Chapter 3

Spatial Query Languages

Introduction

A query language, the principal means of interaction with the database, is a core requirement
of a DBMS. A popular commercial query language for relational database management
systems (RDBMS) is the structured query language (SQL). It is partly based on the formal
query language, relational algebra, and it is easy to use, intuitive, and versatile. Since spatial
database management systems are an example of an extensible DBMS and deal with both
spatial and nonspatial data, it is natural to seek for an extension of SQL to incorporate
spatial data.

As shown in the previous chapter, the relational model has limitations in effectively
handling spatial data. Spatial data is “complex”, involving a melange of polygons, lines and
points, and the relational model is geared for dealing with simple data types like integers,
strings, dates, and so forth.

Constructs from object-oriented programming such as user-defined types and data and
functional inheritance, have found immediate applications in the modeling of complex data.
The widespread use of the relational model and SQL for applications involving simple
datatypes combined with the functionality of the object-oriented model has led to the birth of
a new “hybrid” paradigm for database management systems, the object-relational database
management system (OR-DBMS).

A corollary to this new-found interest in OR-DBMS is the desire to extend SQL with
object functionality. This effort has materialized into a new OR-DBMS standard for SQL:
SQL3. Since we are dealing with spatial data, we will examine the spatial extensions of SQL.

A unique feature of spatial data is that the “natural” medium of interaction with the user
is visual rather than textual. Hence any spatial query language should support a sophisti-
cated graphical-visual component. Having said that, we will focus here on the nongraphical
spatial extensions of SQL. In Section 3.1, we introduce the World database, which will form
the basis of all query examples in the chapter. Sections 3.2 and 3.3 provide a brief overview
of relational algebra and SQL respectively. Section 3.4 is devoted to a discussion on the
spatial requirements for extending SQL. We also introduce the Open GIS (OGIS) standard

81

82 CHAPTER 3. SPATIAL QUERY LANGUAGES

for extending SQL for geospatial data. In Section 3.5, we show how common spatial queries
can be posed in OGIS extended SQL. In Section 3.6, we introduce SQL3 and Oracle8’s
implementation of a subset of SQL3.

3.1. STANDARD DATABASE QUERY LANGUAGES 83

3.1 Standard Database Query Languages

Users interact with the data embedded in a DBMS using a query language. Unlike traditional
programming languages, database query languages are relatively easy to learn and use. In
this section we describe two such query languages. The first, Relational Algebra (RA), is the
formal of the two and typically not implemented in commercial databases. The importance
of RA lies in the fact that it forms the core of SQL, the most popular and widely implemented
database query language.

3.1.1 World Database

We introduce relational algebra (RA) and SQL with the help of an example database. We
introduce a new example database here to provide some diversity in examples and exercises.
The World database consists of three entities: Country, City, and River. The pictogram-
enhanced ER diagram of the database and the example tables are shown in Figure 3.1 and
Table 3.1 respectively. The schema of the database is shown below. Note that an underlined
attribute is a primary key. For example, Name is a primary key in Country table.

Country(Name: varchar(35), Cont: varchar(35), Pop: integer,
GDP:Integer, Life-Exp: integer, Shape:char(13))
City(Name: varchar(35), Country: varchar(35), Pop: integer,
Captial:char(1), Shape:char(9))

River(Name: varchar(35), Origin: varchar(35), Length : integer,
Shape: char(13))

The Country entity has six attributes. The Name of the country and the continent
(Cont) it belongs to are character strings of maximum length thirty-five. The population
(Pop) and the gross domestic product (GDP) are integer types. The GDP is the total value
of goods and services produced in a country in one fiscal year. Life-Exp attribute represents
the life expectancy in years (rounded to the nearest integer) for residents of a country. The
Shape attribute needs some explanation. The geometry of a country is represented in the
Shape column of Table 3.1. In relational databases, where the datatypes are limited, the
Shape attribute is a foreign key to a shape table. In an object-relational or object-oriented
database, the Shape attribute will be a polygon abstract datatype (ADT). Since, for the
moment, our aim is to introduce basic RA and SQL we will not query the Shape attribute
until Section 3.4.

The City relation has five attributes: Name, Country, Pop, Capital, and Shape. The
Country attribute is a foreign key into the Country table. Capital is a fixed character type
of length one; a city is a capital of a country or it is not. The Shape attribute is a foreign key
into a point shape table. As for the Country relation, we will not query the Shape column.

The four attributes of the River relation are Name, Origin, Length, and Shape. The
Origin attribute is a foreign key into the Country relation and specifies the country where
the river originates. The Shape attribute is a foreign key into a line string shape table. To

84 CHAPTER 3. SPATIAL QUERY LANGUAGES

determine the country of origin of a river, the geometric information specified in the Shape
attribute is not sufficient. The overloading of Name across tables can be resolved by qual-
ifying attribute with tables using a dot notation table.attribute. County.Name, city.Name,
and river.Name uniquely identify Name attribute inside different tables. We also need infor-
mation about the direction of the river flow. In Chapter 7 we will discuss querying spatial
networks where directional information is important.

ION
PITAL-OF J
aTy COUNTRY RIVER

Figure 3.1: The ER diagram of the World database

3.2 Relational Algebra

Relational algebra (RA) is a formal query language associated with the relational model. An
algebra is a mathematical structure consisting of two distinct sets of elements, (2,,02,). Q4
is the set of operands and €, is the set of operations. An algebra must satisfy many axioms
but the most crucial is that the result of an operation on an operand must remain in €Q,.
A simple example of an algebra is the set of integers. The operands are the integers and
the operations are addition and multiplication. In chapter 8 we will discuss other kinds of
algebra associated with raster and image objects.

In RA there is only one type of operand and six basic operations. The operand is a
relation (table), and the six operations are select, project, union, cross-product, difference,
and intersection. We now introduce some of the basic operations in detail.

3.2.1 The Select and Project Operations

To manipulate data in a single relation, relational algebra provides two operations: select
and project. The select operation retrieves a subset of rows of the relational table, and the
project operation extracts a subset of the columns. For example, to list all the countries
in the Country table which are in North-America (NAM), we use the following relational
algebra expression:

Ocont=‘North-America’ (Country)

3.2. RELATIONAL ALGEBRA 85

The result of this operation is shown in Table 3.2a. The rows retrieved by the select
operation o are specified by the comparison selection operator, which in this example is
cont="‘North-America’. The schema of the input relation is not altered by the select operator.
The formal the syntax of the select operation is

(Relation).

0 <selection operator >

Subsets of columns for all rows in a relation are extracted by applying the project oper-
ation, w. For example, to retrieve the names of all countries listed in the Country table, we
use the following expression:

TName(Country).

The formal syntax of the project operation is

T< list of attributes > (Relation)

We can combine the select and the project operations. The following expression yields
the names of countries in North America. See Table 3.2c¢ for the result.

TName (PCont=*North-America’) (Country)

3.2.2 Set Operations

At its most fundamental level a relation is a set. Thus all set operations are valid operations
in the relational algebra. Set operations are applied to relations which are union-compatible.
Two relations are union-compatible if they have the same number of columns, have the same
domain, and if the columns appear in the same order from left to right.

e Union: If R and S are relations, then RU S returns all tuples which are either in R or
S. For example, we can use the union operation to list the countries which are either
in North America or have a river originating in them:

1. R=TName (OCont:‘North—America’(Countr}’))
2. § = 7Qrigin(River)
3. RUS.

The resulting relation is shown in Table 3.4a. Notice that the attributes R.Name
and S.Origin have the same domain, since R.Origin refers to County.Name. This is
sufficient for R and S to be union-compatible.

e Difference: R — S returns all tuples in R that are not in S. The difference operation
can be used, for example, to list all countries in North America which have no river
(listed in the River table) originating in them. The resulting relation is shown in Table
3.43b.

