM algorithm guarantees that the
maximum likelihood estimate will improve after each iteration, though the convergence can
be slow. The steps of the EM algorithm follow:
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1. Guess the initial model parameters: u%, %% and p% and u%, 3% and p%.

2. At each iteration j, calcuate the probability that the data object x belongs to clusters
A and B. _ _
Py (z]A) P (z|B)
P(Alx) = ~*———* P(Blzr) = —1—++—
(Afe) = P75 P(Bla) = P

3. Update the mixture parameters on the basis of the new estimate:

P =52, P(Alz) Py =5 Y, P(Blz)

J+1 >, zP(Alx) J+1 _ >, zP(Blz)

K >, P(AJz) K >, P(Blz)
oIt = T PUAR)@ ™) gl 3, P(Bla) @ up)?

A >, PAf) q 5. P(B)

4. Compute the log estimate E; = Y _log(P’(z)). If for some fixed stopping criterion e,
|E; — Ej11] < ¢, then stop; else set j = j + 1.

The Neighborhood EM Algorithm

A careful reader may have noticed that the EM algorithm completely ignores the spatial
distribution of the pixel; it only works with the pixel values. Thus if we rearrange the pixel
values shown in Figure 7.14a, the EM algorithm will still come up with the same cluster
labeling and the same values of the distribution parameters.? Such a solution, as we know,
does not take into account the spatial autocorrelation property inherent in spatial data. As
we have mentioned before, the search space for spatially referenced data is a combination of a
conceptual attribute space and the physical (geographic) space. The spatial autocorrelation
property then implies that the clusters should vary gradually in the physical space.

In order to make the EM algorithm spatially sensitive, we first follow the recipe proposed
by Ambroise et al. (1997).

Step 1: The EM algorithm for mixture models is equivalent to the optimization of the
following objective function:

2 n 2 n
D(c, iy 0k pr) = 3 Y it 2og(peN (s, i, k) — D > carlog(cin)

k=1 i=1 k=1 i=1

where ¢ = ci,i = 1,...,n and k£ = 1,... K define a fuzzy classification representing
the grade of membership of data point x; into cluster k. The c¢;;’s satisfy the constraints
(0 < ey <1, 22:1 cik = 1,7 cir > 0). Again we have two clusters £ = 1,2, and
there are n data points.

2 Actually because of the randomness of the initial parameters, each run of the EM algorithm can poten-
tially result in a different solution.
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Figure 7.15: Using the Neighborhood EM algorithm. (a) As expected clustering without
any spatial information leads to poor results. (b) including spatial information (8 = 1.0)
leads to dramatic improvement of results. (c) overemphasizing spatial information (5 = 2.0)
again leads to poor results.

Step 2 In order to account for spatial autocorrelation, we introduce a new term,
1 2 n n
60 = L33 cweuny
k=1 i=1 j=1

where W = (w;;) is the contiguity matrix as defined before.
The new “spatially weighted” objective function is

U(c, p,0) = D(c, p,0) + BG(c)
where [ > 0 is a parameter to control the spatial homogeneity of the dataset.

Step 3: Except for the new parameter ¢, which is an n x 2 matrix, all the parameters are
gaddalated exactly as before. The formula for ¢
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mi1 _ PPN (@i, ik, o) exp{B Y51 i wi}

oyt =
Z Sy PPN (i, 7 o) exp{ B 37—, iy

At each iteration m ;than’be solved using a fixed point iterative scheme.

We have carried out experiments using the neighborhood EM (NEM) algorithm on the
bird dataset. We assume two clusters corresponding to the presence/absence of nests. When
B8 = 0, the NEM reduces to the classical EM algorithm. We varied the § parameters,
and the results are shown in Figure 7.15. The results lead us to conclude that including
spatial information in the clustering algorithm leads to a dramatic improvement of results
(Figure 7.15b compared with Figure 7.15a), but overemphasizing spatial information leads
to “oversmoothing” and degradation in accuracy.

7.5.3 Strategies for Clustering Large Spatial Databases

We now show how the K-medoid algorithm can be scaled by taking advantage of spatial index
structures that were introduced in chapter 4.

