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Abstract

The main purpose of this paper is to investigate the characteris-
tics that distinguish spatial databases systems from traditional ones.
Hereto, we give an overview of some well-known data models and query
languages of spatial database systems. We also investigate the concept
of genericity, as introduced by Chandra and Harel for classical data-
bases [6], for spatial databases. Paredaens, Van den Bussche and Van
Gucht [34] have shown that the concept of genericity breaks up in a
hierarchy of genericity classes. In this respect, we classify data models
and query languages according to the type of generic operations they
are designed to support [33].

1 Introduction

During the last decade the number of applications in which database systems
are used to represent spatial information in, mainly, the two-dimensional
plane or the three-dimensional space has steadily increased. Applications
that rely on spatial databases can be found in CAD-CAM, VLSI-design,
robotics, historical databases, geographical information systems, architec-
tural sciences, visual perception and autonomous navigation, tracking, en-
vironmental protection and medical imaging [4, 18, 1, 16, 40].

Güting describes in [22] a spatial database as a database system that
offers spatial data types in its data model and query language and supports
such data types in its implementation, providing at least spatial indexing
and efficient algorithms for spatial join.

A spatial database system should
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• contain an elegant framework to combine geometric and thematic (i.e.
classical attribute-value pairs) information;

• be as general as possible and not designed for one particular area of
applications;

• have a formally defined semantics that is closed under set theoretic,
geometric and topological operations and that is defined in terms of
finite representations;

• be independent of a particular database management system (DBMS)
but co-operative with any DBMS;

• use efficient implementation techniques, especially for the operations
on n-dimensional objects;

• have an up-to-date visual user interface and a gateway to multimedia.

The first spatial database systems that were built do not support all
these criteria. Their main issue was to extend existing database manage-
ment systems by introducing rather trivial spatial data types and extending
SQL in an ad hoc way. There was, and still is, a lack to understand the
more fundamental issues that are involved in geometric data types. In tra-
ditional database systems there is a clear understanding of which part of the
information retrieval is handled by the DBMS, and which part is handled
by the application software. A projection, for instance, is part of the query
language, the calculation of a standard deviation, is not. How do we make
such a distinction in the case of a spatial database? Which is the range
of data models that can be acceptable candidates for a spatial DBMS and
which are the typical features and properties of spatial data manipulation
languages?

We believe that, after a few years of experience, it is now time to in-
vestigate deeper those characteristics that distinguish the spatial database
systems from the traditional ones. As the authors say in [32]:

“The challenge for the developers of DBMSs with spatial capabilities
lies not so much in providing yet another special-purpose data structure
that is marginally faster when used in a particular application, but in
defining abstractions and architectures to implement systems that offer
generic spatial data management capabilities and that can be tailored
to the requirements of a particular domain”.
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Looking to the literature, we see that only a few researchers have paid
attention to the basic issues of spatial data. One of the reasons for this
lack of interest could be the vast know-how that is needed in three totally
different areas of science:

• databases and information systems [28];

• geography and cartography [7];

• abstract and computational geometry [36]; and

• topology [2].

Contribution of each of them is inevitable in a solid theory of spatial infor-
mation systems. They are the basis of the so-called geomatic data models
(see also [33]).

In Section 2, we focus on typical geomatic operations and we classify
different kinds of spatial queries. For this purpose we take a closer look at
the well-known concept of genericity, introduced by Chandra and Harel for
classical databases [6].

Genericity distinguishes between operations that are independent from
the representation of the information and operations whose result is intrin-
sically influenced by the representation of the information. Paredaens, Van
den Bussche and Van Gucht [34] have shown that for spatial databases this
concept depends on the particular geometric properties that are considered
to be of importance. Spatial database applications can be classified accord-
ing to the geometric concepts that are involved in the interpretation of the
spatial information. Metric queries, for instance, that deal with distances
form a broader class than the one consisting out of queries in which only
topological properties are involved. We take a closer look at a taxonomy of
genericity-classes that was introduced in [34].

In Section 3, we give an overview of a number of geomatic data mod-
els and discuss some of their properties. All these models are intensional,
i.e., they give a finite representation of the mostly infinite and even non-
enumerable set of points of the spatial objects that are described by the
database. In the polynomial model [27, 34], spatial databases are described
by means of polynomial equalities and inequalities. In this model, the rela-
tional calculus, extended with comparisons between polynomials, is used as
a query language. We will show that this natural query language does not
give rise to sound and complete languages for any of the genericity-classes
discussed in Section 2. There are, however, point-based languages known
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that do [25]. In the topological data model only some kind of topological
(and as a consequence, partial) information is handled without dealing with
the exact position and form of the spatial objects. In this context, we look
at the relation between topology-genericity and a type of genericity intro-
duced by Egenhofer [11, 12]. In the raster model, an object is given by a
finite number of its points. These points are equally distributed following an
easy geometric pattern, which is normally a square. In the spaghetti model,
an object is intentionally deduced from its contour, which is a polyline.
The Peano model also uses a finite number of object-points, but here these
points are distributed non-uniformly, according to the form of the object.
This distribution method is based on the well-known Peano curve. Although
most discussions and illustrations in Sections 2 and 3 will be limited to two-
dimensional space, generalizations to higher dimensions are in most cases
straightforward.