86

CHAPTER 3. SPATIAL QUERY LANGUAGES

1. R = T™Name (OCOnt:‘North—America’(Countr}’))
2. S = TOrigin(River)
3. R-6S.

Intersection: For two union-compatible relations R and S, the intersection operation
R N S returns all tuples which occur both in R and S. Note that this operation,
though convenient, is redundant: it can be derived from the difference operation,
RNS =R-(R-S8). To list countries which are in South America and also have
a river originating in them, we use the intersection operation. The result is shown in
Table 3.4c.

1. R = T™Name (UCont:‘South America’(countrY))
2. R = TQrigin(River)
3. RN S.

Cross-Product: This operation applies to any pair of relations, not just those that
are union-compatible. R xS returns a relation whose schema contains all the attributes
of R followed by those of S. For simplicity, an abstract example is shown in Table 3.3.
Notice the use of the cascading dot notation to distinguish the attributes of the two
relations.

3.2.3 Join Operation

The select and project operations are useful for extracting information from a single relation.
The join operation is used to query across different relational tables. A join operation can
be thought of as a cross-product followed by the select operation. The general join operation
is called the conditional join. An important and special case of the conditional join is called
the natural join.

Conditional Joins

The general conditional join, X ., between two relations R and S is expressed as follows:

Rx.S=0.(RxS).

The ¢ condition usually refers to the attributes of both R and S. For example, we can use
the join operation to query for the names of the countries whose population is greater than
Mexico’s (see Table 3.5):

1. R = TName, Pop(Country)
2. S = R. (S is duplicate copy of R)

3.3. BASIC SQL PRIMER 87

3. Form the cross-product R x S. The schema of the R x S relation is

| R x S | R.Name | R.Pop | S.Name | S.Pop |

4. Apply condition; that is, the population of a country in relation S is greater than the
population of Mexico.

U=Rx5= 9(R.Name = ‘Mexico’) A (R.Pop > S.Pop) (R x5)

Natural Join

An important special case of the conditional join is the natural join. In a natural join only
the equality selection condition is applied to the common attributes of the two relations.
For example, a natural join can be used to find the populations of countries where rivers
originate. The steps follow:

1. Rename the Country relation C and the River relation R.
2. Form the cross-product C' X R.

3. Join the two relations on the attributes C.Name and R.Origin. The domains of these
two attributes are identical,

C' XC.Name = R.Origin R.

4. In a natural join the selection condition is unambiguous; therefore, it does not have to
be explicitly subscripted in the join formula.

5. The final result is obtained by projecting onto the Name and Pop attributes:

TName, Pop(C ™ R).

3.3 Basic SQL Primer

Structured query language (SQL) is a commercial query language first developed at IBM.
Since then, it has become the standard query language for RDBMS. SQL is a declarative
language; that is, the user of the language only has to specify the answer rather than a
procedure to retrieve the answer.

The SQL language has two separate components: the data definition language (DDL)
and the data modification language (DML). The DDL is used to create, delete, and mod-
ify the definition of the tables in the database. In the DML, queries are posed and rows
inserted and deleted from tables specified in the DDL. We now provide a brief introduc-
tion to SQL. Our aim is to provide enough understanding of the language so that readers
can appreciate the spatial extensions that we will discuss in Section 3.4. A more de-
tailed and complete exposition of SQL can be found in any standard text on databases
[Ullman and Widom, 1999, Elmasri and Navathe, 2000].

88 CHAPTER 3. SPATIAL QUERY LANGUAGES

3.3.1 Data Definition Language

Creation of the relational schema and addition and deletion of the tables are specified in the
data definition language (DDL) component of SQL. For example, the City schema intro-
duced in Section 3.2 is defined below in SQL. The Country and River tables are defined
in Table 3.6.

CREATE TABLE CITY {
Name VARCHAR(35),
Country VARCHAR(35),
Pop INT,
Capital CHAR(1)
Shape CHAR(13)
PRIMARY KEY Name }

Explanation: The CREATE TABLE clause is used to define the relational schema. The

name of the table is CITY. The table has four columns, and the name of each column and its
corresponding datatype must be specified. The Name and Country attributes must be ASCII
character strings of less than thirty five characters. Population is of the type integer and
Capital is an attribute which is a single character Y or N. In SQL92 the possible datatypes
are fixed and cannot be user-defined. We do not give the complete set of datatypes, which
can be found in an text on standard databases. Finally, the Name attribute is the primary
key of the relation. Thus each row in the table must have a unique value for the Name
attribute. Tables no longer in use can be removed from the database using the DROP TABLE
command. Another important command in DDL is ALTER TABLE for modifying the schema
of the relation.

3.3.2 Data Manipulation Language

After the table has been created as specified in DDL, it is ready to accept data. This task,
which is often called “populating the table,” is done in the DML component of SQL. For
example, the following statement adds one row to the table River:

INSERT INTO River(Name, Origin, Length)
VALUES(‘Mississippi’, ‘USA’, 6000)

If all the attributes of the relation are not specified, then default values are automatically
substituted. The most often used default value is NULL. An attempt to add another row in
the River table with Name = ‘Mississippi’ will be rejected by the DBMS because of the
primary key constraint specified in the DDL.

The basic form to remove rows from the table is as follows:

3.3. BASIC SQL PRIMER 89

DELETE FROM TABLE WHERE < CONDITIONS >

For example, the following statement removes the row from the table River that we
inserted above

DELETE FROM River
WHERE Name = ‘Mississippi’

3.3.3 Basic Form of an SQL Query

Once the database schema has been defined in the DDL component and the tables popu-
lated, queries can be expressed in SQL to extract relavant data from the database. The basic
syntax of an SQL query is extremely simple:

SELECT tuples
FROM relations
WHERE tuple-constraint

This form is equivalent to the relational algebra (RA) expression consisting of 7, o, and
X. SQL has more clauses related to aggregation (e.g., GROUP BY, HAVING), ordering results
(e.g., ORDER BY), etc. In addition SQL allows the formulation of nested queries. We will
illustrate these with a set of examples.

3.3.4 Example Queries in SQL

We now give examples of how to pose different types of queries in SQL. Our purpose is to
give a flavor of the versatality and power of SQL. All the tables queried are from the WORLD
example introduced in Section 3.1.1. The results of the different queries can be found in
Tables 3.7 and 3.8.

1. Query: List all the cities and the country they belong to in the CITY table.

SELECT Ci.Name, Ci.Country
FROM CITY Ci

Comments: The SQL expression is equivalent to the project operation in RA. The
WHERE clause is missing in the SQL expression because there is no equivalent of the
select operation in RA required in this query. Also notice the optional cascading
dot notation. The CITY table is renamed, Ci and its attributes are referenced as
Ci.Name and Ci.Country.

90

CHAPTER 3. SPATIAL QUERY LANGUAGES

. Query: List the names of the capital cities in the CITY table.