Assume we have a spatial database of n points which is too large for all the points to
reside in the main memory at the same time. We make the following additional assumptions:

1. A spatial index structure like the R*-tree or Z-order is available in the SDBMS.
2. c is the average number of points stored in a disk page.
3. k is the number of clusters.
4. The cost of the K-medoid algorithm is dominated by Step 2, the computation of
J(Myy1) — J(My).
Sampling via the R*-Tree

The leaves of the R*-tree correspond to collections of points associated with a minimum
bounding box (MBR). We can choose a representative sample of the n points by selecting
one sample point from each leaf node. A natural choice of the sample point is a data point
closest to the centroid of the MBR. Thus instead of n points the algorithm only has to
cluster, on the average, n/c points.

Choose Only Relavant Clusters

One way to compute J(Myy1)—J(M,), is to loop over all the nonmedoid points and calculate
the distance afresh. The cost associated with such a strategy can be prohibitive, given the
large size of the database. Fortunately only the nonmedoid points associated with the old
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medoid m and new medoid p in My = M U {p} — {m} contribute to J(M1) — J(M,).
Thus only the cluster points of m and p have to be fetched into the main memory. The
success of this approach is predicated upon the efficient retrieval of points corresponding to
a cluster.

One way to efficiently retrieve the cluster points of a medoid is to observe that the Voronos:
polygons associated with the medoids contain their cluster points. Thus a range query where
the query region is the Voronoi polygon will retrieve all the cluster points of a medoid m.
Such a query can be efficiently processed using either the R*-tree or the Z-order index.

7.6 Spatial Outlier Detection

Global outliers have been informally defined as observations in a data set which appear to be
inconsistent with the remainder of that set of data [Barnett and Lewis, 1994], or which devi-
ate so much from other observations so as to arouse suspicions that they were generated by
a different mechanism [Hawkins, 1980]. The identification of global outliers can lead to the
discovery of unexpected knowledge and has a number of practical applications in areas such
as credit card fraud, athlete performance analysis, voting irregularity, and severe weather
prediction. This section focuses on spatial outliers, i.e., observations which appear to be
inconsistent with their neighborhoods. Detecting spatial outliers is useful in many applica-
tions of geographic information systems and spatial databases. These application domains
include transportation, ecology, public safety, public health, climatology, and location based
services.

We model a spatial data set to be a collection of spatially referenced objects, such as
houses, roads, and traffic sensors. Spatial objects have two distinct categories of dimensions
along which attributes may be measured. Categories of dimensions of interest are spatial and
non-spatial. Spatial attributes of a spatially referenced object includes location, shape, and
other geometric or topological properties. Non-spatial attributes of a spatially referenced
object include traffic-sensor-identifiers, manufacturer, owner, age, and measurement read-
ings. A spatial neighborhood of a spatially referenced object is a subset of the spatial data
based on a spatial dimension, e.g., location. Spatial neighborhoods may be defined based
on spatial attributes, e.g., location, using spatial relationships such as distance or adjacency.
Comparisons between spatially referenced objects are based on non-spatial attributes.

A spatial outlier is a spatially referenced object whose non-spatial attribute values are
significantly different from those of other spatially referenced objects in its spatial neighbor-
hood. Informally, a spatial outlier is a local instability (in values of non-spatial attributes) or
a spatially referenced object whose non-spatial attributes are extreme relative to its neigh-
bors, even though they may not be significantly different from the entire population. For
example, a new house in an old neighborhood of a growing metropolitan area is a spatial
outlier based on the non-spatial attribute house age.

We use an example to illustrate the differences among global and spatial outlier detec-
tion methods. In Figure 7.16(a), the X-axis is the location of data points in one dimen-
sional space; the Y-axis is the attribute value for each data point. Global outlier detection
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methods ignore the spatial location of each data point, and fit the distribution model to
the values of the non-spatial attribute. The outlier detected using a this approach is the
data point G, which has an extremely high attribute value 7.9, exceeding the threshold of
20 =449+ 2% 1.61 = 7.71, as shown in Figure 7.16(b). This test assumes a normal
distribution for attribute values.

