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1 What is a Spatial Database System?

In various fields there is a need to manage geometric, geographic, or spatial data, which means data
related to space. The space of interest can be, for example, the two-dimensional abstraction of (parts
of) the surface of the earth – that is, geographic space, the most prominent example –, a man-made
space like the layout of a VLSI design, a volume containing a model of the human brain, or another
3d-space representing the arrangement of chains of protein molecules. At least since the advent of
relational database systems there have been attempts to manage such data in database systems.
Characteristic for the technology emerging to address these needs is the capability to deal with large
collections of relatively simple geometric objects, for example, a set of 100 000 polygons. This is
somewhat different from areas like CAD databases (solid modeling etc.) where geometric entities are
composed hierarchically  into complex structures, although the issues are certainly related.

Several terms have been used for database systems offering such support like pictorial, image,
geometric, geographic, or spatial database system. The terms “pictorial” and “image” database
system arise from the fact that the data to be managed are often initially captured in the form of digital
raster images (e.g. remote sensing by satellites, or computer tomography in medical applications).
The term “spatial database system” has become popular during the last few years, to some extent
through the series of conferences “Symposium on Large Spatial Databases (SSD)” held bi-annually
since 1989 [Buch89, GünS91, AbO93], and is associated with a view of a database as containing sets
of objects in space rather than images or pictures of a space. Indeed, the requirements and techniques
for dealing with objects in space that have identity and well-defined extents, locations, and relation-
ships are rather different from those for dealing with raster images. It has therefore been suggested to
clearly distinguish two classes of systems called spatial database systems and image database
systems, respectively [GünB90, Fra91]. Image database systems may include analysis techniques to
extract objects in space from images, and offer some spatial database functionality, but are also
prepared to store, manipulate and retrieve raster images as discrete entities. In this survey we only
discuss spatial database systems in the restricted sense. Several papers in this special issue address
image database problems and so complement the survey.

What is a spatial database system? We are not aware of a generally accepted definition. The following
reflects the author's personal view:

(1) A spatial database system is a database system.
(2) It offers spatial data types (SDTs) in its data model and query language.
(3) It supports spatial data types in its implementation, providing at least spatial indexing and

efficient algorithms for spatial join.
Let us briefly justify these requirements. (1) sounds trivial, but emphasizes the fact that spatial, or
geometric, information is in practice always connected with “non-spatial” (e.g. alphanumeric) data.
Nobody cares about a special purpose system that is not able to handle all the standard data modeling
and querying tasks. Hence a spatial database system is a full-fledged database system with additional
capabilities for handling spatial data. (2) Spatial data types, e.g. POINT, LINE, REGION, provide a
fundamental abstraction for modeling the structure of geometric entities in space as well as their rela-
tionships (l intersects r), properties (area(r) > 1000), and operations (intersection(l, r) – the part of
l lying within r). Which types are used may, of course, depend on a class of applications to be
supported (e.g. rectangles in VLSI design, surfaces and volumes in 3d). Without spatial data types a
system does not offer adequate support in modeling. (3) A system must at least be able to retrieve
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from a large collection of objects in some space those lying within a particular area without scanning
the whole set. Therefore spatial indexing is mandatory. It should also support connecting objects from
different classes through some spatial relationship in a better way than by filtering the cartesian
product (at least for those relationships that are important for the application).

The purpose of this survey is to present in a coherent way some of the fundamental problems and
their solutions in spatial database systems. The focus is on describing solutions that have been found
rather than on listing many open problems. We consider spatial DBMS to provide the underlying data-
base technology for geographic information systems (GIS) and other applications. As such, they can
offer only some basic capabilities; it is not claimed that a spatial DBMS is directly usable as an
application-oriented GIS.

In the following four sections we consider modeling, querying, tools for implementation (data
structures and algorithms), and system architecture for spatial database systems.

2 Modeling

2.1 What needs to be represented?

The main application driving research in spatial database systems are GIS. Hence we consider some
modeling needs in this area which are typical also for other applications. Examples are given for two-
dimensional space, but almost everywhere, extension to the three- or more-dimensional case is pos-
sible. There are two important alternative views of what needs to be represented:

(i) Objects in space:  We are interested in distinct entities arranged in space each of which has
its own geometric description.

(ii) Space: We wish to describe space itself, that is, say something about every point in space.
The first view allows one to model, for example, cities, forests, or rivers. The second view is the one
of thematic maps describing e.g. land use or the partition of a country into districts. Since raster
images say something about every point in space, they are also closely related to the second view. We
can reconcile both views to some extent by offering concepts for modeling (i) single objects , and (ii)
spatially related collections of objects.

For modeling single objects, the fundamental abstractions are point, line, and region. A point repre-
sents (the geometric aspect of) an object for which only its location in space, but not its extent, is
relevant. For example, a city may be modeled as a point in a model describing a large geographic area
(a large scale map). A line (in this context always to be understood as meaning a curve in space,
usually represented by a polyline, a sequence of line segments) is the basic abstraction for facilities for
moving through space, or connections in space (roads, rivers, cables for phone, electricity, etc.). A
region is the abstraction for something having an extent in 2d-space, e.g. a country, a lake, or a
national park. A region may have holes and may also consist of several disjoint pieces. Figure 1
shows the three basic abstractions for single objects.

Figure 1: The three basic abstractions point, line, and region
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The two most important instances of spatially related collections of objects are partitions (of the
plane) and networks (Figure 2). A partition can be viewed as a set of region objects that are required
to be disjoint. The adjacency relationship is of particular interest, that is, there exist often pairs of
region objects with a common boundary. Partitions can be used to represent thematic maps. A net-
work can be viewed as a graph embedded into the plane, consisting of a set of point objects, forming
its nodes, and a set of line objects describing the geometry of the edges. Networks are ubiquitous in
geography, for example, highways, rivers, public transport, or power supply lines.

Figure 2: Partitions and networks

Obviously, we have mentioned only the most fundamental abstractions to be supported in a spatial
DBMS (for GIS, in this case). For example, other interesting spatially related collections of objects
are nested partitions (e.g. a country partitioned into provinces partitioned into districts etc.) or a
digital terrain (elevation) model. For a deeper discussion of modeling requirements for GIS see
[Smit87, Fra91]. In the sequel we shall consider how the basic abstractions mentioned above can be
embedded into a DBMS data model.

2.2 Organizing the Underlying Space: Discrete Geometric Bases

As a basis for geometric modeling very often Euclidean space is used or implicitly assumed. Essen-
tially this means that a point in the plane is given by a pair of real numbers. Unfortunately, in practice,
there are no real numbers in computers but only finite and mostly rather limited approximations. This
leads to a lot of problems in geometric computation [GrY86, Fran84]. For example, the intersection
point of two lines will be rounded to the nearest grid (that is, representable) point; a subsequent test
whether the intersection point is on one of the lines yields false. If the fact that finite representations
are used is ignored in modeling, these problems are left to the implementor of a spatial DBMS, which
will rather inevitably lead to errors in query processing. Some authors have therefore suggested to
introduce a discrete geometric basis for modeling as well as implementation [FraK86, EgFJ89,
GütS93a].

The approach of [FraK86, EgFJ89] is based on combinatorial topology. Basic concepts are those of a
simplex, and a simplicial complex. For each dimension d, a d-simplex is a minimal object in that
dimension, hence a 0-simplex is a point, a 1-simplex is a line segment, a 2-simplex a triangle, a 3-
simplex a tetrahedron, etc. Any d-simplex is composed of (d+1) simplices of dimension d-1. For
example, a triangle, a 2-simplex, is composed of 3 1-simplices (line segments), a line segment as a 1-
simplex is composed of 2 0-simplices (points). The components used in the composition of a simplex
are called its faces (for a triangle its edges and vertices). A simplicial complex is a finite set of
simplices such that the intersection of any two simplices in the set is a face. Figure 3 shows a 1-
complex and a 2-complex.
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Figure 3: Two simplicial complexes

An alternative proposal of a discrete geometric basis is the concept of a realm [GütS93a]. A realm
conceptually represents the complete underlying geometry of one particular application space (in two
dimensions). Formally, a realm is a finite set of points and line segments over a discrete grid such that
(i) each point or end point of a line segment is a grid point, (ii) each end point of a line segment is also
a point of the realm, (iii) no realm point lies within a line segment (which means on it without being
an end point), and (iv) no two realm segments intersect except at their end points. Figure 4 illustrates
a realm.