SELECT
FROM CITY
WHERE CAPTIAL=‘Y’

Comments: This SQL expression is equivalent to the select operation in RA. It is
unfortunate that in SQL the select operation of RA is specified in the WHERE
and not the SELECT clause! The * in SELECT means that all the attributes
in the CITY table must be listed.

. Query: List the names of countries in the Country relation where the life-expectancy

is less than 70 years.

SELECT Co.Name, Co.Life-Exp
FROM Country Co
WHERE Co.Life-Exp < 70

Comments: This expression is equivalent to 7 o ¢ in RA. The projected attributes,
Co.Name and Co.Life-Exp in this example, are specified in the SELECT clause.
The selection condition is specified in the WHERE clause.

. Query: List the capital cities and populations of countries whose GDP exceeds one

trillion dollars.

SELECT Ci.Name, Co.Pop

FROM City Ci, Country Co

WHERE Ci.Country = Co.Name AND
Co.GDP > 1000.0 AND
Ci.Capital= ‘Y’

Comments: This is the standard way of expressing the join operation. In this
case the two tables City and Country are matched on their common attributes
Ci.country and Co.name. Furthermore, two selection conditions are specified
separately on the City and Country table. Notice how the cascading dot nota-
tion alleviated the potential confusion that might have arisen as a result of the
attribute names in the two relations.

. Query: What is the name and population of the capital city in the country where the

St. Lawrence River originates?

SELECT Ci.Name, Ci.Pop

FROM City Ci, Country Co, River R

WHERE R.Origin = Co.Name AND
Co.Name = Ci.Country AND
R.Name = ‘St. Lawrence’ AND
Ci.Capital= ‘Y’ AND

3.3.

BASIC SQL PRIMER 91

Comments: This query involves a join between three tables. The River and Country
tables are joined on the attributes Origin and Name. The Country and the City
tables are joined on the attributes Name and Country. There are two selection
conditions on the River and the City tables respectively.

. Query: What is the average population of the non-capital cities listed in the City

table?

SELECT AVG(Ci.Pop)
FROM City Ci
WHERE Ci.Capital= ‘N’

Comments: The AVG (Average) is an example of an aggregate operation. These
operations are not available in RA. Besides AVG other aggregate operations are
COUNT, MAX, MIN, and SUM. The aggregate operations expand the functionality
of SQL because they allow computations to be performed on the retrieved data.

Query: For each continent, find the average GDP.

SELECT Co.Cont Avg(Co.GDP) AS Continent-GDP
FROM Country Co
GROUP BY Co.Cont

Comments: This query expression represents a major departure from the basic SQL
query format. This is because of the presence of the GROUP BY clause. The
GROUP BY clause partitions the table on the basis of the attribute listed in the
clause. In this example there are two possible values of Co.cont: NAM and SAM.
Therefore the Country table is partitioned into two groups. For each group, the
average GDP is calculated. The average value is then stored under the attribute
Continent-GDP as specified in the SELECT clause.

Query: For each country in which at least two rivers originate, find the length of the
smallest river.

SELECT R.Origin, MIN(R.length) AS Min-length
FROM River R

GROUP BY R.Origin

HAVING COUNT(*) > 1

Comments: This is similar to the previous query. The difference is that the HAVING
clause allows selection conditions to be enforced on the different groups formed
in the GROUP BY clause. Thus only those groups are considered which have more
than one member.

Query: List the countries whose GDP is greater than Canada’s.

92 CHAPTER 3. SPATIAL QUERY LANGUAGES

SELECT Co.Name
FROM Country Co

WHERE Co.GDP > ANY (SELECT Col.GDP
FROM Country Col
WHERE Col.Name = ‘Canada’)

Comments: This is an example of a nested query. These are queries which have other
queries embedded in them. A nested query becomes mandatory when an inter-
mediate table, which does not exist, is required before a query can be evaluated.
The embedded query typically appears in the WHERE clause, though it can appear,
albeit rarely, in the FROM and the SELECT clauses. The ANY is a set comparison
operator. Consult a standard database text for a complete overview of nested
queries.

3.3.5 Summary of Relational Algebra and SQL

Relational algebra is a formal database query language. While it is typically not imple-
mented in any commercial database management system, it forms an important core of SQL.
Structured query language (SQL) is the most widely implemented database language. SQL
has two components: the data definition language (DDL) and data manipulation language
(DML). The schema of the database tables are specified and populated in the DDL. The
actual queries are posed in DML. We have given a brief overview of SQL. More information
can be found in any standard text on databases.

3.3. BASIC SQL PRIMER

93

COUNTRY | Name Cont | Pop (millions) | GDP (billions) | Life-Exp Shape
Canada | NAM 30.1 658.0 77.08 | Polygonid-1
Mexico | NAM 107.5 694.3 69.36 | Polygonid-2
Brazil SAM 183.3 1004.0 65.60 | Polygonid-3
Cuba NAM 11.7 16.9 75.95 | Polygonid-4
USA NAM 270.0 8003.0 75.75 | Polygonid-5
Argentina | SAM 36.3 348.2 70.75 | Polygonid-6
(a) Country
CITY Name Country | Pop (millions) | Capital | Shape
Havana Cuba 2.1 Y Pointid-1
Washington, D.C. USA 3.2 Y Pointid-2
Monterrey Mexico 2.0 N Pointid-3
Toronto Canada 3.4 N Pointid-4
Brasilia Brazil 1.5 Y Pointid-5
Rosario Argentina 1.1 N Pointid-6
Ottawa Canada 0.8 Y Pointid-7
Mexico City Mexico 14.1 Y Pointid-8
Buenos Aires Argentina 10.75 Y Pointid-9
(b) City
RIVER Name Origin | Length (kilometers) Shape
Rio Parana | Brazil 2600 LineStringid-1
St. Lawrence | USA 1200 LineStringid-2
Rio Grande | USA 3000 LineStringid-3
Mississippi USA 6000 LineStringid-4
(c) River

Table 3.1: The tables of the World database

94 CHAPTER 3. SPATIAL QUERY LANGUAGES

Name | Cont | Pop (millions) | GDP (billions) | Life-Exp Shape
Canada | NAM 30.1 658.0 77.08 | Polygonid-1
Mexico | NAM 107.5 694.3 69.36 | Polygonid-2
Cuba | NAM 11.7 16.9 75.95 | Polygonid-4
USA | NAM 270.0 8003.0 75.75 | Polygonid-5
(a) Select
Name
Canada Name
Mexico Canada
Brazil Mexico
Cuba Cuba
USA USA
Argentina
(¢) Se-
(b) Project lect and
project

Table 3.2: Results of two basic operations in relational algebra: select and project

| Rx S|RA|RB|[S.C][SD

[R[RA[RB| [S[SC[SD 4, |B, |G | D
Al B1 01 D1 A1 B1 02 D2
A2 B2 02 D2 A2 BQ 01 D1

Ay | By |Gy | Dy

(a) Relation R (b) Relation S
(c) Rx S

Table 3.3: The cross-product of relations R and S

NAME

Canada NAME

Mexico Canada NAME
Brazil Mexico Brazil
Cuba Cuba
USA (c) Inter-

(b) Dif- section
(a) Union ference

Table 3.4: The results of set operations

3.3. BASIC SQL PRIMER

‘ R x S| R.Name | R.Pop | S.Name S.Pop

Mexico | 107.5 | Canada 30.1
Mexico | 107.5 | Mexico 107.5

Mexico | 107.5 | Brazil 183.3
Mexico | 107.5 | Cuba 11.7
Mexico | 107.5 | USA 270.0