2 Data Models, Query Languages and Genericity

In this section, we present a general model for spatial data and spatial
queries. We use this model to discuss the notion of genericity. For spatial
queries, this notion was first studied by Paredaens, Van den Bussche and
Van Gucht [34]. Throughout this section, we follow the definitions of [34].

We assume that we have a set of relation names, where each relation
name R has a type τ(R) = [n, m] which is a pair of natural numbers. A
relation R of type [n, m] has the form

(TA1, . . . , TAn; SA),

where TAi are called the thematic attributes of R and where SA is called the
spatial or geometric attribute of R. This definition of a relation can easily be
adapted to allow more spatial attributes. This generalization is not essential
however. An instance of a relation of type [n, m] on the extensional level
is a (possibly infinite) subset of Un × Rm, where U is a countably infinite
domain of thematic atomic values and R is the set of the real numbers. The
number n determines the dimension of the thematic part of the relation.
The number m, on the other hand, determines the dimension of the space
in which the geometrical part is embedded. If n = 0 we call the relation
purely spatial . If, on the other hand, m = 0 we have a classical relation and
we call it a flat relation.
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We call a finite set of relation names a database scheme. An extensional
instance of a database scheme is a set of extensional instances of its relations.
For a database scheme S we denote the set of its extensional instances by
e(S). We say that a relation of type [n, m] is of dimension k if m is a multiple
of k. We say that a database scheme is of dimension k if all its relations
are. By this definition, relations and databases clearly can be of more than
one dimension. The choice may depend on the spatial database application
at hand.

Without bothering about which finite representation is used to represent
infinite instances of relations, we can now define what we mean by a query
and by a generic query.

Definition 1 For two database schemes Sin and Sout, we define an (exten-
sional) query of signature Sin → Sout to be a partial function from e(Sin) to
e(Sout) which is generic on the thematic part, i.e., which is invariant under
every permutation of the set U.

We remark that the condition on the thematic part of the relations is
the classical genericity condition of Chandra and Harel [6]. They investigate
in the context of the relational model of databases which queries are “rea-
sonable”. They characterize this class of queries by means of the concept
of genericity which since then has taken a central position in the theory of
computable queries in databases. Indeed, a query in the relational model
is called computable if and only if it is a Turing-computable function on a
representation of the database, that is also generic. By a generic function Q

we mean here a function whose result is invariant on any permutation φ of
the universal domain of the database. This means that the value of a generic
query is independent of the internal representation of the data. Formally,
on the other hand, this means that if D and D′ are two relational databases
such that D′ = φ(D), for some isomorphism φ, then Q(D′) = φ(Q(D)). It
is well-known that all the operations in the relational algebra are generic
(except for the selections of the form σA=c and σA>B). On the other hand,
the algebra is not complete for the generic functions, since the transitive
closure, for instance, is a generic function that cannot be expressed by the
algebra.

A weaker kind of genericity, the C-genericity, where C is a subset of the
universal domain, has been introduced: a function Q is called C-generic if
its result is invariant on any permutation φ for which φ(c) = c for all c ∈ C.
Obviously σA=c is {c}-generic.
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In the case of databases that are not finite but recursive the concept of
genericity has been studied in [26].

For spatial databases, however, the definition of genericity depends on
the particular kind of geometry in which the spatial information is to be
interpreted [34]. This interpretation is determined by the spatial database
application and the type of queries that are considered to be of importance
in the application. The concept of a “reasonable query” depends on the ge-
ometrical properties that are used in the application. In some applications,
like temporal databases dealing with points on the real line, relative posi-
tions among the different spatial figures in the database are essential. For
these applications it is appropriate to consider only translations of the space
as isomorphisms and not for instance reflections. Geographical applications,
on the other hand, deal with areas and complete geometrical information.
For these applications isometries (distance-preserving transformations) are
suited as isomorphisms. These examples show that it is useful to define ge-
nericity of spatial database queries as a function of some group of geometric
transformations.

We will now formalize the definition of genericity relative to the general
model for spatial data and spatial queries that was given above.

Definition 2 [34] Let Sin and Sout be schemes of dimension k. And let G

be a group of transformations of Rk. A query Q of signature Sin → Sout is
G-generic if for every transformation g ∈ G and any two instances I1 and
I2 of Sin the fact g(I1) = I2 implies g(Q(I1)) = Q(I2).