Figure 4: A realm

With both approaches, the idea is now to form the geometries of application objects by composing the
primitives of the underlying geometric base. One can easily see how the point, line, or region objects
of Section 2.1 can be described in terms of simplices or of the elements of a realm. Furthermore, if
spatially related collections of objects such as partitions or networks are represented on top of such a
geometric base, then consistency of shared geometries and to some extent relationships between
objects are automatically provided by this base layer. Numeric robustness problems can be treated
within the geometric base layer so that spatial data types or algebras defined on top enjoy nice closure
properties not only in theory but also in an implementation [GütS93a].

2.3 Spatial Data Types

Systems of spatial data types, or  spatial algebras, can capture the fundamental abstractions for
point, line and region described above together with relationships between them and operations for
composition (e.g. forming the intersection of regions). We have stated in Section 1 that they are a
mandatory part of the data model for a spatial DBMS, so that indeed, all proposals for models and
query languages as well as prototype systems (see Section 5) offer them in some form. Spatial types
and operations have, for example, been described in [ChF80, LiN87, JoC88, RoFS88, OrM88,
Güt88, SvH91], some dedicated work towards a formal definition has been reported in [ScV89,
GaNT91, GütS93b]. As an example spatial algebra we briefly consider the ROSE algebra [GütS93b].

The ROSE algebra offers three data types called points, lines, and regions, whose values are realm-
based, that is, composed from elements of a realm. To describe these values, one needs intermediate
notions of an R-block and and an R-face. For a given realm R, an R-block is a connected set of line
segments of R. An R-face is essentially a polygon with holes that can be defined over realm seg-
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ments. Then a value of type points is a set of R-points, a value of type lines is a set of disjoint R-
blocks, and a value of type regions is a set of edge-disjoint R-faces (edge-disjoint means two faces
may have a common vertex, but no common edge).

The type system of the ROSE algebra is based on second-order signature [Güt93] which allows one
to describe polymorphic operations by quantification over kinds (which can here just be viewed as
type sets). Two such sets are EXT = {lines, regions} and GEO = {points, lines, regions}. There
are four classes of operations; for each of them we show a few examples:

(1) Spatial predicates expressing topological relationships:

∀ geo in GEO. ∀ ext1, ext2 in EXT. ∀ area in regionsarea-disjoint.
geo × regions → bool inside
ext1 × ext2 → bool intersects, meets
area × area → bool adjacent, encloses

Here the type variable geo ranges over the three types in kind GEO, so that the inside operation can
compare a points, a lines, or a regions value with a regions value. The intersects operation can be
applied to two values of the same or different types within kind EXT. The notation regionsarea-

disjoint is an attempt to capture the structure of partitions in the type system. It describes a kind for all
partitions; each particular partition (thematic map) is a type within this kind whose values are the
regions within this partition. Hence the type variable area will pick one partition and the operation
adjacent be applicable to any two regions of that partition.

(2) Operations returning atomic spatial data type values:

∀ geo in GEO.
lines × lines → points intersection
regions × regions → regions intersection
geo × geo → geo plus, minus
regions → lines contour

Here plus and minus form the union and difference, respectively, of two values of the same type.

(3) Spatial operators returning numbers:

∀ geo1 × geo2 in GEO.
geo1 × geo2 → real dist
regions → real perimeter, area

(4) Spatial operations on sets of objects:

∀ obj in OBJ.∀ geo, geo1, geo2 in GEO.
set(obj)  × (obj → geo) → geo sum
set(obj)  × (obj → geo1) × geo2 → set(obj) closest

Here sum is a “spatial aggregate function”. It takes a set of objects together with a spatial attribute of
the objects of type geo (given as a function mapping each object into its attribute value) and returns the
geometric union of all attribute values. For example, one might form the union of a set of provinces to
determine the area of a country. The closest operator determines within a set of objects those whose
spatial attribute value has minimal distance from some other geometric (query) object.
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These examples may suffice to show the kinds of operations that may be available in a spatial algebra.
Formal definitions of the semantics of these types and operations can be found in [GütS93b]. Some
important issues related to spatial data types or algebras are the following:

• Extensibility. There is general agreement, that the definition of types and, in particular, ope-
rations, is application-dependent. Hence it must be possible to define additional or alternative
types and operations later which leads to the requirement of extensibility for the system
architecture (see Section 5).

• Completeness. Nevertheless, the question is whether there are any formal criteria to say that
a particular collection of operations is complete in some respect. Some limited success in this
direction has been obtained in the study of topological relationships (see Section 2.4).

• One or more types? Is it really necessary to have several different types, to distinguish, for
example, points, lines, and regions? Some authors suggest to offer just a single type geo-
metry whose instances can be any of these or even mixed collections of them (e.g.
[GaNT91, LaPV93]). This is analogous to the question whether a system should offer diffe-
rent types integer and real, or just a single type number. One advantage of a single type may
be that closure under operations is easier to achieve. On the other hand, several types are
more expressive and allow a more precise application of operations.

• Set Operations. A spatial algebra should offer not only operations on “atomic” SDT values
(a region value is considered to be atomic, even if it has a very large description) but also on
spatially related sets of objects, for example, a partition (thematic map, tesselation) [Güt88,
ScV89, To90, SvH91]. Example operations are overlay of two partitions, fusion (merging
adjacent areas in a partition if other attributes are equal), or finding in a set of objects the one
closest to a query object. This kind of operations requires a much more intricate interfacing
with the DBMS data model than in the case of atomic operations [GütS93b].

2.4 Spatial Relationships

Among the operations offered by spatial algebras, spatial relationships are the most important ones.
For example, they make it possible to ask for all objects in a given relationship with a query object,
e.g. all objects within a window. One can distinguish several classes [PuE88, Eg89, Wo92]:

• Topological relationships, such as adjacent, inside, disjoint, are invariant under topologi-
cal transformations like translation, scaling, and rotation.

• Direction relationships, for example, above, below, or north_of, southwest_of, etc.
• Metric relationships, e.g. “distance < 100”.

Among these, topological relationships are most fundamental and have been studied in some depth.  A
basic question is whether we can somehow enumerate all possible relationships. A method for this
was proposed in [Eg89, EgH90]. It was originally formulated for simple regions (connected, no
holes), called area in the sequel, and is based on comparing the intersections of their boundaries and
interiors (denoted ∂A and A°, respectively). For two objects there are 4 intersection sets; each of
them may be empty or non-empty which leads to 24 = 16 combinations. These are listed in Table 1. It
turns out that 8 of these are not valid and two of them symmetric so that 6 different relationships
result, called disjoint, in, touch, equal, cover, and overlap.

This approach has been extended in various ways. For example, point and line features have been
added [EgH92, HoO92]. Egenhofer has extended the original 4-intersection method to a 9-intersec-
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tion method by considering also intersections with the complement A-1 [Eg91b]. Clementini et al.
[ClFO93] also consider the dimension of the intersection (called the dimension-extended method); in
2d-space the intersection can be empty, 0D (point), 1D (line), or 2D (area). This results in principle in
44 = 256 combinations. Again, many of these are not valid, so that in total 52 relationships among
point, line, and area features remain.