Attribute Values

Original Data Points

Number of Occurrence

N

Histogram of Attribute Values

U-20 -

- H+20

Z

e

0 2 4 6 8 10 12 14 16 18 20 -2 0
Location

2 4 6
Attribute Values

(a) An Example Data Set (b) Histogram

Figure 7.16: A Data Set for Outlier Detection

Tests to detect spatial outliers separte the spatial attributes from the non-spatial at-
tributes. Spatial attributes are used to characterize location, neighborhood, and distance.
Non-spatial attribute dimensions are used to compare a spatially referenced object to its
neighbors. Spatial statistics literature provides two kinds of tests, namely graphical tests
and quantitative tests. Graphical tests are based on visualization of spatial data which high-
light spatial outliers. Example methods include variogram clouds and Moran scatterplots.
Quantitative methods provide a precise test to distinguish spatial outliers from the remain-
der of data. Scatterplots [Luc, 1994] are a representative technique from the quantitative
family.

A variogram-cloud displays data points related by neighborhood relationships. For each
pair of locations, the square-root of the absolute difference between attribute values at the
locations versus the Euclidean distance between the locations are plotted. In data sets
exhibiting strong spatial dependence, the variance in the attribute differences will increase
with increasing distance between locations. Locations that are near to one another, but
with large attribute differences, might indicate a spatial outlier, even though the values
at both locations may appear to be reasonable when examining the data set non-spatially.
Figure 7.17(a) shows a variogram cloud for the example data set shown in Figure 7.16(a).
This plot shows that two pairs (P,S) and (@, S) in the left hand side lie above the main
group of pairs, and are possibly related to spatial outliers. The point S may be identified
as a spatial outlier since it occurs in both pairs (@, S) and (P, S). However, graphical tests
of spatial outlier detection are limited by the lack of precise criteria to distinguish spatial
outliers. In addition, a variogram cloud requires non-trivial post-processing of highlighted
pairs to separate spatial outliers from their neighbors, particularly when multiple outliers
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are present or density varies greatly.
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Figure 7.17: Variogram Cloud and Moran Scatterplot to Detect Spatial Outliers

A Moran scatterplot [Luc, 1995] is a plot of normalized attribute value (Z[f(i)] = f(z()ri;“f)
against the neighborhood average of normalized attribute values (W - Z), where W is the
row-normalized (i.e., > ; Wi; = 1) neighborhood matrix, (i.e., Wi; > 0 iff neighbor(s, 5)).
The upper left and lower right quadrants of Figure 7.17(b) indicate a spatial association of
dissimilar values: low values surrounded by high value neighbors (e.g., points P and @), and
high values surrounded by low values (e.g,. point S). Thus we can identify points(nodes)
that are surrounded by unusually high or low value neighbors. These points can be treated

as spatial outliers.

Definition: Moranguue- is a point located in upper left and lower right quadrants of Moran
scatterplot. This point can be identified by (Z[f(i)]) x (32;(WiZ[f(4)])) < 0.

A scatterplot [Luc, 1994] shows attribute values on the X-axis and the average of the
attribute values in the neighborhood on the Y-axis. A least square regression line is used to
identify spatial outliers. A scatter sloping upward to the right indicates a positive spatial
autocorrelation (adjacent values tend to be similar); a scatter sloping upward to the left
indicates a negative spatial autocorrelation. The residual is defined as the vertical distance
(Y-axis) between a point P with location (X),Y,) to the regression line Y = mX + b, that
is, residual € = Y, — (mX,, + b). Cases with standardized residuals, €siandara = <2<, greater
than 3.0 or less than -3.0 are flagged as possible spatial outliers, where u. and o, are the
mean and standard deviation of the distribution of the error term e. In Figure 7.18(a), a
scatter plot shows the attribute values plotted against the average of the attribute values in
neighboring areas for the data set in Figure 7.16(a). The point S turns out to be the farthest

from the regression line and may be identified as a spatial outlier.

Definition: Scatterplot,,,;., is a point with significant standardized residual error from the
least square regression line in a scatter plot. Assuming errors are normally distributed, then
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‘6 Me %

€standard = > @ is a common test. Nodes with standardized residuals €sandard =
from regressmn line Y = mX + b and greater than € or less than —6 are flagged as pos&ble
spatial outliers. The p. and o, are the mean and standard deviation of the distribution of
the error term e.