In the remainder of this section we illustrate the notion of geomatic
genericity for a number of naturally occurring transformation groups [34]
with an example of a database in R2 that contains information about persons
and the places they live. By place we mean the geomatic information of their
home. This relation has the name Lives. On the extensional level, a tuple in
Lives has the form (n; x, y), where n is the name of a person, and (x, y) are
the co-ordinates of the place he lives. The database also contains geomatic
information about a region in the relation Reg of the form (x, y). We have
τ(Lives) = [1, 2] and τ(Reg) = [0, 2]. In the top left corner of Figure 1 an
instance of the {Lives, Region} scheme is given. The remaining five figures
show the answers to some of the following seven queries.

A first simple kind of query is

Q1: Give the home of the persons that live in Reg.
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Q2(D)Q1(D)D

Reg

Lives

Figure 1: An instance of the scheme {Lives, Region} is given at the top left
followed by some answers to queries

This is indeed a query since it clearly commutes with any permutation
of the domain of thematic atomic values. The result of this query is purely
spatial of type [0,2]. But, more importantly in this context, this query also
commutes with every permutation of the points of R2. Indeed, if we denote
by P the set of all permutations of R2 and if φ ∈ P, then we have that

Q1 · φ = φ · Q1.

The result of the query Q1 is independent of any geometric, geomatic or
topological property of the region. We mean that, if we first select the
wanted locations and then apply some permutation φ, we get the same result
as first doing the permutation φ and then ask the question. We say that Q1

is permutation-generic or P-generic. This type of genericity is identical to
the genericity in the relational model, as explained above.

Consider now a second question

Q2: Give the home of the persons that live in the interior of Reg.
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By interior we mean here the topological interior. It is clear that this
query does not commute with every permutation. Indeed, take only one
person living in (0, 0), the region being the closed disk with center (0, 0) and
radius 1 and consider the permutation φ ∈ P that interchanges (0, 0) and
(2, 2) and fixes the rest. Obviously (2, 2) is not in (Q2 · φ)(D), while it is in
(φ · Q2)(D), where D is the database.

However, Q2 commutes with every homeomorphism (i.e. continuous per-
mutation). We will denote the group of all homeomorphisms by H. There-
fore we call the query Q2 topology-generic or H-generic for short.

An affinity is a permutation that preserves collinearity. The group A of
affinities gives rise to the affinity-generic or A-generic queries, being those
queries that commute with the affinities. The query Q3 is obviously an
affinity-generic query:

Q3: Give all the triples of homes of those persons that live outside
Reg and live on one line.

The query Q3 does not commute with an arbitrary homeomorphism since
collinearity is not preserved by all homeomorphisms.

We can prove that Q4,

Q4: Give the homes of those persons that live outside Reg but
closest to it.

is not affinity-generic, but it commutes with all elements of S, the set of
similarities. A similarity is a permutation that preserves the angles. Such
queries are called the similarity-generic or just S-generic queries.

The next question

Q5: Give the pairs of homes of those persons that live exactly
10 from each other.

This query is obviously not similarity-generic but it commutes with every
isometry. An isometry is a permutation that preserves the distances. We
write I for the group of all isometries. Therefore we call this query isometry-
generic or I-generic.

The next question

Q6: Give the triples (p1, p2, p3) of locations of homes such that
the smallest angle between the vectors ~p1p2 and ~p2p3 is clockwise.
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Q6 is a direct-isometry-generic or D-generic query with a flat result.
These queries commute with the direct-isometries (elements of D), those
permutations that preserve the distance and the clockwise-orientation.

Finally, we have the translation-generic or T-generic queries. They com-
mute with the elements of the group T of translations.

Q7: Give the homes of those persons that have no person living
north of them

illustrates the T-generic queries.
We could even further limit the number of permutations and consider

for instance the group consisting of one single element: the identity. Clearly,
for this group every query is generic.

To summarize the taxonomy of genericity-classes given, in [34], we give
the chain (strict inclusions) of seven transformation groups to which they
correspond:

{1} ⊂ T ⊂ D ⊂ I ⊂ S ⊂ A ⊂ H ⊂ P.

This taxonomy may be considered natural but it certainly is not com-
prehensive for what concerns interesting transformation groups. Other in-
teresting groups that could be considered in this context are:

• those permutations that fix the first quadrant;

• those permutations that fix the x-axis and the y-axis;

• those permutations that fix the points with equal thematic informa-
tion;

• the reflection on a given axis;

• the horizontal translations;

• the homothecies (x, y) 7→ (ax, ay) with (0, 0) as center;

The following lemma is easy to prove and often useful.

Lemma 1 G is a subgroup of G′ if and only if all G′-generic queries are
G-generic.

The genericity classes above form a hierarchy in the sense of the following
property. The example queries Qi (i = 1, . . . , 7) prove the strictness.
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Proposition 1 [34] P-genericity ⇒ H-genericity ⇒ A-genericity ⇒ S-
genericity ⇒ I-genericity ⇒ D-genericity ⇒ T-genericity ⇒ {1}-genericity.
These implications are strict.