∂A1 ∩ ∂A2 ∂A1 ∩ A2° A1° ∩ ∂A2 A1° ∩ A2° relationship name

∅ ∅ ∅ ∅ A1 disjoint A2

∅ ∅ ∅ ≠∅
∅ ∅ ≠∅ ∅
∅ ∅ ≠∅ ≠∅ A2 in A1

∅ ≠∅ ∅ ∅
∅ ≠∅ ∅ ≠∅ A1 in A2

∅ ≠∅ ≠∅ ∅
∅ ≠∅ ≠∅ ≠∅

≠∅ ∅ ∅ ∅ A1 touch A2

≠∅ ∅ ∅ ≠∅ A1 equal A2

≠∅ ∅ ≠∅ ∅
≠∅ ∅ ≠∅ ≠∅ A1 cover A2

≠∅ ≠∅ ∅ ∅
≠∅ ≠∅ ∅ ≠∅ A2 cover A1

≠∅ ≠∅ ≠∅ ∅
≠∅ ≠∅ ≠∅ ≠∅ A1 overlap A2

Table 1: Enumerating topological relationships by intersections of boundaries and interiors

Since these are far too many to be named and remembered by a user, an alternative is suggested. Five
basic relationship names are introduced (touch, in, cross, overlap, and disjoint) whose meaning is
formally defined in terms of the dimension extended method, for example:

The touch relationship applies to area/area, line/line, line/area, point/area, and point/line, but not
point/point situations. For two features λ1 and λ2 it is defined by:

<λ1 touch λ2> : ⇔ (λ1° ∩ λ2° = ∅ ) ∧ (λ1 ∩ λ2 ≠ ∅ )

In addition to the five relationships, three operators are offered to get the boundaries of features:
operator b applied to area A yields the boundary line ∂A; operators f and t return the end points of a
line. It is proved in [ClFO93] that the five relationships are mutually exclusive (no two different
relationships can hold between any two features) and that all situations described by the dimension-
extended method can be distinguished using the relationships and the three boundary operators. –
Other work on spatial relationships includes [Fr91, Fra92, CuKR93]. The paper by Papadias and Sel-
lis in this special issue investigates the subject in more depth; further references can be found there.

2.5 Integrating Geometry into the DBMS Data Model

The central idea for integrating geometric modeling into a DBMS data model is to represent “spatial
objects” (in the sense of application objects such as river, country, city, etc.) by objects  (in the sense
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of the DBMS data model) with at least one attribute of a spatial data type. Hence the DBMS data
model must be extended by SDTs at the level of atomic data types (such as integer, string, etc.), or
better be generally open for user-defined types (“abstract data type support” [StRG83]). So far, most
often the relational model has been used as a basis (e.g. [ChF80, Güt88, RoFS88, OoSM89, Eg94])
but the approach can be used as well with any other, e.g. object-oriented, data model. In the relational
case an object is represented by a tuple, so we can define example relations (of course, real GIS deal
with less trivial application objects):

relation states (sname: STRING; area: REGION; spop: INTEGER)

relation cities (cname: STRING; center: POINT; ext: REGION; cpop: INTEGER)

relation rivers (rname: STRING; route: LINE)

In [LiN87], SDTs have been integrated into an extended ER model, in [ScV89] into a complex object
model. More difficult is the question how we can handle partitions and networks (Section 2.1). For
partitions, it is of course possible to view them just as sets of objects with region attributes. But then
the information is lost that regions should be disjoint and that adjacency relationships are of particular
importance within this class (which might be used, for example, for establishing “adjacency join indi-
ces”, see Section 4.3). The importance of modeling and manipulating partitions was emphasized e.g.
in [MaC80, Fra88, Güt88, ScV89, To90]. In [Güt88] it was suggested to introduce a special AREA
data type; creating a relation with an attribute of type AREA would imply that all regions occurring as
values of this relation had to be disjoint. But this is not clean since it abuses the concept of a data type
to describe what should really be an integrity constraint on a relation.

The modeling of spatially embedded networks has not yet received much attention in the research
literature, although quite a bit of work has been done for graphs in databases in general (e.g. [Ag87,
Rose86, CrMW87, GyPV90]). Usually the assumption is that graphs are represented by the given
facilities of a data model. A disadvantage is then that the graph structure is not visible to the user and
can not be supported very well in system implementation. In [Güt94] the GraphDB model is propo-
sed, which emphasizes an explicit modeling of graphs together with a clean integration into a “stan-
dard” object-oriented model. GraphDB offers object classes with inheritance, like other OO models,
but additionally distinguishes three kinds of object classes called simple classes, link classes and
path classes, whose elements correspond to nodes, edges, and explicitly stored paths of a graph. For
example, in GraphDB we can model a highway network whose nodes are highway junctions and
exits with an associated POINT attribute, whose edges are highway sections with an associated LINE
attribute, and where highways are explicitly stored paths, as follows:

class vertex = pos: POINT;

vertex class junction = name: STRING;

vertex class exit = nr: INTEGER;

link class section = route: LINE, no_lanes: INTEGER, top_speed: INTEGER

from vertex to vertex;

path class highway = name: STRING as section+;

Here the junction and exit subclasses inherit the pos attibute from the vertex class. A highway is a
path over a non-empty sequence of section edges. For further details see [Güt94]. Another spatial
data model with explicit graphs is described in [ErG91].
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3 Querying

From one point of view, the problem of querying is to connect the operations of a spatial algebra
(including predicates to express spatial relationships) to the facilities of a DBMS query language. But
there are also other aspects that have mainly to do with the fact that spatial data require a graphical
presentation of results as well as graphical input of queries or at least SDT values used in queries. In
the following three subsections, we consider the fundamental operations needed at the level of mani-
pulating sets of database objects, graphical input and output, and techniques and requirements for
extending query languages.

3.1 Fundamental Operations (Algebra)

We now consider from an algebraic point of view operations for manipulating sets of database objects
with spatial attributes. They can be classified as spatial selection, spatial join, spatial function
application, and other set operations.

Spatial Selection. Strictly speaking, there is no such thing as a spatial selection. A selection is an
operation that returns from a set of objects those fulfilling a predicate. However, the term is used in
the literature to describe a selection based on a spatial predicate (e.g. [ArS91a]). Some examples:

“Find all cities in Bavaria” (assuming Bavaria exists as a REGION value and inside is available in the
spatial algebra)

cities select[center inside Bavaria]

“Find all rivers intersecting a query window.”

rivers select[route intersects Window]

“Find all big cities no more than 100 kms from Hagen” (Hagen being a POINT value).

cities select[dist(center, Hagen) < 100 and pop > 500000]

The last example illustrates that selection conditions can also be based on metric relationships and can
occur in conjunction with other predicates. Query optimization should be able to compare access plans
using spatial indices with plans using a standard index. This will be discussed further in Section 5.

Spatial Join. Similarly to a spatial selection, a spatial join is a join which compares any two objects
through a predicate on their spatial attribute values. Some examples:

“Combine cities with their states.”

cities states join[center inside area]

“For each river, find all cities within less than 50 kms.”

cities rivers join[dist(center, route) < 50]

As mentioned in Section 1, spatial selection and spatial join are so important that it is mandatory to
support them by spatial indexing and by special join algorithms, at least for the most important spatial
predicates.
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Spatial Function Application. How can operations of a spatial algebra computing new SDT values
(class 2 in Section 2.3) be used in a query? In a set-oriented query a new SDT value is computed for
each object in a set. Various object algebra operators allow such an embedding of a function applica-
tion, for example, the filter operator of FAD [Banc87], a replace operator in [AbB88], or the λ or
extend operator of [GütZC89]. The extend operator takes an expression to be evaluated for each
object and a (new) attribute name; it appends the resulting value as a new attribute to the object. For
example:

“For each river going through Bavaria, return the name, the part of its geometry lying inside Bavaria,
and the length of that part.”

rivers select[route intersects Bavaria]

extend[intersection(route, Bavaria) {part}]

extend[length(part) {plength}] project[rname, part, plength]

Other Set Operations. Such operations manipulate whole sets of spatial objects in a special way; they
lie at the interface between a spatial algebra and the DBMS object algebra, as mentioned in Section
2.3. Of particular importance are operations for the manipulation of partitions (thematic maps); a
collection of such operations is described in [ScV89], closely related is the map algebra by Tomlin
[To90]. Some suggested operations are the following:

• Overlay. Computes the elementary regions resulting from overlaying two partitions. It can be
viewed as a special kind of spatial join [Fra88, Güt88, ScV89].

• Fusion. This is a special kind of grouping. Objects are grouped by some arbitrary attribute
values. For each resulting group of objects, the union of all values of a spatial attribute is
formed. For example, given a set of region objects with a “land-use” attribute, one can group
by land-use to obtain one object for land-use “wheat” with the associated union region, etc.
[ScV89, GaNT91].

• Voronoi. Computes from a set S of point objects a corresponding set of region objects (the
Voronoi diagram). For each point p, the region consists of the points of the plane closer to p
than to any other point in S [Güt88].