A location may also be compared to its neighborhood using the function S(z) = [f(z) —
Eyen)(f(y))], where f(x) is the attribute value for a location z, N(x) is the set of neighbors
of z, and Eycn()(f(y)) is the average attribute value for the neighbors of x. The statistic
function S(z) denotes the difference of the attribute value of a sensor located at x and the
average attribute value of z’s neighbors.

Spatial Statistic S(x) is normally distributed if the attribute value f(z) is normally
distributed. A popular test for detecting spatial outliers for normally distributed f(z) can
be described as follows: Spatial statistic Z) = | w) 22 Es| > f. For each location x with an
attribute value f(z), the S(z) is the difference between the attribute value at location z and
the average attribute value of z's neighbors, p; is the mean value of S(z), and o, is the value
of the standard deviation of S(x) over all stations. The choice of § depends on a specified

confidence level. For example, a confidence level of 95 percent will lead to 6 =~ 2.

Figure 7.18(b) shows the visualization of spatial statistic Z(,) method described earlier
in Section 1.1 and Example 1. The X-axis is the location of data points in one dimensional
space; the Y-axis is the value of spatial statistic Z,) for each data point. We can easily
observe that the point S has the Z,) value exceeding 3, and will be detected as spatial
outlier. Note the two neighboring points P and @ of S have Z,) values close to -2 due to
the presence of spatial outlier in their neighborhoods. Example 1 has already shown that
Zy() is a special case of S-outlier.
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Figure 7.18: Scatterplot and Spatial Statistic Z,) to Detect Spatial Outliers
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Figure 7.19: A network of traffic sensor stations

We now give an application domain case study of spatial outliers. The map shown in
Figure 7.19 shows a network of sensor stations embedded in Interstate highways surrounding
the Twin-Cities metropolitan area in Minnesota, USA. Each of the nine hundred stations
measure the traffic volume and occupancy on a particular stretch of the highway at regular
intervals. The natural notion of a neighborhood is defined in terms of graph connectivity
rather than Euclidean distance. Our objective is to determine stations which are “outliers”
based on the values of the volume and occupancy at each station.

The three neighborhood definitions we consider are shown in Figure 7.20. We consider
spatio-temporal neighborhoods because time along with space are crucial for the discovery
of spatial outliers. In Figure 7.20, {s1,t:} and {s3,t3} are spatial neighbors of of {ss,%5}
if s; and s3 are connected to s in a spatial graph. Two data points {ss,?3} are temporal
neighbors of {ss,t2} if t1,t, and t3 are consecutive time slots. In addition, we define a
neighborhood based on both space and time series as a spatial-temporal neighborhood. In
Figure 7.20, (s1,t1),(s1,%2), (s1,53), (s2,%1) are the spatial-temporal neighbors of (ss,1s) if
s; and sz are connected to sy in a spatial graph and t;,?5 and t3 are consecutive time slots.

The choice of the test statistic to probe the existence of outliers is the next task to
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Figure 7.20: Spatial and temporal neighborhoods

consider. In this application we used S(z) = [f(2) — Eyen)(f(y))], where f(z) is the
attribute value(volume or occupancy) for neighbors of z. If f(x) has a Normal distribution
then it can be shown the S(z) has a Normal distribution too(see Exercises). A data point
is considered an outlier if the z-score

Os

The choice of # depends on the specified confidence interval. For example, a confidence
interval of 95 percent will lead to 6 = 2.

The third and final task for detecting outliers is the design and application of an “efficient”
algorithm to calculate the test statistic and apply the outlier detection test. This a non-
trivial task because the size of typical data sets are too large to fit in the primary memory.
For example in the traffic data there are approximately one thousand sensors and they emit
a reading every five minutes. Thus for a six month time frame, and assuming each reading
generates 100 bytes of data, the size of the data set is approximately 100 x 12 x 24 x 180 x
1000 = 5 Gigabytes. Thus it becomes imperative that I/O efficient algorithms be used to
discover