The great challenge is to find for each group G, a sound and complete
language for the class of G-generic queries. The challenge becomes still
harder if we add the geomatic model as an additional parameter to the
problem. We will meet this challenge partially in the next section.

3 Geomatic Data Models

Four main characteristics distinguish geomatic data models from the classic
ones:

• geomatic data models are used to represent information about the
n-dimensional real space Rn. The latter is an infinite, even a non-
enumerable, set of points. So, in general, the information we want
to represent is infinite in nature. This prevents us to use extensional
data models. Different intentional techniques are used in geomatic
data models for representing this infinite information. The data model
that will be used in a particular geomatic database depends on the
operations that have to be defined and on the efficiency needs of the
implementation;

• the intentional aspect of geomatic data models has a particular influ-
ence on the operations, those that are defined within the model as well
as those that are user-defined [20]: the data model has to be closed
for all the operations. Since geomatic applications ask typically for a
rich set of operations, the above property can be hard to be fulfilled;

• the information that is represented in geomatic applications has usu-
ally not the elegant geometric properties of a man-created structure,
but is mostly the visualization of a symmetry-less phenomenon pro-
ceeded from nature. This induces that the intentional information is
mostly vast and that we need particular algorithms for implementing
the data structure. These algorithms are based on algebraic, geomet-
rical and topological properties;

• As discussed in Section 2, the notion of genericity, seems to break up
in a hierarchy for geomatic data models.
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In this section we give an overview of some well-known geomatic data
models: the polynomial model, the topological data model, the raster model,
the spaghetti model and the Peano model.

3.1 The Polynomial Model and Complete Languages

3.1.1 The Polynomial Model

A natural approach to spatial data is to consider as a geometrical figure
any figure that is definable in elementary geometry, i.e., first-order logic
over the real numbers. This is the approach of the so-called polynomial
model [27, 34] in which exactly this class of figures, referred to as semi-
algebraic sets [3] in real algebraic geometry, is considered. In the polynomial
model the information is stored in relations, each of which contains a finite
number of tuples. As mentioned before, the spatial properties of an n-
dimensional spatial object are described by a semi-algebraic set of the form

{(x1, . . . , xn) | x1, . . . , xn ∈ R ∧ Φ(x1, . . . , xn)}

where Φ(x1, . . . , xn) is a semi-algebraic formula. This class of formulas,
also referred to as FO + poly is formally defined by

Definition 3 The alphabet of FO + poly consists of an infinite, enumerable,
set of variables x1, x2, . . ., which we will call real variables, the symbols
¬,∨,∧, (, ),∃,∀, a set of constant symbols, the function symbols +, ·, and
the basic predicate symbols =, <, ≤, > and ≥.

• Real terms are polynomials in real variables with rational coefficients;

• A real formula is an arbitrary well-formed first-order formula built
from

– atomic formulas, are of the form P Θ Q, where P and Q are real
terms and Θ is one of =, <, ≤, > or ≥;

– boolean operators; and

– quantifications (∃x) or (∀x) of real variables.

The number of free variables of a formula is called its arity.

We note that there are only two such sets for spatial dimension 0: {( )},
and ∅ (or True and False).
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Remark that the coefficients of the polynomials are rational numbers in
order to be representable.

{(x1, x2) | (81 < (x1 − 6)2 + (x2 − 5)2) ∧ ((x1 − 6)2 + (x2 − 5)2 < 121)}

and

{(x1, x2) | ∃x3∃x4((x3−6)2+(x4−5)2) = 100∧((x3−x1)
2+(x4−x2)

2 < 1)}

are two semi-algebraic sets that both represent Figure 2. This example
shows that one figure may have more than one representation in this model.
However, it is, in general, decidable whether two semi-algebraic sets are
equivalent, in the sense that they represent the same geometrical object [34].
This is a consequence of a well-known result by Tarski [41] that says that
every semi-algebraic formula is equivalent to a semi-algebraic formula with-
out quantifiers. This effective quantifier elimination makes many properties
of semi-algebraic decidable.

5

6

Figure 2: An example of a semi-algebraic set in R2

Consider now the spatial relation

R = (TA1, . . . , TAk; SA)

of type [k, n]. An intensional tuple of this relation has the form (a1, . . . , ak;
Φ), with the Φ being a semi-algebraic formula and the ai’s being elements
of U, the countably infinite domain of atomic values.
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The extension of this tuple is the set

{(a1, . . . , ak; x1, . . . , xn) | Φ(x1, . . . , xn)}.

In this context, we also use the terms intensional relation, extensional tuple
and extensional relation with the obvious meanings. For a database scheme
S we denote the set of its intensional relation instances i(S). We now define
what a query is in the context of the polynomial model.