3.2 Graphical Input and Output

Traditional database systems deal with alphanumeric data types whose values can easily be entered
through a keybord and represented textually within a query result (e.g. a table). For a spatial database
system, at least when it is to be used interactively, graphical presentation of SDT values in query
results is essential, and entering SDT values to be used as “constants” in queries via a graphical input
device is also important. Besides graphical representation of SDT values, another distinctive characte-
ristic of querying a spatial database is that the goal of querying is in general to obtain a “tailored”
picture of the space represented in the database, which means that the information to be retrieved is
often not the result of a single query but rather a combination of several queries. For example, for
GIS applications, the user wants to see a map built by overlaying graphically the results of several
queries.

Requirements for spatial querying have been analyzed in [Fra82, EgF88, Eg94]. In [Eg94] the
following list is given:
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(1) Spatial data types.
(2) Graphical display of query results.
(3) Graphical combination (overlay) of several query results. It should be possible to start a

new picture, to add a layer, or to remove a layer from the current display. (Some systems
also allow to change the order of layers [Vo91, ViO92]).

(4) Display of context. To interpret the result of a query, e.g. a point describing the location of
a city, it is necessary to show some background, such as the boundary of a state containing it
[Fra82]. A raster image of the area can also nicely serve as a background.

(5) A facility for checking the content of a display. When a picture (a map) has been com-
posed by several queries, one should be able to check which queries have built it.

(6) Extended dialog. It should be possible to use pointing devices to select objects within a
picture or subareas (zooming in), e.g. by dragging a rectangle over the picture.

(7) Varying graphical representations. It should be possible to assign different graphical repre-
sentations (colors, patterns, intensity, symbols) to different object classes in a picture, or
even to distinguish objects within one class (e.g. use different symbols to distinguish cities
by population).

(8) A legend should explain the assignment of graphical representations to object classes.
(9) Label placement. It should be possible to select object attributes to be used as labels within a

graphical representation. Sophisticated (“nice”) label placement for a map is a difficult pro-
blem, however [FrA87].

(10) Scale selection. At least for GIS applications, selecting subareas should be based on com-
monly used map scales. The scale determines not only the size of the graphical representa-
tion, but possibly also what kind of symbol is used or whether an object is shown at all
(cartographic generalization).

(11) Subarea for queries. It should be possible to restrict attention to a particular area of the space
for several following queries.

These requirements can in general be fulfilled by offering textual commands in the query language or
within the design of a graphical user interface (GUI). A GUI will probably have at least three sub-
windows: (i) a text window for displaying the textual representation of a collection of objects, con-
taining for each object its alphanumeric attributes, (ii) a graphics window containing the overlay of the
graphical representations of spatial attributes of several object classes or query results, and (iii) a text
window for entering queries and perhaps displaying system messages. One possible design is shown
in [EgF88]. Some systems implement a text-graphic interaction: clicking at an object representation
in the text or graphic window selects and highlights the object representations in both windows (e.g.
[ViO92]).

Egenhofer [Eg94] suggests to view a query as consisting of three parts:
(i) Describing the set of objects to be retrieved, as in traditional querying,
(ii) Partitioning the query result into subsets to be displayed in different formats by a number of

display queries,
(iii) Describing for each subset how to render its spatial attributes.

For part (i), the language SQL, extended by spatial types and operations is used in [Eg94]. For parts
(ii) and (iii) a special graphical presentation language (GPL) [Eg91a] is introduced which allows to
give specifications for most of the requirements listed above.
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3.3 Integrating Geometry into a Query Language

Integrating geometry into a query language has the following three main aspects:
(i) Denoting SDT values as constants in a query and graphical input of such constants.
(ii) Expressing the four classes of fundamental operations (Section 3.1) for an embedded

spatial algebra.
(iii) Describing the presentation of results.

Denoting SDT values/graphical input. In traditional query languages, constants in queries (needed
in particular to formulate selection conditions, e.g. name = “Smith”) belong to an alphanumeric data
type and are therefore textually representable, that is, can simply be entered through the keyboard.
This is not feasible for SDT constants. Such a constant may be entered through a graphical input
device or it could also have been computed in a previous query, for example, by extracting the
attribute value of some object from the database. In Section 3.1 we have assumed that it is possible to
introduce names for such values (Bavaria, Window, Hagen). This is not the case in classical relational
query languages. In the geo-relational algebra [Güt88] atomic values are “first class citizens”, so one
can introduce a named REGION value Bavaria as follows:

states extract[sname = "Bavaria"; area] {Bavaria}

Object-oriented query languages usually allow one to identify one single object; one can then denote
any attribute value (and therefore, an SDT value) by dot notation (e.g. determine an object “Bavaria”
and then refer to “Bavaria.area”). If it is possible to denote such values, then one can nicely decouple
graphical input and querying; the user interface allows one to draw the value and assign a name to it
which can then be used in queries. If it is not possible, then a suggested technique [ChF80, Fra82,
Eg94], is to use a special keyword within a query such as PICK; parsing the query will lead to an
interaction that allows the user to graphically enter the value, for example:

SELECT sname FROM cities WHERE center inside PICK

Expressing the four classes of fundamental operations. Obviously, there is no problem at all to
express spatial selection or spatial join since selection and join are provided by all query languages.
Spatial function application, although not possible in classical relational algebra, is also in practice
provided by query languages (in SQL by allowing expressions in the SELECT clause). Hence we can
express the example queries of Section 3.1 as well in SQL or other languages (assuming denoting
constants is possible):

SELECT * FROM rivers WHERE route intersects Window

SELECT cname, sname FROM cities, states WHERE center inside area

SELECT rname, intersection(route, Bavaria), length(intersection(route,

Bavaria))

FROM rivers

WHERE route intersects Bavaria

In contrast, the expression of other set operations of a spatial algebra does not fit into the select …
from … where (SFW) paradigm since these are algebra operations at the same level as projection,
cartesian product, and selection captured by SFW. Some syntactic facilities required in a query
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language to accomodate a spatial algebra completely are described in [GütS93b] where a general
“object model interface” is described.

Describing the presentation of results. It is arguable whether this should be part of a query
language, be described by a separate language, or be defined by user interface manipulation. An
interesting observation is that a presentation language also needs some embedded general querying
capabilities, to determine subsets of answers to be shown in specific formats [Eg94, Eg91a].

Proposals for spatial query languages have been described, for example, in [ChF80, Fra82, LiN87,
KePI87, HeLS88, JoC88, RoFS88, Güt88, ScV89, OoSM89, SvH91, Eg94]. Problems with SQL-
based extensions are discussed in [Eg92]. Other directions in spatial querying include a deductive
database approach [AbWP93] or visual querying [MaP90, Me92], that is, drawing a sketch of the
spatial situations to be retrieved.

4 Tools for Spatial DBMS Implementation: Data Structures and Algorithms

We now consider system implementation bottom-up. In this section we first describe data structures
and algorithms that can be used as tools or building blocks within different system architectures.
System architectures themselves are discussed in the next section. The general problem to be solved is
implementation of a spatial algebra in such a way that it can be integrated into a database
system's query processing. This means, first of all, that we have to provide representations for the
algebra's types as well as algorithms/procedures for its operations. However, it does not suffice just
to implement atomic operations efficiently such as a test whether two regions intersect. It is also
necessary to consider the use of such predicates within set-oriented query processing, that is, when
they occur within a spatial selection or a spatial join. Here spatial access methods and spatial join algo-
rithms come into play. Last not least, other set operations of a spatial algebra need their special imple-
mentations. In the following subsections we discuss representation of spatial data types and imple-
mentation of atomic operations, spatial indexing to support spatial selection, and support of spatial
join.

4.1 Representing SDT Values and Implementing Atomic SDT Operations

The representation of a value of a spatial data type, e.g. a region, has to be simultaneously compatible
with two different views, namely, the view of the database system, and the view of the spatial alge-
bra. From the DBMS perspective, the representation

• is the same as that of attribute values of other types with respect to generic operations,
• can have varying and possibly very large size,
• resides permanently on disk and is stored in one page or a set of pages,
• can efficiently be loaded into main memory, where it is given as a value of some variable (ty-

pically, a pointer variable) to the procedures implementing operations of the spatial algebra,
• offers a number of type-specific implementations of generic operations needed by the

DBMS.
From the point of view of the spatial algebra implementation which is done in some programming
language, most likely the DBMS implementation language, the representation

• is a value of some programming language data type, e.g. region,
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• is some arbitrary data structure which is possibly quite complex,
• supports efficient computational geometry algorithms for spatial algebra operations,
• is not geared only to one particular algorithm but is balanced to support many operations well

enough.