Mexico | 107.5 | Argentina | 36.3

(a) A portion of R x S

R.Name | R.Pop | S.Name S.Pop
Mexico | 107.5 | Canada 30.1
Mexico | 107.5 | Cuba 11.7
Mexico | 107.5 | Argentina | 36.3

(b) The select operation on R x S

Table 3.5: Steps of the conditional join operation

CREATE TABLE Country {
Name VARCHAR(35),
Cont VARCHAR(35),
Pop INT,
GDP INT
Shape CHAR(15)
PRIMARY KEY Name }

CREATE TABLE Country {
Name VARCHAR(35),
Origin VARCHAR(35),
Length INT,
Shape CHAR(15)
PRIMARY KEY Name }

b) River schema
(a) Country schema ()

Table 3.6: The Country and River schema in SQL

95

96

CHAPTER 3. SPATIAL QUERY LANGUAGES

Name Country | Pop(millions) | Capital | Shape
Havana Cuba 2.1 Y Point
Washington, D.C. USA 3.2 Y Point
Brasilia Brazil 1.5 Y Point
Ottawa Canada 0.8 Y Point
Mexico City Mexico 14.1 Y Point
Buenos Aires Argentina 10.75 Y Point
(a) Queryl: Select
Name Counry
Havana Cuba
Washington, D.C. USA
Monterrey Mexico Name | Tife-exp
Toronto Canada -
— - Mexico | 69.36
Brasilia Brazil Brazil 65.60
Rosario Argentina :
Ottawa Canada (¢) Query3: Select
Mexico City Mexico and project
Buenos Aires Argentina

(b) Query2: Project

Table 3.7: Tables from the select, project, and select and project operations

3.3. BASIC SQL PRIMER

CI'N?.me Co.Pop Ci.Name Ci.Pop
Brassilia 183.3 Washineton. D.C 39
Washington, D.C. | 270.0 i Al '
(8) Query 4 (b) Query 5
Cont | Continent-Pop
A"e”;g;'POp NAM 2343.05
. SAM 676.1
(c) Query 6 (d) Query 7
Co.Name
Origin | Min-length Mexico
USA 1200 Brazil
USA
(e) Query 8
(f) Query 9

Table 3.8: Results of example queries

97

98 CHAPTER 3. SPATIAL QUERY LANGUAGES

3.4 Extending SQL for spatial data

Although they are powerful query-processing languages, relational algebra and SQL have
their shortcomings. The main one is that these languages can handle only simple datatypes:
for example, integers, dates, and strings. Spatial database applications must handle complex
datatypes like points, lines, and polygons. Database vendors have responded in two ways:
They have either used blobs to store spatial information, or they have created a hybrid system
in which spatial attributes are stored in operating-system files via a GIS. SQL cannot process
data stored as blobs, and it is the responsibility of the application techniques to handle data
in blob form [Stonebraker and Moore, 1997]. This solution is neither efficient nor aesthetic
because the data depends upon the host-language application code. In a hybrid system,
spatial attributes are stored in a separate operating-system file and thus are unable to take
advantage of traditional database services like query language, concurrency control, and
indexing support.

Object-oriented systems have had a major influence on expanding the capabilities of
DBMS to support spatial (complex) objects. The program to extend a relational database
with object-oriented features falls under the general framework of object-relational database
management systems (OR-DBMS). The key feature of OR-DBMS is that they support a
version of SQL, SQL3/SQL99, which supports the notion of user-defined types (as in Java
or C++). Our goal is to study SQL3/SQL99 enough so that we can use it as a tool to
manipulate and retrieve spatial data.

The principle demand of spatial SQL is to provide a higher abstraction of spatial data
by incorporating concepts closer to our perception of space [Egenhofer, 1994]. This is
accomplished by incorporating the object-oriented concept of user-defined abstract data
types (ADT). An ADT is a user-defined type and its associated functions. For example, if we
have land parcels stored as polygons in a database, then a useful ADT may be a combination
of the type polygon and some associated function (method), say, adjacent. The adjacent
function may be applied to land parcels to determine if they share a common boundary.
The term abstract is used because the end-user need not know the implementation details of
the associated functions. All end-users need to know is the interface, that is, the available
functions and the data types for the input parameters and output results.

3.4.1 The OGIS Standard for Extending SQL

The open GIS (OGIS) consortium was formed by major software vendors to formulate an
industry-wide standard related to GIS interoperability. OGIS spatial data model can be
embeded in a variety of programming languages, e.g., C, Java, SQL etc. We will focus on
SQL embedding in this section.

The OGIS is based on a geometry data model shown in Figure 2.2. Recall that the data
model consists of a base-class, GEOMETRY, which is non-instantiable (i.e., objects cannot be
defined as instances of GEOMETRY), but specifies a spatial reference system applicable to all
its subclasses. The four major subclasses derived from the GEOMETRY superclass are Point,
Curve Surface and GeometryCollection. Associated with each class is set of operations

3.4. EXTENDING SQL FOR SPATIAL DATA 99

Basic Functions | SpatialReference() | Returns the underlying coordinate system of the geometry
Envelope() Returns the minimum orthogonal bounding rectangle of the
geometry
Export () Returns the geometry in a different representation
IsEmpty () Returns true if the geometry is a null set.
IsSimple() Returns true if the geometry is simple (no self-intersection)
Boundary () Returns the boundary of the geometry
Topological/ Equal Returns true if the interior and boundary of the two
Set geometries are spatially equal
Operators Disjoint Returns true if the boundaries and interior do not intersect.
Intersect Returns true if the geometries are not disjoint
Touch Returns true if the boundaries of two surfaces intersect
but the interiors do not.
Cross Returns true if the interior a surface intersects with a curve
Within Returns true if the interior of the given geometry does not intersect
with the exterior of another geometry.
Contains Tests if the given geometry contains another given geometry
Overlap Returns true if the interiors of two geometries have non-empty
intersection
Spatial Distance Returns the shortest distance between two geometries
Analysis Buffer Returns a geometry that consists of all points whose distance from
the given geometry is less than or equal to the specified distance
ConvexHull Returns the smallest convex geometric set enclosing the geometry
Intersection Returns the geometric intersection of two geometries
Union Returns the geometric union of two geometries
Difference Returns the portion of a geometry which does not intersect with
another given geometry
SymmDiff Returns the portions of two geometries which do

not intersect with each other

Table 3.9: A sample of operations listed in the OGIS standard for SQL [OGIS, 1999]

which acts on instances of the classes. A subset of important operations and their definitions
are listed in Table 3.9.

The operations specified in the OGIS standard fall into three categories:

1. Basic operations applicable to all geometry datatypes. For example, SpatialReference
returns the underlying coordinate system where the geometry of the object was de-
fined. Examples of common reference systems include the well-known latitude and
longitude system and the often-used Universal Traversal Mercator (UTM).

2. Operations which test for topological relationships between spatial objects. For ex-
ample, intersect tests whether the interior (see Chapter 2) of two objects has a

non-empty set intersection.

3. General operations for spatial analysis. For example, distance returns the shortest
distance between two spatial objects.