The effectiveness of Z,,) method on the Minneapolis-St. Paul Twin-Cities traffic data
set is illustrated in the following example. Figure 7.21 shows one example of traffic flow
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outliers. Figures 7.21(a) and (b) are the traffic volume maps for I-35W north bound and
south bound, respectively, on 1/21/1997. The X-axis is a 5-minute time slot for the whole
day and the Y-axis is the label of the stations installed on the highway, starting from 1
on the north end to 61 on the south end. The abnormal white line at 2:45PM and the
white rectangle from 8:20AM to 10:00AM on the X-axis and between stations 29 to 34 on
the Y-axis can be easily observed from both (a) and (b). The white line at 2:45PM is an
instance of temporal outliers, where the white rectangle is a spatial-temporal outlier. Both
represent missing data. Moreover, station 9 in Figure 7.21(a) exhibits inconsistent traffic
flow compared with its neighboring stations, and was detected as a spatial outlier. Station
9 may be a malfunctioning sensor.
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Figure 7.21: Spatial outliers in traffic volume data
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7.7 Summary

Data mining is a rapidly developing area which lies at the intersection of database manage-
ment, statistics and artificial intelligent. Data mining provides semi-automatic techniques
for discovering unexpected patterns in very large quantities of data.

Spatial data mining is a niche area within data mining for the rapid analysis of spatial
data. Spatial data mining has can potentially influence major scientific challenges including
global climate change and genomics.

The distinguishing characteristic of spatial data mining can be neatly summarized by the
first law of geography: All things are related but nearby things are more related than distant
things. The implication of this statement is that the standard assumption of independence
and identically distributed (iid) random variables, which characterize classical data mining,
is not applicable for the mining of spatial data. Spatial statisticians have coined the word
spatial-autocorrelation to capture this property of spatial data.

The important techniques in data mining are : association rules, clustering, classification
and regression. Each of these techniques have to be modified before they can be used to mine
spatial data. In general there are two strategies available to modify data mining techniques
to make them more sensitive for spatial data: the underlying statistical model which is based
on the iid assumption can be corrected or the objective function which drives the search can
be modified to include a spatial term. The Spatial Autoregressive Regression technique is
an example of the first approach and the Neighborhood EM algorithm is an example of the
latter.
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7.8 Appendix: Bayesian Calculus

Probability theory provides a mathematical framework to deal with uncertainty. It is also a
cornerstone of data mining, because in data mining we are trying to generalize our findings
on the basis of a finite, albeit large, database.

Given a set of events (), the probability P is a function from 2 into [0, 1] which satisfies
the following two axioms:

1. P(Q) =1
2. If A and B are mutually exclusive events (like the rolling of two dice), then

P(AB) = P(A)P(B)

7.8.1 Conditional Probability

The notion of conditional probability is central to data mining. A conditional probability,
P(A|B) = a, means that, given the event B has occurred, the probability of event A is a.
Thus if event B has occurred and everything else is irrelevant to A, then P(A) = .

The basic rule for probability calculus is the following:

P(AB) = P(A|B)P(B) = P(B|A)P(A).

In words this statement says that the joint-probability P(AB) is the product of the condi-
tional (P(A|B) and the marginal P(B). A simple manipulation of the above rule results in
Bayes’s Theorem.
P(B|A)P(A)

P(B)

In the context of Bayes’s rule, P(A|B) is called the posterior probability, and the P(B) is
called the prior. Bayes’s rule allows the inversion of probabilities, which is the cornerstone of
classification. For example, this allows probabilities to be calculated on the test data based
on the probabilities calculated on the training data.

P(A|B) =

7.8.2 Maximum Likelihood

Suppose we know that a random variable A is governed by a normal distribution N(6), where
6 = (u, o) are the mean and standard deviation of the distribution. The goal of probability
theory is to study the chances of A in a sample space, given that # is fixed. In statistics, we
invert the problem (using Bayes’s Theorem) and study the chances of the parameter 6, given
that A has happened (fixed). The normal distribution(or any other distribution) N (A, #) as
a function of 6 (not z) is the likelihood function of #. We then want to choose # that has
the mazimum likelihood of generating the data A. This point of view connects a statistical
problem with differential calculus.
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Table 7.7: Database of facilities
Exercises

1. Consider the following database( 7.7) about entertainment facilities in different cities.

(a) Compute the support for item sets {a, b}, {c} and {a, b, c}.

(b) Compute the confidence for the association rules {a, b} — {c}.

(

(d

(e) Extract spatial association rules with a support more than 30 and a confidence
more than 70 percent from the following table. X represents lakes in the database
(the total number of lakes is 100). For each rule, write the support and the

)
)
¢) Compute the confidence for the association rules {c¢} — {a, b}.
) Why is the confidence not symmetric but support is?