To fulfill the requirements of the DBMS, the representation must be a paged data structure compatible
with the DBMS support for long fields or large attribute values. To support efficient loading and
storing on disk, it should consist of a single contiguous byte block as long as it is small enough to fit
into one page. Otherwise it can be a large byte block cut into page sized pieces. The DBMS may then
either allocate enough internal space to hold the whole value (and map pages into the right positions of
this buffer) or implement a more complex paging strategy to access the value. For the case that a value
representation happens to be large, a good strategy is to split it into a small info part, which will con-
tain often used summary information about the value, and an exact geometry part, representing e.g.
the long sequence of vertices, so that it is possible to load only the info part into a DBMS buffer. For
example, the info part might be contained in the DBMS object representation and contain a logical
pointer to a separate page sequence holding the exact geometry part. The generic operations needed by
the DBMS may concern, for example, transforming from/to a textual or graphic representation for
input/output at the user interface, or transforming from/to an ASCII format for bulk loading or exter-
nal data exchange. More specifically, for spatial data types, generic approximations may be needed to
interface with spatial access methods, for example, each data type must provide access to a bounding
box (also called minimum bounding rectangle (MBR)).

From the spatial algebra and also the programming language point of view, the representation should
be such that it is mapped by the compiler into a single or perhaps a few contiguous areas (to support
the DBMS loading). For example, it can be defined as a pointer to a record with several fixed size
components and a very large array (for the exact geometry) at the end; one can then dynamically
allocate the right amount of space for a given value. Apart from that, the representation can support
operations as follows:

• Plane sweep sequence. Very often, algorithms on the exact geometry use a plane-sweep.
The sweep needs the components of the object (e.g. the vertices) in some fixed order, e.g. x-
order. It is highly advantageous to store this order explicitly in the object so that not every
sweep needs to sort vertices first.

• Approximations. The implementation of many operations starts with a rough test on an
approximation of the object. Usually this is the bounding box, but there can also be other
approximations. Hence these should be part of the representation.

• Stored unary function values. Some operations of the spatial algebra compute properties of
a spatial value, e.g. the area or perimeter of a region. Since these can be expensive to com-
pute, they may be computed once after creation of the value and then be stored with it.

The representation strategy described above does in fact assume a particular DBMS architecture,
namely, that of an extensible DBMS. Hence some of the remarks may not be valid for an architecture
which, for example, stores its SDT values separately in files, outside of the DBMS storage manage-
ment. However, there seems to be growing agreement that the extensible approach (see Section 5) is
the right one as a basis for spatial database systems (e.g. [HaC91, ViO92, LaPV93]).

Issues of the representation of data type values in extensible DBMS (“abstract data type support”)
have been discussed, for example, in [StRG83, OsH86, Wilm88, Wo89, DrSW90]. The DASDBS
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Geo-Kernel [Wo89, DrSW90] makes somewhat special assumptions about the interface to a generic
spatial access method by requiring that each data type must offer generic operations for clipping at a
rectangle and composing two clipped pieces of an SDT value. The Gral system [Güt89, BeG92] is an
example of a system implementing the strategy described above.

Concerning the implementation of SDT operations, some important ideas such as prechecking on
approximations, looking up stored function values, and using plane-sweep, have already been
mentioned. Generally, efficient algorithms from computational geometry should be used [PrS85,
Me84]. For some operations, a simple scan of the vertices or edges is sufficient (e.g. to compute the
perimeter or area of a region, or the center of a set of points). For more complex questions, most
often plane-sweep is the appropriate technique (e.g. to compute the intersection of two polygons).

The implementation of many operations is simplified, if the spatial algebra has a discrete basis (Sec-
tion 2.2), for example, is realm-based. Basically, this means that in query processing there are never
any new intersection points computed; all intersection points of SDT values over the realm are known
within the realm and occur in both objects. For example, to compute the intersection of two lines
values (which is a points value) in the ROSE algebra (see Section 2.3) it is sufficient to do a parallel
scan on the two values' halfsegment sequences. (Each line segment occurring within a lines value is
represented twice, once for the left end point, and once for the right end point – so each halfsegment
has a dominating point. The halfsegment sequence is ordered xy-lexicographically by dominating
points. Hence a parallel scan will determine the intersection points in linear time.) Without the realm
basis, a much more complex plane-sweep algorithm is needed. Plane-sweep algorithms are also
simplified with a realm-basis, because the sweep-event structure [NiP82] can now be a static data
structure, since no new intersection points are discovered during the sweep. Such techniques are used
in the implementation of the ROSE algebra [Ri94].

4.2 Spatial Indexing – Supporting Spatial Selection

The main purpose of spatial indexing is to support spatial selection, that is, to retrieve from a large set
of spatial objects (objects with an SDT attribute) those in some particular relationship with a query
SDT value. A spatial indexing method organizes space and the objects in it in some way so that only
parts of the space and a subset of the objects need to be considered to answer such a query. There are
two ways to provide spatial indexing: (i) dedicated external spatial data structures are added to the
system, offering for spatial attributes what e.g. a B-tree does for standard attributes, and (ii) spatial
objects are mapped into a one-dimensional space so that they can be stored within a standard one-
dimensional index such as a B-tree. Apart from spatial selection, spatial indexing supports also other
operations such as spatial join, finding the object closest to a query value, etc.

A fundamental idea also for spatial indexing, and in fact, for all spatial query processing, is the use of
approximations. This means that the index structure manages an object in terms of one or more
spatial keys which are much simpler geometric objects than the SDT value itself. One can distinguish
continuous or grid approximations. A continuous approximation is based on the coordinates of the
SDT value itself. The prime example is the bounding box (the smallest axis-parallel rectangle enclo-
sing the SDT value). For grid approximations, space is divided into cells by a regular grid and the
SDT value is represented by the set of cells that it intersects. Figure 5 illustrates the two kinds of
approximations. The use of approximations leads to a filter and refine strategy for query processing
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[OrM88, Fra81]: First, based on the approximations, a filtering step is executed which returns a set
of candidates which is a superset of the objects fulfilling a predicate. Second, for each candidate (or
pair of candidates in case of spatial join) in a refinement step the exact geometry is checked. This
strategy has more recently been extended to include a second filtering step where more precise
approximations of the candidate objects are checked [BrKS93a].

Figure 5: Bounding box and grid approximations of an SDT value

Due to the use of bounding boxes, most spatial data structures are designed to store either a set of
points (for point values) or a set of rectangles (for line or region values). The operations offered by
such a structure are insert, delete, and member (find a stored rectangle or point) to manage the set as
such. Apart from that, one or more query operations are supported. For stored points, some impor-
tant types of queries are:

• Range query: Find all points within a query rectangle.
• Nearest neighbour: Find the point closest to a query point.
• Distance scan: Enumerate points in increasing distance from a query point.

For rectangles:
• Intersection query: Find all rectangles intersecting a query rectangle.
• Containment query: Find all rectangles completely within a query rectangle.

A spatial index structure organizes objects within a set of buckets (which normally correspond to
pages of secondary memory – some special approaches use varying size buckets with many pages
[DrS93]). Each bucket has an associated bucket region – a part of space containing all objects stored
in the bucket. Bucket regions are usually rectangles. For point data structures, these regions are
normally disjoint and partition the space so that each point belongs into precisely one bucket. For
some rectangle data structures, bucket regions may overlap. Figure 6 shows a partition where each
bucket can hold up to 3 points.

Figure 6: A kd-tree partitioning of a 2d-space

Like index structures for standard attributes, the structure can be clustering or a secondary index. A
clustering index stores the actual spatial objects. An entry in a secondary index is just a spatial key
(e.g. point or rectangle) together with a logical pointer to the object in the database.
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In the following three subsections we first consider one-dimensional embeddings that allow one to
use standard index structures such as a B-tree. We then discuss dedicated spatial data structures for
points and for rectangles.