100 CHAPTER 3. SPATIAL QUERY LANGUAGES

3.4.2 Limitations of the Standard

The OGIS specification is limited to the object model of space. As shown in the previous
chapter, spatial information is sometimes most naturally mapped onto a field-based model.
OGIS is developing consensus models for field datatypes and operations. In Chapter 8 we
introduce some relevant operations for the field-based model which may be incorporated into
a future OGIS standard.

Even within the object model, the OGIS operations are limited for simple
SELECT-PROJECT-JOIN queries. Support for spatial aggregate queries with the GROUP BY
and HAVING clauses does pose problems (see Exercise 4). Finally, the focus in the OGIS
standard is exclusively on basic topological and metric spatial relationships. Support for a
whole class of metric operations, namely, those based on the direction predicate (e.g., north,
south, left, front) is missing.

3.5 Example Queries Which Emphasize Spatial Aspects

Using the OGIS datatypes and operations, we formulate SQL queries in the World database
which highlight the spatial relationships between the three entities: Country, City, and
River. We first redefine the relational schema, assuming that the OGIS datatypes and op-
erations are available in SQL.

CREATE TABLE Country(
Name varchar(30),
Cont varchar(30),
Pop Integer,
GDP Number,
Shape Polygon);

(a)

CREATE TABLE River(
Name varchar(30),
Origin varchar(30),
Length Number,
Shape LineString);

(b)

CREATE TABLE City (
Name varchar(30),
Country varchar(30),
Pop integer,
Shape Point);

(c)

Table 3.10: Basic datatypes

1. Query: Find the names of all countries which are neighbors of USA in the Country

3.5. EXAMPLE QUERIES WHICH EMPHASIZE SPATIAL ASPECTS 101

table.

SELECT C1.Name AS "Neighbors of USA"

FROM Country C1, Country C2

WHERE Touch(C1.Shape, C2.Shape) = 1 AND
C2.Name = ‘USA’

Comments: The Touch predicate checks if any two geometric objects are adjacent to
each other without overlapping. It is a useful operation to determine neighboring
geometric objects. The Touch operation is one of the eight topological and set
predicates specified in the OGIS Standard. One of the nice properties of topolog-
ical operations is that they are invariant under many geometric transformations.
In particular the choice of the coordinate system for the World database will not
affect the results of topological operations.

Topological operations apply to many different combinations of geometric types.
Therefore in an ideal situation these operations should be defined in an “over-
loaded” fashion. Unfortunately, many object-relational DBMS do not support
object-oriented notions of class inheritance and operation overloading. Thus for
all practial purposes, these operations must be defined individually for each com-
bination of applicable geometric types.

2. Query: For all the rivers listed in the River table, find the countries through which
they pass.

SELECT R.Name C.Name
FROM River R, Country C
WHERE Cross(R.Shape, C.Shape) = 1

Comments: The Cross is also a topological predicate. It is most often used to check
for the intersection between a LineString and Polygon objects, as in this exam-
ple, or a pair of LineString objects.

3. Query: Which city listed in the City table is closest to each river listed in the River
table?

SELECT C1.Name, R1.Name
FROM City C1, River R1
WHERE Distance (C1.Shape, R1.Shape) <
(SELECT Distance(C2.Shape, R2.Shape)
FROM City C2, River R2
WHERE Cl.Name <> C2.Name
AND R1.Name <> R2.Name)

Comments: The Distance is a real-valued binary operation. It is being used once in
the WHERE clause and again in the SELECT clause of the subquery. The Distance
function is defined for any combination of geometric objects.

102

CHAPTER 3. SPATIAL QUERY LANGUAGES

4. Query: The St. Lawrence river can supply water to cities which are within 300 km.

List the cities which can use water from the St. Lawrence.

SELECT Ci.Name
FROM City Ci, River R
WHERE Overlap(Ci.Shape, Buffer(R.Shape,300)) = 1 AND

R.Name = ‘St. Lawrence’

Comments: The Buffer of a geometric object is a geometric region centered at the

object whose size is determined by a parameter in the Buffer operation. In the
example the query dictates the size of the buffer region. The buffer operation
is used in many GIS applications including flood-plain management and urban
and rural zoning laws. A graphical depiction of the buffer operation is shown in
Figure 3.2. In the figure, Cities A and B are likely to be affected if there is a flood
on the river, while City C will remain unaffected.

Figure 3.2: The Buffer Of a River and Points Within and Outside

5. Query: List the name, population, and area of each country listed in the Country

table.

SELECT C.Name, C.Pop, Area(C.Shape) AS "Area"
FROM Country C

Comments: This query illustrates the use of the Area function. This function is only

applicable for Polygon and MultiPolygon geometry types. Calculating the Area
clearly depends upon the underlying coordinate system of the World database.
For example, if the shape of the Country tuples is given in terms of latitude and
longitude, then an intermediate coordinate transformation must be be performed
before the Area can be calcuated. The same care must be taken for Distance
and the Length function.

6. Query: List the length of the rivers in each of the countries they pass through.

SELECT R.Name, C.Name , Length(Intersection(R.Shape, C.Shape))

AS "Length"

FROM River R, Country C
WHERE Cross(R.Shape, C.Shape) = 1

3.5. EXAMPLE QUERIES WHICH EMPHASIZE SPATIAL ASPECTS 103

Comments: The return value of the Intersection binary operation is a geometry
type. The Intersection operation is different from the Intersects function,
which is a topological predicate to determine if two geometries intersect. The
Intersection of a LineString and Polygon can either be a Point or LineString
type. If a river does pass through a country, then the result will be a LineString.
In that case, the Length function will return the length of the river in each country
it passes through.

7. Query: List the GDP and the distance of a country’s capital city to the equator for
all countries.

SELECT Co.GDP, Distance(Point(0,Ci.y),Ci.Shape) AS "Distance"
FROM Country Co, City Ci
WHERE Co.Name = Ci.Country AND

Ci.Capital = ‘Y’

Comments: Searching for implicit relationships between datasets stored in a database
is outside the scope of standard database functionality. Current DBMS are geared
toward online transaction processing (OLTP), while this query, as posed, is in the
realm of online analytical processing (OLAP). OLAP itself falls under the label
of data mining, and we explore this topic in Chapter 8. At the moment the best
we can do is list each capital and its distance to the equator.

Point (0, Ci.y) is a point on the equator which has the same longtiude as that
of the current capital instantiated in Ci.Name.

8. Query: List all countries, ordered by number of neighboring countries.

SELECT Co.Name, Count(Col.Name)
FROM Country Co, Country Col
WHERE Touch(Co.Shape, Col.Shape)
GROUP BY Co.Name

ORDER BY Count(Col.Name)

Comments: In this query all the countries with at least one neighbor are sorted on the
basis of number of neighbors.

Query: List the countries with only one neighboring country. A country is a neighbor of
another country if their land masses share a boundary. According to this definition,
island countries, like Iceland, have no neighbors.