)

confidence.
spatial predicate count
near(X,forest) 45
inside(X,state_park) 90
adjacent(X,federal land) 50
near(X,forest) and inside(X,state_park) 30
near(X,forest) and adjacent(X,federal _land) 20
near(X,forest) and inside(X,state_park) and adjacent(X,federal land) | 10

Rule support | confidence

lake(X) = near(forest)

)
lake(X) and inside(X, state_park) = near(X, forest_land)
)

)
lake(X) and inside(X, state_park) = adjacent(X,federal land)
lake(X) and inside(X, state_park)

and adjacent(X,federal_land) = near(forest)

(f) In the computation of J(M;1) — J(M;) in the K-medoid algorithm, why do only
the nonmedoid points of the m,(medoid-old) and m,,(medoid-new) in M;,; =
My U {m,} — {m,} have to fetched in the main memory?
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Hint: All the nonmedoid points satisfy one of the four following cases:

i. p > Cp, AIm € M, such thatd(p, m) < d(p, m,) = p € C(m)inM;,.

ii. p> Cp, AVM € My, d(p,m) < d(p, m,) = p € C(my)inM;.
iii. p 3 Cpp, A IMmy € Mysuch thatd(p, m;) < d(p, m,) = p € C(mq)inMyy.
iv. p 3 Cy,, A Imy € Mysuch that d(p, my) > d(p, my,) = p € C(my)inM;, ;.

(g) Assume all the clusters have the same size. What is the performance gain due to
the above approach?

2. Consider a dataset with N features and T transactions. How many distinct associations
can be enumerated, and how may distinct association rules can be found?

3. Which data mining technique would you use for following scenarios:

(a) An astronomer wants to determine if an unknown object in the sky is a special
kind of galaxy(i.e. bent-double galaxy).

(b) A meteorologist wants to predict the weather(temperature and precipitation) for
the Thanksgiving weekend.

(c) A urban planner who is designing a shopping mall wants to determine which
categories of stores tend to be visited together.

(d) A political analyst wants to group cities according to their voting history in last
twenty years.

(e) In order to plan to police patrols the public safety department wants to identify
hot-spots on a city map.

(f) Epidemiologists want to predict the spread and movement of the Blue Nile virus.
(g) Doctors want to determine if spatial location has an affect on the cancer-rate.

(h) Natural resource planners want to assess the total area of Pine forest stands using
remotely sensed images.

4. Compare and constrast:

(a) association rules vs. statistical correlation.
(b) auto-correlation vs. cross-correlation.
(c) classification vs. location prediction.

(d) Hot-Spots vs. Clusters.

5. Consider the following set of nine points: (0, 0), (0,1), (1,1),(1,0), (2, 3)(5,5), (5,6), (6,6), (6,5).
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(a) Assuming all the points belong to a single cluster. Calculate the mean and the
medoid of the cluster.

(b) Compare the mean and the medoid as the most representative point of the cluster.
Use average distance from the representative point to all points in the cluster as
a comparison metric.

(c) Consider the scenario when the first four points are in one cluster and the last
four are in the second cluster. Compute means as representative points for these
clusters. Which cluster should the remaining point ((2, 3)) be assigned to?

6. What is special about spatial data mining relative to mining relational data? Is it
adequate to materialize spatial features to be used as input to classical data mining
algorithms/models?

7. What is special about spatial statistics relative to statistics?

8. Which of the following spatial features show positive spatial auto correlation? Why?
(Is there a physical/scientific reason?)
Elevation slope, water content, temperature, soil type, population density, annual pre-
cipitation (rain, snow).

9. Classify the following spatial point functions into classes of positive spatial autocorre-
lation, no spatial autocorrelation, and negative spatial autocorrelation:

(a) flz,y)=1.
(b)

_J 1, if |z +y] is even,
flay) = { 0, otherwise.

(©) flz,y) = (= 20)” + (y = v0)*.
(d) f(z,y) is a random number from [0, 1].

10. Discuss the following assertion from an expert on marketing data analysis about mining
numeric data sets: ”"The only data mining techniques one needs is linear regression, if
features are selected carefully.”

11. Compute Moran’s I for the gray-scale image shown in Figure 7.14a.