4.2.1 One-Dimensional Embedding of Grid Approximations

The basic idea for this is to (i) find a linear order for the cells of the grid such that cells close together
in space are also (as far as possible) close to each other in the linear order, and (ii) to define this order
recursively for a grid that is obtained by a hierarchical subdivision of space.
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00 10

01 11 1110

Figure 7: z-order enumeration of cells of a hierarchical partition

Figure 7 shows the most popular such order proposed by Morton [Mo66] as bit interleaving and
later rediscovered several times (e.g. [AbS83, Ga82]). Orenstein [Or86] used it as a general basis for
query processing in the PROBE system [OrM88] and introduced the name z-order for it. In Figure 7,
the left diagram shows the ordering imposed on the 4 quadrants of the top level of a regular hierar-
chical partition. On the right side, this is continued to the next level: within each quadrant, cells are
connected in z-order and then the groups of cells of the four quadrants are again connected in z-order.
Each cell at each level of the hierarchy has an associated bit string whose length corresponds to the
level the cell belongs to. For example, the top right cell in the left diagram has bit string 11, on the
right side cell 1110 is shown. The bit string 1110 is obtained by choosing 11 at the top level and then
10 within the top level quadrant, one can also think of it as being composed of a 11 x-coordinate
(used for the first and third bit) and a 10 y-coordinate (used for the second and fourth bit) which has
led to the name bit interleaving. The order which is so imposed on all cells of a hierarchical subdivi-
sion is given by the lexicographical order of the bit strings.

Any shape (set of cells) over the grid can now be decomposed into a minimal number of cells at
different levels, using always the highest possible level. It can therefore be represented by a set of bit
strings (see Figure 8), called z-elements by Orenstein.

1000

10010 100110

Figure 8: A set of z-elements approximating an SDT value
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For a given spatial object, one can therefore use its corresponding set of z-elements as a set of spatial
keys. To build an index for a set of objects, one can just form the union of all these spatial keys and
put them in lexicographical order into a B-tree. Because of the proximity-preserving property of this
embedding, various types of queries can now be answered relatively efficiently through B-tree access.
For example, to answer a containment or range query with a rectangle r, this rectangle is itself decom-
posed into a number of z-elements. For each z-element, one portion of the leaf sequence of the B-tree
is scanned containing all entries having that z-element as a prefix. This returns a set of candidates
which can then be checked in the refine step whether containment is actually true.

4.2.2 Spatial Index Structures for Points

Data structures for representing points in an k-dimensional space have a much longer tradition than
spatial database systems. This is, because a tuple consisting of n attributes, t = (x1, …, xk), can be
viewed as a point in k dimensions, and therefore such data structures can be used to support multi-
attribute retrieval. On the other hand, they can as well store points with a geometrical interpretation.
Two well-known representatives of such data structures are the grid file [NiHS84] and the kd-tree
[Be75]. The latter one is an internal data structure but has also been used as a basis for external index
structures.

buckets

directory

scales

y 1

y 2

y3

x4x1 x2 x3

Figure 9: Structure of the grid file

The grid file (Figure 9) partitions the data space by an irregular grid into cells. Characteristic for this
partition is that split lines extend through the whole space. The split line positions are kept in scales,
using one scale per dimension. The directory is an k-dimensional array whose entries are logical
pointers to buckets. Each cell of the data space corresponds to one element of the directory array, and
all points lying within a cell are stored in the bucket pointed to by the corresponding directory entry.
Several cells may be mapped into the same bucket so that bucket regions in general consist of more
than one cell, as shown in Figure 9.

The scales are relatively small structures and can be kept in memory; the directory resides in a set of
pages on disk. To find the bucket containing a particular point, one would determine with the help of
the scales the address of the page containing the directory entry for the cell containg it. The second
page access retrieves already this bucket. Range queries can be answered by determining from the
directory the set of buckets containing cells intersected by the query rectangle, and then examining the
points in these buckets. For the treatment of overflows or underflows of buckets see [NiHS84].
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The kd-tree is a binary tree where each internal node contains a key drawn from one of the k dimen-
sions; leaves contain the points to be stored. The key in the root node (at level 0, counting from top to
bottom) divides the data space with respect to dimension 0, the keys in its sons, at level 1, divide the
two subspaces with respect to dimension 1, and so forth, up to dimension k-1, after which cycling
through the dimensions restarts. Figure 6 shows a kd-tree partitioning of the data space. For the
original kd-tree, the recursive splitting of space stops when each cell contains only a single point. This
has been transformed to an external data structure by letting each cell of the partition correspond to a
bucket and by also paging the binary tree itself, in the KDB-tree [Ro81] which is also a generalization
of the B-tree (all leaves are at the same level). Another variant is the LSD-tree [HeSW89] which
abandons the strict cycling through the dimensions and makes it possible to choose the dimension for
splitting based on local criteria (therefore called local split decision tree). The second important
aspect of the LSD-tree is a clever paging algorithm which keeps the external path length balanced even
for very unbalanced binary trees. This allows the LSD-tree to deal rather well with skewed distribu-
tions of points which arise in particular when extended spatial objects (k-dimensional boxes, rect-
angles) are mapped into points through the transformation approach (see below). – Other point data
structures are, for example, EXCELL [Ta82], the buddy hash tree [SeK90], the BANG file [Fr87],
or the hB-tree [LoS89].

4.2.3 Spatial Index Structures for Rectangles

The management of rectangles in external data structures is more difficult than that of points because
rectangles, unlike points, generally do not fall into a unique cell of a partition, but intersect partition
boundaries. There are three solutions for this problem:

• The transformation approach: Instead of k-dimensional rectangles, we store 2k-dimensional
points, using a point data structure.

• Overlapping regions:  Partitioning space is abandoned; bucket regions may overlap.
• Clipping: We keep partitioning space; if a rectangle intersects partition boundaries it is clip-

ped into several pieces and represented within each cell that it intersects.

The transformation approach. A rectangle, represented by four coordinates (xleft, xright, ybottom,
ytop), can be regarded as a point in four dimensions. The various types of queries then map to regions
of the 4d-space. This approach is usually illustrated by the case of intervals mapped into 2d-space .

y=i2

x=i1

q1

i2 q1 q2

Figure 10: The transformation approach, mapping intervals into 2d-points

In Figure 10, the interval to be stored, i = (i1, i2), is mapped into a point (x, y). An intersection query
with an interval q = (q1, q2) translates to a condition: Find all points (x', y') such that x' < q2 and
q1 < y'. Hence all intervals intersecting q must lie as points in the shaded area shown in Figure 10.
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The transformation approach [Hi85, SeK88], here shown with the corner representation, generally
leads to rather skewed distributions of points. For example, all points fall into the area above the
diagonal x = y. If all intervals are small, all corresponding points lie very close to this diagonal. It is
also possible to use a center representation (using center and length of an interval) but then the
query regions become cone-shaped which does not fit so well with rectangular partitions of the point
set. The LSD-tree point data structure was designed particularly with the goal to be able to adapt to
such skewed distributions [HeSW89]. A recent discussion of the transformation approach and a
comparison to methods storing rectangles directly can be found in [PaST93].

Overlapping regions. The prime example of a structure using overlapping bucket regions is the R-tree
[Gu84], illustrated in Figure 11.
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Figure 11: A set of rectangles represented by an R-tree

It is a multiway tree, like the B-tree, and stores in each node a set of rectangles. For the leaves, these
are the rectangles of the set R to be represented. For an internal node, each rectangle is associated with
a pointer to a son p and represents the bucket region of p which is the bounding box of all rectangles
represented within p. For example, in Figure 11 the root node contains a rectangle A which is the
bounding box of the rectangles D, E, and F stored in the son associated with A. Rectangles may
overlap; hence, a rectangle can intersect several bucket regions but will be represented only in one of
them. An advantage is that a spatial object can be kept in just one bucket. A problem is that search
needs now to branch and follow several paths whenever one is interested in a region lying in the
overlap of two son regions. To keep search efficient, it is crucial to minimize the overlap of node
regions. This is determined by the split strategy on overflow. Several strategies based on different
heuristics have been studied in [Gu84, Gr89, Beck90]; the one proposed in [Beck90], called R*-tree,
appeared to perform best in experiments.

Clipping. A variant of the R-tree, called R+-tree, was proposed by [SeRF87, FaSR87] and used in
the PSQL database system [RoFS88]. It avoids overlapping regions associated with buckets or inter-
nal nodes of the same level completely by clipping data rectangles, if necessary.
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Figure 12: A set of rectangles represented by an R+-tree
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In Figure 12, an R+-tree is shown for the same set of data rectangles as in Figure 11. Here the
rectangles A, B, and C in the root are chosen a bit differently to keep them, and therefore the three
sons' bucket regions, disjoint. Now it is necessary to clip rectangles D and J so that each of them is
represented in two buckets. Experimental comparisons of spatial index structures including R-tree
variants can be found in [Gr89, SmG90, Beck90].