SELECT Co.Name

FROM Country Co, Country Col
WHERE Touch(Co.Shape, Col.Shape))
GROUP BY Co.Name

HAVING Count (Col.Name) = 1

104

SELECT Co.Name

CHAPTER 3. SPATIAL QUERY LANGUAGES

FROM Country Co
WHERE Co.Name IN
(SELECT Co.Name
FROM Country Co, Country Col

WHERE
GROUP BY Co.Name

HAVING Count (*) = 1

Touch(Co.Shape, Col.Shape))

Comments: Here we have a nested query in the FROM clause. The result of the query within
the FROM clause is a table consisting of pairs of countries which are neighbors. The
GROUP BY clause partitions the new table on the basis of the names of the countries.
Finally the HAVING clause forces the selection to be paired to those countries which
have only one neighbor. The HAVING clause plays a role similar to the WHERE clause
with the exception that it must include aggregate functions like count, sum, max,

and min.

Query: Which country has the maximum number of neighbors?

CREATE VIEW Neighbor AS

SELECT
FROM
WHERE
GROUP BY

Co.Name, Count(Col.Name) AS num neighbors
Country Co, Country Col

Touch(Co.Shape, Col.Shape)

Co.Name

SELECT Co.Name, num neighbors

FROM Neighbor

WHERE num neighbor
FROM Neighbor)

(SELECT Max(num_neighbors)

Co.Name | Co.GDP | Dist-to-Eq(in Km). |

Havana 16.9 2562
Washington D.C. 8003 4324
Brasilia 1004 1756
Ottawa 658 5005
Mexico City 694.3 2161
Buenos Aires 348.2 3854

Table 3.11: Results of query 7

3.6. TRENDS: OBJECT-RELATIONAL SQL 105

3.6 Trends: Object-Relational SQL

The OGIS standard specifies the datatypes and their associated operations which are con-
sidered essential for spatial applications like GIS. For example, for the Point datatype an
important operation is Distance which computes the Distance between two points. The
length operation is not a semantically correct operation on a Point datatype. This is
similar to argument that the concatenation operation makes more sense for Character
datatype than for say, the Integer type.

In relational databases the set of datatypes is fixed. In object-relational and object-
oriented databases this limitation has been relaxed and there is built in support for user-
defined datatypes. While this feature is clearly an advantage, especially when dealing with
non-traditional database applications like GIS, the burden of constructing syntactically and
semantically correct datatypes is now on the database application developer. To share some
of the burden, commercial database vendors have introduced application-specific “packages”
which provide a seamless interface to the database user. For example, Oracle markets a GIS
specific package called the Spatial Data Cartridge.

SQL3/SQL99, the proposed SQL standard for OR-DBMS allows user-defined datatypes
within the overall framework of a relational database. Two features of the SQL3 standard
which may be beneficial for defining user-defined spatial datatypes are described below.

3.6.1 A Glance at SQL3

The SQL3/SQL99 proposes two major extensions to SQL2/SQL92, the current accepted
SQL draft.

1. Abstact Datatype (ADT): An ADT can be defined using a CREATE TYPE statement.
Like classes in object-oriented technology, an ADT consists of attributes and member
functions to access the values of the attributes. Member functions can potentially
modify the value of the attributes in the datatype and thus can also change the database
state.

An ADT can appear as a column type in a relational schema. To access the value
that the ADT encapsulates, a member function specified in the CREATE TYPE must be
used. For example the following script creates a type Point with the definition of one
member function Distance:

CREATE TYPE Point (
x NUMBER,
y NUMBER,

FUNCTION Distance(:u Point,:v Point)
RETURNS NUMBER

)

The colons before u and v signifies that these are local variables.

106 CHAPTER 3. SPATIAL QUERY LANGUAGES

2. Row Type: A row type is a type for a relation. A row type specifies the schema of a
relation. For example the following statement creates a row type Point.

CREATE ROW TYPE Point (
x NUMBER,
y NUMBER);

We can now create a table which instantiates the row type. For example:

CREATE TABLE Pointtable of TYPE Point;

In this text we emphasise the use of ADT instead of row type. This is because the ADT as a
column type naturally harmonizes the definition of an OR-DBMS as an extended relational
database.

3.6.2 Object-Relational Schema

Oracle8 is an object-relational DBMS introduced by the Oracle Corporation. Similar prod-
ucts are available from other database companies, e.g., IBM. It implements a part of the
SQL3 Standard. The ADT is called the “object type” in this system.

Below we describe how the three basic spatial datatypes: Point, LineString, and
Polygon are constructed in Oracle8.

CREATE TYPE Point AS OBJECT (
x NUMBER,
y NUMBER,
MEMBER FUNCTION Distance(P2 1IN Point) RETURN NUMBER,
PRAGMA RESTRICT_REFERENCES (Distance, WNDS);

The Point type has two attributes, x and y, and one member function, Distance. PRAGMA
alludes to the fact that the Distance function will not modify the state of the database:
WNDS (Write No Database State). Of course in the OGIS standard many other operations
related to the Point type are specified, but for simplicity we have shown only one. After
its creation the Point type can be used in a relation as an attribute type. For example, the
schema of the relation City can be defined as follows:

3.6. TRENDS: OBJECT-RELATIONAL SQL 107

CREATE TABLE City (
Name varchar(30),
Pop int,
Capital char(1),
Shape Point);

Once the relation schema has been defined, the table can be populated in the usual way.
For example, the following statement adds information related to Brasilia, the capital of
Brazil, into the database

INSERT INTO CITY(‘Brasilia’, ‘Brazil’, 1.5, ‘Y’,
Point(-55.4,-23.2));

The construction of the LineString datatype is slightly more involved than that of the
Point type. We begin by creating an intermediate type, LineType:

CREATE TYPE LineType AS VARRAY(500) OF Point;

Thus LineType is a variable array of Point datatype with a maximum length of 500. Type
specific member functions cannot be defined if the type is defined as a Varray. Therefore
we create another type LineString

CREATE TYPE LineString AS OBJECT (
Num_of_Points INT,
Geometry LineType,
MEMBER FUNCTION Length(SELF IN) RETURN NUMBER,
PRAGMA RESTRICT_REFERENCES(Length, WNDS);

The attribute Num of Points stores the size (in terms of points) of each instance of the
LineString type. We are now ready to define the schema of the River table

CREATE TABLE River(
Name varchar(30),
Origin varchar(30),
Length number,
Shape LineString);

While inserting data into the River table, we have to keep track of the different datatypes
involved.

108 CHAPTER 3. SPATIAL QUERY LANGUAGES

INSERT INTO RIVER(‘Mississippi’, ‘USA’, 6000,
LineString(3, LineType(Point(1,1),Point(1,2),Point(2,3)))

The Polygon type is similar to LineString. The sequence of type and table creation
and data insertion is given in Table 3.12.

CREATE TYPE PolyType AS VARRAY(500) OF Point

(a)

CREATE TYPE Polygon AS OBJECT (
Num_of _Points INT,
Geometry PolyType ,
MEMBER FUNCTION Area(SELF IN) RETURN NUMBER,
PRAGMA RESTRICT_REFERENCES(Length, WNDS);

(b)

CREATE TABLE Country(
Name varchar(30),
Cont varchar(30),
Pop int,
GDP number,
Life-Exp number,
Shape LineString);

()

INSERT INTO Country(‘Mexico’, ‘NAM’, 107.5, 694.3, 1004.0,
Polygon(23, Polytype(Point(1,1), ..., Point(1,1)))

(d)

Table 3.12: The sequence of creation of the Country table

3.6.3 Example Queries

1. Query: List all the pairs of cities in the City table and the distances between them.

3.6. TRENDS: OBJECT-RELATIONAL SQL 109

SELECT C1.Name, Cl.Distance(C2.Shape) AS ‘‘Distance’’
FROM City C1, City C2
WHERE Cl.Name <> C2.Name

Comments: Notice the object-oriented notation for the Distance function in the
SELECT clause. Contrast it with the predicate notation used in Section 3.5:
Distance(C1.Shape, C2.Shape). The predicate in the WHERE clause ensures
that the Distance function is not applied between two copies of the same city.