Definition 4 In the polynomial model we call for two database schemes Sin

and Sout

• an extensional query of type Sin → Sout any extensional query which
can be expressed by

{(x1, . . . , xn, y1, . . . , yk′) | Ψ(x1, . . . , xn, y1, . . . , yk′)}

where Ψ(x1, . . . , xn, y1, . . . , yk′) is a formula that contains boolean op-
erators, existential and universal quantifiers and whose terms have the
form (x′

1
, . . . , x′

n, y′
1
, . . . , y′k) ∈ R where R is a relation name from Sin,

y′i = y′j , y′i = c or are comparisons, using <,≤, >,≥, =, 6=, between
polynomials whose coefficients are rational numbers. The variables
x1, . . . , xn are the free thematic variables of Ψ and y1, . . . , yk′ are the
free spatial variables of Ψ. A formula such as Ψ is called a formula of
the polynomial calculus;

• an intensional query of type Sin → Sout any partial recursive function
Q : i(Sin) → i(Sout) for which there is an extensional query Qe of
the same type such that the following diagram is commutative for
the function ext that maps intensional relations to the corresponding
extensional ones.

ext

i(Sin)
Q

Qe

e(Sin) e(Sout)

ext

i(Sout)
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To illustrate this, we turn to the seven queries Qi (i = 1, . . . , 7) of Section
2. They can all be expressed in the polynomial model. We give some
examples: Q1 is expressible as

{(x, y) | (∃n)((n; x, y) ∈ Lives ∧ (x, y) ∈ Reg)}.

Q5 is expressible as

{(x, y, x′, y′) | (∃n)(∃n′)((n; x, y) ∈ Lives

∧(n′; x′, y′) ∈ Lives ∧ (x − x′)2 + (y − y′)2 = 100)}.

Q7 is of result type [0, 2] and is expressible as

{(x, y) | (∃n)((n; x, y) ∈ Lives

∧(∀n′)(∀x′)(∀y′)(n′; x′, y′) ∈ Lives → y′ ≤ y)}.

3.1.2 Sound and Complete Languages

We now turn to genericity of queries expressible in FO + poly . The examples
Qi (i = 1, . . . , 7) show that all the genericity-classes of the taxonomy in
Section 2 can be handled by FO + poly .

In [34] the following negative result was stated and proved:

for the non-trivial permutation groups G of the taxonomy of Sec-
tion 2 G-genericity of an FO + poly query is undecidable.

Because of this undecidability result it is important to find languages
which capture exactly the G-generic FO + poly queries for the most relevant
groups G.

Gyssens, Van den Bussche and Van Gucht [25] have solved this problem
for the groups G in the chain

T ⊂ D ⊂ I ⊂ S ⊂ A.

All the transformations in these groups are also expressible by means of
polynomial equalities and inequalities. In fact, they give for each of these
groups G, first-order point languages FO(ΠG), parameterized by sets ΠG

of point predicates that are complete for the FO + poly queries that are
G-generic.

For example, they show that ΠA can be taken to be the set with the single
point predicate between(p, q, r) (meaning that p lies on the line segment
between q and r). If the predicates equidistance(p, q, r, s) (meaning that
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the distance between p and q equals the distance between r and s) and
unitdistance(p, q) (meaning that the distance between p and q equals 1)
are added to this set, ΠI is obtained.

For the group of homeomorphisms H, we refer to the next section.

3.2 Topology-Genericity and the Topological Data

Model

Unlike most of the other transformation groups discussed before, the group
of topological transformations cannot be parameterized by a finite number of
real numbers. A translation of the plane R2, e.g., is completely known when
its image on only one point is known. It is therefore completely determined
by a couple (a, b) of real numbers (the image of the point (0, 0) under this
translation). This is not the case for homeomorphisms. Indeed, it can be
easily shown that for any set of n points there exist two homeomorphisms
that have the same image on this set but a different image on some point
not belonging to this set.

In this subsection we will show that by limiting the spatial databases, on
the other hand, we can achieve an “effective representation” in a topological
sense. We present a data structure that gives an invariant and lossless
representation used to represent spatial databases in R2 that are in the
topological data model. Further on, we investigate the connection between
topology-genericity and a form of genericity introduced by Egenhofer [11,
12].

3.2.1 The Topological Data Model

In this section, we are interested in queries that only involve properties of
the database that are topological in nature. In this class of queries, concepts
such as adjacency, connectivity, and containment are important. Queries like
“Is there a highway connecting Brussels to Paris?” or “Give all countries in
Europe adjacent to the Atlantic” are typical in this respect. Characteristic of
topological properties is that they do not distinguish between two databases
that can be obtained from each other by a topological deformation. We will
call such databases topologically equivalent. 1

1Here we divert from the usual definition of topological equivalence in terms of home-
omorphisms and we call two databases D1 and D2 topologically equivalent if and only if
there exists an isotopy h = (ht | 0 ≤ t ≤ 1) such that h0(D1) = D1 and h1(D1) = D2.
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In applications in which only topological properties are under consider-
ation, it may be desirable to be able to work with a representation of the
database which is topologically invariant , meaning that two topologically
equivalent databases will be represented identically. Ideally, as we will il-
lustrate later, a representation should also be lossless, in the sense that two
databases that are not topologically equivalent will be represented differ-
ently.