There has been a tremendous amount of work on spatial index structures and it is not possible in this
survey to cover it completely. Other directions include quadtree variants (surveyed in [Sa90]) which
are closely related to the grid approximation schemes of Section 4.2.1, or cell trees [Gün88,
GünB89] which do not store rectangles but work with polygonal subdivisions of the plane directly.
An excellent survey of spatial index structures can be found in [Wi91]. The paper by Lin, Jagadish,
and Faloutsos in this special issue introduces the TV-tree, a data structure for indexing sets of points
in a high-dimensional space, which is somewhat similar to an R-tree. It is a good example for the
design and analysis techniques needed in the development of spatial index structures as described in
this section.

It should be clear now that spatial index structures offering a few fundamental query operations can
support through the filter and refine strategy selection with many different spatial predicates. For
example, a query for all regions in a partition adjacent to a given region can be answered by checking
candidates from an intersection query; to find all regions within a certain distance from a query point
one can also find candidates by an intersection query using a suitable square around the point.

The filter and refine strategy has been extended in [BrKS93a] to include a second filter step with finer
approximations than the bounding box; they compared, for example, bounding ellipses, convex hulls,
and convex 5-corners. These are conservative approximations which means they include the actual
SDT values. Better conservative approximations are able to exclude some false hits from further
consideration. In the second filter step one can also use progressive approximations, which are
contained in the actual SDT value, such as a maximum enclosed circle or a maximum enclosed
rectangle [Brin94]. These allow one to identify hits; if two progressive approximations intersect, their
SDT values are guaranteed to intersect. The goal is always to avoid as far as possible the expensive
loading and comparison of the exact geometries. It has also been suggested to decompose very large
SDT values into several components so that checking the exact geometry can for most queries be
restricted to one of the components [KrHS91].

4.3 Supporting Spatial Join

Spatial join, as described in Section 3.1, determines for two sets of spatial objects all objects in a rela-
tionship described by a spatial predicate. Classical join methods such as hash join or sort/merge join
are not applicable. Filtering the cartesian product is possible but too expensive. Central ideas for
computing spatial joins are, again, the filter and refine strategy, and the use of spatial index structu-
res. One can classify proposed strategies along the following criteria:

• Grid approximation/bounding box
• None/one/both operands are represented in a spatial index structure.

For grid approximations, and for an overlap predicate, Orenstein [Or86, OrM88] described join algo-
rithms to determine pairs of candidates. Essentially a parallel scan of the two sets of z-elements corre-
sponding to the two sets of spatial objects is performed, similar to a merge join for a “≤” predicate.
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Note that overlay, a particularly important operations for GIS, is a special case [Or91]. A general
problem with grid approximations is that choosing a too fine grid leads to inefficiency because too
many z-elements per object are created whereas a too rough grid may deliver too many “false hits” in a
spatial join [Or89].

If the filter step is based on the use of bounding boxes, then the problem is to determine for two sets
of rectangles R, S, all pairs (r, s), r ∈  R, s ∈  S, such that r intersects s. If none of the operands is
represented in a spatial index, a good technique is to use a rectangle intersection algorithm from
computational geometry which solves precisely this problem. Such an algorithm, called bb_join, has
been used in the Gral system [Güt89, BeG92]. The basis is an external divide-and-conquer algorithm
[BeG92, GütS87], somewhat similar to external merge sorting. Note that even when base object sets
are represented in a spatial index, such a method is needed in query processing, for example, when
the two operand sets have been determined through other indexes, or are themselves the result of
geometric set operations. This has also been emphasized by [LoR94] who suggest to build an index
for one of the operands on the fly and describe a new tree structure, seeded trees, particularly
suitable for this.

If one operand is represented in a spatial index, then an index join or repeated search join can be
used [BeG92, LoR94]. This is a classical technique, usually used with a B-tree index, which can
equally well be applied to spatial index structures. Hence, if the “inner” operand is represented in an
index supporting rectangle intersection queries, one can scan the “outer” operand set; for each object,
the bounding box of its SDT attribute is used as a search argument on the index. As a result one
obtains again a set of candidate pairs with intersecting rectangles. Repeated search join is especially
efficient if the outer set is not too big (for example, is the result of a selection from a large set). If both
sets are large, bb_join may win. Such choices have to be made by the query optimizer.

Recent research into spatial join methods has focused on the case that both operands have a spatial
index. The basic idea is then to perform a somehow synchronized traversal of the two index structu-
res so that pairs of cells of their respective partitions covering the same part of space are encountered
together. A parallel traversal of two grid files has been examined in [Ro91, BeHF93], of R-trees in
[BrKS93b]. Günther [Gün93] studies traversal of generalization trees which can represent nested
polygonal partitions directly but can also be viewed as a generalization of R-trees, for example. He
also derives cost formulas for several distributions and compares the cost of nested loop join (i.e.
filtering the cartesian product), tree traversal, and use of join indices.

The use of join indices [Va87] has also been applied to spatial joins. A join index contains all pairs of
object identifiers for objects from two sets in a given relationship of interest. Rotem [Ro91] describes
the computation of a join index from two grid files which combines pairs of points within distance ε
from each other, and also the maintenance of such an index under grid file reorganizations. A problem
is that the index is based on some fixed distance and does not support well queries with other distan-
ces. In [LuH92] some variations are suggested to accomodate different distances. Unfortunately, if all
distances are to be supported, the join index will have a quadratic number of entries which is not
feasible for large sets of objects.

After the filter step, similar as for spatial selection, one may insert a second filter step with better
approximations to determine hits and exclude false hits from further checking [Brin94].
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5 System Architecture

5.1 Requirements

At the level of system architecture, the problem is to integrate the tools described in Section 4 for the
support of spatial data types – and even more than that. In principle, the following extensions to a
standard architecture need to be accomodated:

• representations for the data types of a spatial algebra,
• procedures for the atomic operations,
• spatial index structures,
• access operations for spatial indices,
• filter and refine techniques,
• spatial join algorithms,
• cost functions for all these operations,
• statistics for estimating selectivity of spatial selection and spatial join,
• extensions of the optimizer to map queries into the specialized query processing methods,
• spatial data types and operations within data definition and query language,
• user interface extensions to handle graphical representation and input of SDT values.

In our view, the only clean way to accomodate these extensions is an integrated architecture based
on the use of an extensible DBMS. Nevertheless, GIS have been constructed before extensible
DBMS technology was available, and we shall first review previous approaches to GIS architecture.

5.2 GIS Architectures – Using a Closed DBMS

The first generation of GIS was built directly on top of file systems and did not offer the benefits of
DBMS such as high-level data definition, flexible querying, transaction management, etc. They are
not further discussed here. When DBMS technology and in particular, relational systems, became
available, attempts were made to use them as a basis. The two main approaches are layered archi-
tecture and dual architecture (following the terminology of [ViO92], see also [LaPV93]).

Layered architecture. Here spatial functionality is implemented on top of a given DBMS, often a
commercially available relational system, as shown in Figure 13.

Spatial Tools

Standard DBMS

Figure 13: Layered architecture

For the representation of SDT values, there are two possible strategies. The first, used in early work
[BeS77, ChF80], is to let each tuple represent the coordinates of one point or line segment and to
break the SDT value into pieces (e.g. represent a polygon as a subset of a line segment relation). The
disadvantage is that for the implementation of SDT operations in the top layer, the SDT values have
first to be reconstructed which is far too expensive. The second possibility is to represent SDT values
in “long fields” of the DBMS (e.g. GEOVIEW [WaH87], SIRO-DBMS [Ab89]). This is better than
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breaking SDT values into pieces; it is still problematic because the DBMS handles the geometries only
in the form of uninterpreted byte strings; evaluation of any predicate or operation on an exact
geometry can only be done in the top layer. Some limited form of spatial indexing can be provided by
maintaining sets of z-elements (see Section 4.2.1) for the geometries in special relations which in turn
can be indexed through a B-tree.

Dual Architecture. Here a top layer integrates two rather independent subsystems: the DBMS which
handles non-spatial data, and a spatial subsystem storing and manipulating geometries (Figure 14).