2. Query: Validate the length of the rivers given in the River table, using the geometric
information encoded in the Shape attribute.

SELECT R.Name, R.Length, R.Length() AS ‘‘Derived Length’’
FROM River R

Comments: This query is being used for data validation. The length of the rivers is
already avaliable in the Length attribute of the River table. Using the Length()
function we can check the integrity of the data in the table.

3. Query: List the names, populations, and areas of all countries adjacent to the USA.

SELECT C(C2.Name, C2.Pop, C2.Area() AS ‘‘Area’’

FROM Country C1, Country C2

WHERE * C1.Name = ‘USA’ AND
C1.Touch(C2.Shape) = 1

Comments: The Area() function is a natural function for the Polygon ADT to sup-
port. Along with Area(), the query also invokes the Touch topological predicate.

110 CHAPTER 3. SPATIAL QUERY LANGUAGES

3.7 Summary

In this chapter we discussed database query languages, covering the following topics.

Relational algebra (RA) is the formal query language language associated with the relational
model. It is rarely, if ever, implemented in a commercial system but forms the core of struc-
tured query language(SQL).

SGL is the most widely implemented query language. It is a declarative language, in that
the user only has to specify the result of the query rather than means of a arriving at the
result. SQL extends RA with many other important funtions, including aggregate functions
to analytically process queried data.

The OGIS standard recommends a set of spatial datatypes and functions which are consid-
ered crucial for spatial data querying.

SQL3/SQL 1999 is the standardization platform for the object-relational extension of SQL.
The draft is not specific to GIS or spatial databases but covers general object-relational
databases. The most natural scenario is that the OGIS standard recommendations will be
implemented in a subset of SQL3.

3.7. SUMMARY 111
Bibliographic Notes

3.1, 3.2, 3.3 A complete exposition of relational algebra and SQL can be found in any intro-
ductory text in databases, including [Elmasri and Navathe, 2000, Ullman and Widom, 1999,
Ramakrishnan, 1998].

3.4, 3.5 Extensions of SQL for spatial applications are explored Egenhofer 1994; and Rous-
sopolulos et al., 1987. The OGIS document [OpenGIS, 1998], is an attempt to har-
monize the different versions of SQL for geospatial For an example of query languages
in supporting spatial data analysis, see [Lin and Huang, 2001].

3.6 SQL3 is the prosposed standard for the object-relational extension of SQL. Though
still in draft form, subsets of the draft have already been implemented in commercial
products, including Oracle’s Oracle8 and IBM’s DB2. A copy of the current draft is
available at http://www.nssn.org.

112 CHAPTER 3. SPATIAL QUERY LANGUAGES
Exercises

For all queries in Exercises 1 and 2 refer to Table 3.1.

1. Express the following queries in relational algebra.

(a) Find all countries whose GDP is greater than five hundred billion dollars but less
than one trillion dollars.

(b) List the life-expectancy in countries which have rivers originating in them.

(c) Find all cities which are either in South America or whose population is less than
two million.

(d) List all cities which are not in South America.

2. Express in SQL the queries listed in Exercise 1.

3. Express the following queries in SQL.

(a) Count the number of countries whose population is less than one hundred million.

(b) Find the country in North America with the smallest GDP. Do not use the MIN
function. Hint: nested query.

(c) List all countries which are in North America or whose capital cities have a pop-
ulation of less than five million.

(d) Find the country with the second highest GDP.

4. The Reclassify is an aggreate function which combines spatial geometries on the
basis of nonspatial attributes. It creates new objects from the existing ones, generally
by removing the internal boundaries of the adjacent polygons whose chosen attribute
is same. Can we express the Reclassify operation using OGIS operations and SQL92
with spatial datatypes?

5. Discuss the geometry data model of Figure 2.2. Given that on a “world” scale, cities
are represented as point datatypes, what datatype should be used to represent the
countries of the world. Note: Singapore, the Vatican, and Monaco are countries.

What are the implementation implications for the spatial functions recommended by
the OGIS standard.

6. [Egenhofer, 1994], proposes a list of requirements for extending SQL for spatial ap-
plications. The requirements are shown below. Which of these the recommendations
have been accepted in the OGIS SQL standard? Discuss possible reasons for ignoring
the others.

3.7. SUMMARY 113

Spatial ADT An abstract data type spatial hierarchy with
associated operations.

Graphical presentation | Natural medium of interaction with

spatial data.

Result combination Combining the results of a sequence of queries

Context Place result in context by including information not
explicitly requested.

Content examination Provide mechanisms to guide the evolution of

map drawing

Selection by pointing Pose and constranintsby pointing to maps.

Display manipulations | Varying graphical presentation of spatial objects and

their parts

Legend Descriptive legend

Labels Labels for understanding of drawings

Selection of map scale | Produced map should allow user to continue applying their
skills on interpreting actual size of objects drawn and the
selection of a specific scale of rendering

Area of interest Tools to restrict the area of interest to a particular geography

7. The OGIS standard includes a set of topological spatial predicates. How should
the standard be extended to include directional predicates like East, North,
North-East, and so forth. Note that the directional predicates are inherently fuzzy:
“Where does North-East end and East begin?”

8. This exercise surveys the dimension-extended nine-intersection model: DE-9IM. The
DE-9IM extends Egenhofer’s nine-intersection model introduced in Chapter 2. The
template matrix of DE-9IM is shown below.

dim(A°NB°) dim(A°0B°) dim(A°NB")
[9(A,B) = dim(OANB°) dim(0ANJIB) dim(0ANB~)
dim(A~-NB°) dim(A~NoB) dim(A~NB7)

The key difference between 9IM and DE-9IM is that instead of testing whether each
entry in the matrix is empty or non-empty, in the DE-9IM only the dimension of the
geometric object is required. The dimension of planar two-dimensional objects can
take four values: —1 for empty-set, 0 for points, 1 for lines, and 2 for nonzero area
objects. In many instances it does not matter what the value of the matrix entry is.
The following is the list of values that the matrix entries can span.

T: X and Y must intersect. dim(X NY) =0,1,2. X and Y are either the interior,
exterior, or boundary of A and B respectively.

F: dim(XNY)=—1. X and Y must not intersect.

114

CHAPTER 3. SPATIAL QUERY LANGUAGES

*

: It does not matter if the intersection exists. dim(X NY)={-1,0,1,2}
0: dim(XNY)=0
1: dim(XNY)=1

2: dim(XNY) =2

Below is the signature matrix of two equal objects.

T x F
* * I
* k%

(a) What is the signature matrix (matrices) of the touch and cross topological oper-
ations. Note that signature matrix depends on the combination of the datatypes.
The signature matrix of a point/point combination is different from that of a
multipolygon/multipolygon combination.

(b) What operation (and combination of datatypes) does the following signature ma-
trix represent.

1 = T
* x F
T x x*

(c) Consider the sample figures shown Figure 3.3. What are signature matrices in
9IM and DE-9IM. Is DE-9IM superior to 9IM? Discuss.