We elaborate on the idea of topological property in the context of a
limited class of spatial databases consisting of points in the plane R2, lines
between these points, and areas formed by these lines. This model is com-
monly referred to as the topological data model [21, 37]. An example appli-
cation is a subway or railroad map in which only relative positions of spatial
objects such as stations and tracks are depicted without, for instance, tak-
ing the actual length of the trajectory into account. A survey of application
domains that can be modeled in this manner was given by Laurini and
Thompson [37].

We first formalize what a spatial database is in this context.

Definition 5 A database in the topological data model consists of a finite
set of labeled points, a finite set of labeled lines and a finite set of labeled
areas. Each point name is assigned to a distinct point in the plane R2. Each
line name is assigned to a distinct injective and continuous curve (a simple
Jordan curve) [31] in the plane that starts and ends in a labeled point and
does not contain any other labeled points except these. Distinct curves only
meet in labeled points. Each area label is assigned to a distinct area formed
by the labeled lines.

Figure 3 gives an example of such a database.
We apply the following notational convention throughout the remainder

of this section: Roman characters p, q, . . . denote point names, Roman cap-
itals A, B, . . . denote line names and Greek characters α, β, . . . are used for
area names.

The Census Bureau of the United States introduced this data model
in 1979 [8] to model topological information on what they called zero-cells
(points), one-cells (lines) and two-cells (areas) [37]. Here, the information
in the two-dimensional plane is described by a number of cells, each having
an identifier. Furthermore, the following “classical” relations R1, R2, R3 and
R4 are given:
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Figure 3: An example of a database in the topological data model

• R1: every one-cell has two zero-cells (indicating that every line has
exactly two endpoints);

• R2: every one-cell has two two-cells (indicating that every line is the
border between exactly two areas);

• R3: every two-cell is surrounded by a (ordered) cycle of one-cells and
zero-cells (indicating the border of an area);

• R4: every zero-cell is surrounded by a (ordered) cycle of one-cells and
two-cells (indicating the neighborhood of a point).

For relation R3 a clockwise order is agreed upon for outer borders of
areas and a counter-clockwise order is used for holes in areas. For relation
R4 a clockwise order is used. To settle the planarity of the model there is
the additional condition that all intersections of one-cells are zero-cells and
and all intersections of two-cells are one-cells.

Figure 4 illustrates the relations R1, R2, R3 and R4 (to save space) only
partially for a triangular shaped database.
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R1
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A q p

B q r
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· · ·

R2

A α β

A β α

B α γ

B γ α

C α δ

C δ α

· · ·

R3

α p A 1
α q B 2
α r C 3
β p D 1
β s E 2
β t F 3

· · ·

R4

p A α 1
p C δ 2
p D β 3
q B α 1
q A β 2
q F γ 3

· · ·
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Figure 4: The relations R1, R2, R3 and R4 illustrated

Neither the exact position of the cells, nor their length or surface is not
given by this representation. Only the interrelation of the position of the
lines, the areas and the points, i.e. its topological properties are determined.
If we are only interested in this kind of information, this model does not
contain any redundancy.

Clearly, a topological deformation of the database of Figure 4 is also
represented by the same relations. Hence, this representation of a database
is invariant . Figure 5 gives a database in the topological data model that
gives rise to the same instances for R1, R2, R3 and R4 as the one of Figure 4.
The database depicted in Figure 4 is topologically seen, however, different
from the one depicted in Figure 5. This not shows that this representation
is not lossless.

Kuijpers, Paredaens and Van den Bussche give in [29] a representation
of databases in the topological data model that is both invariant and lossless.
The notion of an observation of a database from one of its labeled points
is at the basis of this representation. For each labeled point in a spatial
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Figure 5: A database with the same values for R1, R2, R3 and R4 as the one
of Figure 4.
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Figure 6: An observation of a database from one of its points

database, we make a circular alternating list of area names and line names
corresponding respectively to the areas and lines that an observer, placed in
the named point, sees when he makes one clockwise full turn and scans the
environment of the point. This is illustrated in Fig. 6. There, the alternating
list for the point with name p is (α B α A β C β A). A point which is isolated
from the remainder of the database gives rise to an observation consisting
of one single area label. We denote the observation from p by Obs(p).

In [29] it is shown that the concept of observation is well-defined. Clearly,
also a representation of a database by means of observations is invariant.
The examples of Figure 5 again show that observations alone are not enough
to achieve losslessness. In [29]
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Definition 6 For a given database D, we call the data structure (P,L,A,

α∞, Obs()) the PLA-structure of D if P is the set of point labels of D, L is
the set of line labels of D, A is the set of area labels of D, α∞ is the name
of the unbounded area of D, and Obs() is a function that associates with
each element p of P, the observation of D from p.