Standard DBMS Spatial Subsystem

Integration Layer

Figure 14: Dual Architecture

With this approach, the representation of each spatial object (object with an SDT attribute) is broken
into two pieces. The first part contains the non-spatial attributes and is stored in the DBMS. The
second part is the spatial attribute and is kept in data structures implemented directly on top of the file
system. The two pieces are connected by logical pointers. This approach is followed by most
commercial GIS (e.g. ARC/INFO [Mo89], SICAD [Sc85]) as well as some research prototypes (e.g.
[OoSM89]).

An advantage is that one is free to use adequate representations of SDT values as well as efficient data
structures and algorithms for indexing and query processing within the spatial subsystem. For
example, in [OoSM89] a spatial kd-tree [OoMS87] is used as an index structure. A problem is that a
query now has to be decomposed into a non-spatial part and a spatial part, to be handled by the
DBMS and the spatial subsystem, respectively. This complicates query processing and leads to over-
head. Perhaps the main problem is that no global query optimization is possible. For example, if a
query can be processed by either using an index on a standard attribute or one on a spatial attribute,
the integration layer cannot compare the two plans since estimated costs from the standard DBMS are
not available. Query optimization under the dual architecture has been studied in [OoSM89].

A different view of a dual architecture is taken in [ArS91a]. Again, spatial and non-spatial parts of an
object are stored in separate structures and linked by logical pointers. However, the intention is not to
use a standard DBMS, but to be able to use specialized storage structures for the geometries, and to
implement the concept within one new database system. The consequences of dealing in query pro-
cessing with relations represented by two separate storage structures are studied in [ArS91b]. The
PSQL system [RoFS88] has a similar dual architecture within an extended relational prototype.

5.3 Integrated Spatial DBMS Architecture – Using an Extensible DBMS

Research into extensible database systems (e.g. POSTGRES [StR86], Probe [Daya87], EXODUS
[GrD87], GENESIS [Bato88], Starburst [Haas89], Gral [Güt89], Sabrina [Gard89], DASDBS
[Sche90]) was aimed at making precisely the kinds of extensions required in Section 5.1 possible.
The use of an extensible system leads to an integrated architecture which takes the following view:
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(1) There is no difference in principle between a “standard” data type such as STRING and a
spatial data type such as REGION. This includes operations; for example, there is no diffe-
rence in principle between concatenating two strings or forming the intersection of two
regions. System architecture should treat them in the same way.

(2) There is no difference in principle between a clustering or secondary index for standard attri-
butes (e.g. a B-tree) and for spatial attributes (e.g. an R-tree).

(3) Similarly, a sort/merge join, and a bounding-box join, are basically the same.
(4) The mechanisms for query optimization should not distinguish spatial or other operations (of

course, differences may be reflected in the cost functions).

Such an integrated architecture can in principle also be obtained by implementing a new database
system from scratch or making appropriate extensions to the code of a given DBMS. Using an exten-
sible DBMS just vastly reduces the effort. Furthermore, a spatial DBMS based on an extensible
DBMS is open for extensions, and so allows one to add missing functionality, at any time. This is
particularly important because it is not known how to determine a closed, complete set of operations
of a spatial algebra, as discussed in Section 2.3.

The architecture of an extensible DBMS essentially offers slots and registration facilities for all (or
most of) the kinds of extensions listed in Section 5.1. An attempt to illustrate this is given in Figure
15 where spatial components are shaded and only a few of the places for extension are shown.

data type representations

query processing methods

index structures

optimization rulesExtensible DBMS

Figure 15: Integrated, extensible architecture

Several spatial DBMS prototypes based on extensible systems have been built, examples are Probe
[Or86, OrM88], the DASDBS GEO-Kernel [Sche90, Wo89], and Gral [Güt89, BeG92]. Possible
uses of extensibility, in particular in the context of the Starburst system, for spatial database appli-
cations have been discussed in [HaC91]. More recent prototypes are GEO++ [OoV91, ViO92] based
on POSTGRES, and GéoSabrina [LaPV93] based on Sabrina.

In the Probe system [Or86, OrM88], spatial data types can be introduced as refinements (within an
object-oriented class hierarchy) of a general POINT-SET data type. For all such types, the system
provides built-in support in the form of approximate geometry processing. This means that SDT
values are represented by sets of z-elements (Section 4.2.1) and that the filter step for spatial
selections (that is, spatial indexing) and spatial joins is offered in the system kernel. Recall that this
work was a major proponent of the filter and refine strategy for spatial query processing [OrM88].
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Work in the DASDBS project [Sche90, Wo89] has focused on external data type (EDT) support
and on interfacing to generic spatial access methods. The EDT concept is a variant of data type
extensibility assuming that data structures for an EDT and procedures working on these data
structures are probably not coded specifically for the DBMS but rather have existed in an application
environment long before. The DBMS should be able to work with these given programming language
representations by using appropriate conversion functions. This has recently been extended to let the
DBMS cooperate with a “geometric computation service” (as an implementation of a spatial algebra)
over a network within different run-time environments [ScW93]. For spatial indexing, generic access
methods partitioning the data space into cells such as the grid file or the R+-tree are assumed; to
interface with such an access method, each SDT implementation has to offer a clip and a compose
function to determine the piece of the geometry falling into one cell and to put pieces together again,
respectively.

The Gral system [Güt89, BeG92] emphasizes many-sorted algebra as a formal basis for its exten-
sible system architecture; it uses such algebras to describe application-specific query languages and
query processing systems and provides a rule-based optimizer which transforms a query algebra
expression to an executable expression by applying transformation rules. For spatial indexing, LSD-
trees (see Section 4.2.2) are available; spatial joins are supported by repeated search on LSD-trees or a
bounding-box-join algorithm (Section 4.3). The bounding box is the generic interface between any
spatial data type and access or join methods. The system treats spatial and non-spatial data quite uni-
formly; in [BeG92] completely integrated query optimization and query processing are shown. It is
also demonstrated there how filter and refine techniques are actually implemented in the optimizer.

Note that extensibility of a system architecture is rather orthogonal to the data model implemented by
that architecture. For example, Probe offers an object-oriented or functional data model, DASDBS a
nested relational model, and POSTGRES, Starburst and Gral extended relational models. Object-
oriented systems have been considered as an implementation platform (e.g. [Davi93]). Such systems
are extensible at the data type level. However, they generally lack extensibility at the levels of index
structures, query processing methods (e.g. join algorithms), or query optimization which is crucial
for spatial DBMS implementation. Experiments with an object-oriented system and some of the
arising problems have been described in [ScV92].

6 Final Remarks

In this survey, we have tried to present in a coherent way the major technical concepts for spatial
database systems. To keep the task manageable, the survey treats spatial database systems only in a
restricted sense; image database systems have been excluded. Some interesting work on image data-
bases includes [JoC88, ChJL89, GuWJ91]. Fortunately, several papers in this special issue are rela-
ted to image databases and therefore help to close the gap: The paper by Baumann describes basic
DBMS support for the management of raster data; the paper by Chu, Ieong and Taira shows modeling
and querying requirements and techniques for images in medical applications; finally, the paper by Pa-
padias and Sellis studies the management of abstractions of spatial relationships occurring in images.

Another omission is perhaps that not much has been said about the various kinds of applications. A
good general source for case studies of GIS applications and their requirements is the International
Journal of Geographical Information Systems. Such issues are also discussed at the “Symposia on
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Spatial Data Handling” held bi-annually. The SEQUOIA 2000 project [StFD93] addresses the needs
of global change researchers, in particular the necessity to deal with terabytes of raster data. Some
idea of the requirements of medical applications can be gained from the paper by Chu, Ieong and Taira
in this issue.

There are two recent surveys related to spatial database systems that may augment the one given here.
Günther and Buchmann [GünB90] focus more on open research questions. Bauzer Medeiros and
Pires [BaP94] are closer to GIS applications.

Many interesting issues related to spatial database systems could not be included in this survey, for
example:

• spatio-temporal modelling
• spatial objects with imprecise boundaries
• multi-scale modeling/cartographic generalization
• data lineage (maintaining information about precision, collection method etc. of data)
• spatial reasoning/deductive spatial databases
• performance benchmarks for spatial DBMS [Ston93]

Integrating solutions to such problems with the spatial database technology described here will remain
a fascinating challenge for database researchers for quite some time.
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