S

@ (b)

Figure 3.3: Sample objects [Clementini and Felice, 1995]

9. Express the following queries in SQL, using the OGIS extended datatype and functions.

3.7. SUMMARY 115

(a) List all cities in the City table which are within five thousand miles of Washington,
D.C.

(b) What is the length of Rio Paranas in Argentina and Brazil?
(c) Do Argentina and Brazil share a border?

(d) List the countries which lie completely south of the equator.

10. Given the schema:

RIVER(NAME:char, FLOOD-PLAIN:polgon, GEOMETRY :linstring)
ROAD(ID:char, NAME:char, TYPE:char, GEOMETRYlinstring);
FOREST(NAME:char, GEOMETRY:polygon)
LAND-PARCELS(ID:integer, GEOMETRY:polygon, county:char)

Transform the following queries into SQL using the OGIS specified datatypes and op-
erations.

(a) Name all the rivers which cross Itasca State Forest.
(b) Name all the tar roads that intersect Francis Forest.

(c) All roads with stretches within the flood-plain of the river Montana are susceptible
to flooding. Identify all these roads.

(d) No urban development is allowed within 2 miles of the Red river and 5 miles of
the Big Tree State Park. Identify the land-parcels and the county they are in
which cannot be developed.

11. Study the compiler tools such as YACC (Yet Another Compiler Compiler). Develop a
syntax scheme to generate SQL3 data definition statements from an ERD annotated
with pictograms.

116 CHAPTER 3. SPATIAL QUERY LANGUAGES

3.8 Appendix: State Park Database

The State Park database consists of two entities: Park and Lake. The attributes of these
two entities and their relationships are shown in Figure 3.4. The ER diagram is mapped
into the relational schema shown below. The entities and their relationships are materialized
in Table 3.13.

StatePark(Sid: integer, Sname: string, Area: float, Distance: float)
Lake(Lid: integer, Lname: string, Depth: float, Main-Catch: string)

ParkLake(Lid: integer, Sid: integer, Fishing-Opener: date)

The above schema represents three entities: StatePark, Lake, and ParkLake. StatePark
represents all the state parks in Minnesota, and its attributes are a unique national identity
number, Sid; the name of the park, Sname; its area in sq. km., Area; and the distance of
the park from Minneapolis, Distance. The Lake entity also has a unique id, Lid, a name,
Lname; the average depth of the lake, Depth; and the primary fish in the lake, Main-catch.
The ParkLake entity is used to integrate queries across the two entites StatePark and Lake.
ParkLake identifies lakes which are in the state parks. Its attributes are Lid, Sid and
the date the fishing season commences on the given lake, Fishing-Opener. Here we are
assuming that different lakes have different Fishing-Openers.

Fishing-Opener

Park

Lake
Area Distance

Figure 3.4: The ER diagram of the StatePark database

3.8. APPENDIX: STATE PARK DATABASFE 117
| Park | Sid | Sname Area | Distance
S1 Itasca 150.0 52
S2 | Woodbury | 255.0 75
S3 | Brighton | 175.0 300
(a) Park
‘ Lake | Lid Lngme Depth | Main-Cgggh ‘ ParkLake | Lid | Sid | Fishing-Opener
100 | Lino 20.0 Walleye
100 | S1 05/15
200 | Chaska | 30.0 Trout
200 | S1 05/15
300 | Sussex | 45.0 Walleye 3001 S3 06/01
400 | Todd 28.0 Bass
(b) Lake (c) ParkLake

Table 3.13: Tables for the StatePark database

3.8.1 Example Queries in Relational Algebra

We now give examples that show how the relational operators defined above can be used
to retrieve and manipulate the data in a database. Our format is as follows: We first list
the query in plain English; then we give the equivalent expression in relational algebra, and
finally we make comments about the algebraic expression, including an alternate form of the
algebraic expression.

Query: Find the name of the StatePark which contains the Lake with Lid num-
ber 100.

Wspname(StatePark M Opia—100(ParkLake))

Comments: We begin by selecting the set of tuples in ParkLake with Lid 100.
The resultant set is naturally joined with the relation StatePark on the key Sid.
The result is projected onto the StatePark name, Spname. This query can be
broken into parts using the renaming operator p. The renaming operator is used
to name the intermediate relations that arise during the evaluation of a complex
query. It can also be used to rename the attributes of a relation. For example,

p(Newname(1 — Att1), Oldname)

renames the relation 01dname to the Newname. Also the first attribute, counting
from left to right, of the Newname is called Att1.

118 CHAPTER 3. SPATIAL QUERY LANGUAGES

With this naming convention we can break up the above query into parts as fol-
lows:

p(Templ, or4—100(Park Lake))
p(Temp2, Templ X StatePark)

T Spname (Teme)

An alternate formulation of the query is

Tspname (OLid=100(ParkLake » StatePark)

From the point of view of implementation, this query is more expensive than the
previous one because it is performing a join on a larger set, and join is the most
expensive of all the five operators in relational algebra.

1. Query: Find the names of the StateParks with Lakes where the Main-Catch

1s Trout.

Wspname(StatePark x (ParkLake x OMain-Catch — ‘Trout’(Lake)))

Comments: Here we are applying two join operators in succession. But first we
reduce the set size by first selecting all Lakes with Main-Catch of Trout. Then
we join the resultant on the Lid key with ParkLake. This is followed by another
join with StatePark on Sid. Finally we project the answer on the StatePark
name.

2. Query: Find the Main-Catch of the lakes which are in Itasca State Park

TMain-Catch (l:ake x (ParkLake » g0 ame— Ttasca’ (StatePark)))

Comments: This query is very similar to the one above.

Query: Find the names of StateParks with at least one lake.

Wspname(StatePark x ParkLake)

Comment: The join on Sid creates an intermediate relation in which tuples from
the StatePark relation are attached to the tuples from ParkLake. The result is
then projected onto Spname.

3.8. APPENDIX: STATE PARK DATABASE 119

3. Query: List the names of StateParks with lakes whose main catch is either bass
or walleye.

p(TempLake, o\ ain-Catch = Bass' (Lake) U oOMain-Catch = ‘Walleye’(Lake)
Tspname (TempLake x ParkLake » StatePark)

Comments: Here we use the union operator for the first time. We first select
lakes with Main—-Catch of bass or walleye. We then join on Lid with ParkLake and
join again on Sid with StatePark. We get the result by projecting on Spname.

Query: Find the names of StateParks which have both bass and walleye as the
Main-Catch wn their lakes.

p(TempBass, Tspname (0 Main—Catch=Bass' X ParkLake w StatePark))
p(TempW all, wspname(0Main—Catch=Walleyer X ParkLake w StatePark))
TempBass N TempW all

Comment: This query formulation is barely right!

Query: Find the names of the StateParks which have at least two lakes.

cp(Temp, wsid, Spname,Lia(StatePark w ParkLake))
p(Temppair, Temp x Temp)

TSpname (Sidl=Sid2)A(Lidl£Lid2) 1 €MPpair.

Query: Find the identification number, Sid, of the StateParks which are at
least fifty miles away from Minneapolis with lakes where the Main-Catch is not
trout.

7rsid(Gdistance>5OStatePa'rk) -

Tsid((Tmain —catch='Trouy Lake X ParkLake x StatePark

120 CHAPTER 3. SPATIAL QUERY LANGUAGES