Clearly, the information in the relations R1, R2, R3, R4 can be recon-
structed from the observations. Furthermore, it can be shown that addi-
tional information about the identity of the unbounded area suffices to get
a lossless representation:

Theorem 1 [29] The PLA-structure is an invariant and lossless represen-
tation of a database.

This result is also relevant from a user interface point of view: a topo-
logically invariant, lossless representation of the database corresponds to
an interface which allows the user to concentrate only on the topological
aspects of the spatial data, and on all of them, if he so desires. A query
involving distances (for instance query Q5 of Section 2) is not supported by
the PLA-structure.

This result implies that a query language which operates on PLA-structu-
res gives a sound and complete language for topology-genericity. 2 For in-
stance, we can easily define a three-sorted (with point, line and area vari-
ables) first-order calculus on PLA-structures with some constructions on
observation lists. Such a language was described and studied in [30]. If we
restrict the spatial databases to be databases in the topological data model
we can in this way, at least in part, fill the gap of the last subsection.

3.2.2 Topology-Genericity and Related Genericity-Classes

Here, we discuss topology-generic queries in R2 with its natural topology [2].
We limit our discussion to the case that the database only contains one
relation, which has one thematic attribute that contains the object identifiers
and one two-dimensional spatial attribute. In this case a database can be
viewed as a collection of two-dimensional objects.

Topology-generic queries are those that only use topological properties.
Here are some examples:

• give the connected objects of the relation;

2To be precise: isotopy-genericity.
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• give the objects that overlap with some other objects;

• give the topological boundary of each object;

• give the objects whose interior includes some other objects;

• give the objects that have some holes;

• give the pairs of objects that have the same number of holes;

• give the objects that have more than five holes.

Queries that use the shape of an object, its surface, a distance, the
gravity center, etc., are not topology-generic:

• give all the triangles in the relation;

• give the points of the objects in the relation that are closer than 10 to
(0,0);

• translate the the objects of the relation 5 in the direction of the x-axis;

• rotate the objects of the relation 90 degrees around (0, 0);

• give the gravity center of each object.

Max Egenhofer has studied the topological issues that are related with
geomatic data types very extensively [14, 10, 11, 12, 15, 13].

In [11, 12] the 9-intersection model is given for topological relations
in R2. This model is based on the overlapping properties of the interi-
ors (A◦, B◦), the complements (A, B) and the boundaries (∂A, ∂B) of two
two-dimensional objects A and B. Although this model only contains lim-
ited topological information it has shown to be very useful and efficient in
practice.

There are 3 × 3 = 9 combinations for the intersections of A◦, A, ∂A and
B◦, B, ∂B. They are represented in the following matrix.

R(A, B) =





∂A ∩ ∂B ∂A ∩ B◦ ∂A ∩ B

A◦ ∩ ∂B A ∩ B◦ A◦ ∩ B

A ∩ ∂B A ∩ B◦ A ∩ B





Each of these intersections can be empty (∅) or not empty (¬∅). Hence
there are 29 = 512 different possible values of such matrices, i.e., 512 possible
different topological relationships between two objects. Exactly one of these
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topological relationships holds between any two objects in R2. However
only 8 of these relations can be realized for two-dimensional objects. These
eight possibilities are illustrated in Figure 7.

meets covers covered by overlap

disjoint contains equalinside

∅ ∅¬∅

∅ ∅¬∅

¬∅¬∅¬∅

∅ ∅¬∅

¬∅¬∅¬∅

∅ ∅¬∅

∅¬∅ ∅

∅¬∅ ∅

¬∅¬∅¬∅

¬∅ ∅ ∅

∅¬∅ ∅

∅ ∅¬∅

¬∅ ∅¬∅

∅ ∅¬∅

¬∅¬∅¬∅

¬∅ ∅¬∅

¬∅¬∅¬∅

∅ ∅¬∅

¬∅¬∅ ∅

∅¬∅ ∅

¬∅¬∅¬∅

¬∅¬∅¬∅

¬∅¬∅¬∅

¬∅¬∅¬∅

Figure 7: The 8 possible relations between two spatial objects in R2

Clearly, when we consider three objects, we need a 3× 3× 3-matrix. For
n objects, we need an n-dimensional 3 × 3 × · · · × 3-matrix.

The matrix of Egenhofer allows us to define concepts that are analogical
to topological equivalence and topologic genericity.

Definition 7 Let R and R′ be two relations.
• We call now the contents of the relations R and R′ Egenhofer equivalent
(notation R ∼E R′) if they contain the same object identifiers and if their
topological relationship is given by the same matrix.
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• Let us call a query Q Egenhofer-generic if and only if R ∼E R′ implies
Q(R) ∼E Q(R′).

For instance, the relation that contains the tuples (A; {(x, y) | y > 0})
and (B; {(x, y) | y < 0}), the relation that contains the tuples (C; {(x, y) |
y > 0}) and (D; {(x, y) | y ≤ 0}) and the relation that contains the tuples
(E; {(x, y) | y ≥ 0}) and (F ; {(x, y) | y ≤ 0}) are not Egenhofer-equivalent,
even if A = C = E and B = D = F , since A ∩ ∂B = ∂A ∩B = C ∩ ∂D = 0
and ∂C ∩ D = E ∩ ∂F = ∂E ∩ F = ∅.

As an example of an Egenhofer-generic query we give: “Give the interior
of the objects in the relation.”

The Egenhofer matrix only contains information about a limited number
of topological properties of a spatial object: its interior, complement and
boundary. In practice, this information will often be sufficient to describe
the relations between a number of spatial objects. In theory, of course, such
limited information does not capture all the topological relations between
objects. Therefore it is interesting to study what the relations are between
Egenhofer-equivalence (resp. -genericity) and topological equivalence (resp.
-genericity).

The following results show that Egenhofer-equivalence is a weaker prop-
erty than topological equivalence.

Proposition 2 Topological equivalence implies Egenhofer-equivalence. The
comverse does not hold.

Proof. For two topologically equivalent relations, there exists a homeomor-
phism h : R2 → R2 that maps one onto the other. Since for any spatial
object A, we have h(A) = h(A), h(A)◦ = h(A◦) and ∂(h(A)) = h(∂A), they
are also Egenhofer-equivalent. The following two relations have the same
Egenhofer matrix, but are not equivalent in a topological sense.

(*)

R2R1

The following property shows that topology-genericity and Ehenhofer-
genericity are not related.
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Proposition 3 Topology-genericity does not imply Egenhofer-genericity.
Egenhofer-genericity does not imply topology-genericity.

Proof. The query “Give the objects in the relation that have exactly one
hole” is topology-generic since the number of holes of an object in the plane
is a topological property of the object. Applied to the relations R1 and R2

of (∗) in the previous proof, this query gives one object in the first case and
the empty relation in the second. Nevertheless, R1 and R2 are Egenhofer-
equivalent. So, the query is not Egenhofer-generic. The other case follows
from the observation that relations with only one spatial object with the
same identifier are always Egenhofer-equivalent.

To end this section we look at the relationship between Egenhofer-equiva-
lence and PLA-equivalence for databases in the topological data model. By
the latter notion we mean equivalence in terms of PLA-structure. Here again
we observe that Egenhofer-equivalence is stricktly weaker.

Proposition 4 Two databases in the topological data model that have the
same PLA-structure are Egenhofer-equivalent. The converse does not hold.

Proof. From the previous subsection we now that two databases with
the same PLA-structure are isotopic and thus topologically equivalent. By
Proposition 2 they are also equivalent in a topological sense.

Consider the two databases R1 and R2 depicted in the following figure.
They have the same Egenhofer matrix but a different PLA-structure. So,
the Egenhofer matrix does not contain enough information to reconstruct
the order of the lines A, B and C.

q
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p

C

s
B

A

q

A

C

r
s

B

p
α∞

3.3 Some Other Models

Here, we briefly describe three models that were developed towards practice.
The focus here is more on practical issues such as implementation efficiency
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Figure 8: A database in the raster model

and less on theoretical concerns such as genericity. None of these models is
geared towards a particular kind of genericity. In the raster model an object
is given by a finite number of its points. The geomatic information is inten-
tionally represented. In the spaghetti model, information in n-dimensional
space is intentionally deduced from its contour, which is a m-dimensional
hyperspace (m < n). The Peano model tries to intentionally represent every
point of an object. It combines the use of space-filling curves and quadtree
into a framework that supports an efficient implementation of a number of
natural operations.

3.3.1 The Raster Model

In the raster model [24, 23, 39] the geomatic information is intentionally
represented by a finite number of raster points with the semantics that the
infinite number of points in the environment of a raster point p have the
same properties as p. The raster points are uniformly distributed over the
object that is considered. Although this is a quite natural definition, some
problems can arise since the environment of a raster point is not always
homogeneous as to the relevant properties. In Figure 8 for instance most of
the points in the environment of raster point u are not on the line B, (an
infinite number of) others are. This fundamental problem gives rise to a
number of anomalies in the natural extension of classical operations to the
raster model. We conclude with an overview of other possible models.

We can illustrate this in Figure 8. In the raster model a line is rep-
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resented by two of its raster points. Theoretically this gives a problem to
represent those lines that do not contain any raster point, but in most appli-
cations these lines can be approximated sufficiently by representable lines.
In Figure 8, the line A is represented by q and p, B by r and p and C by s and
t. Clearly the two lines B and C intersect although their real intersection
point is not a raster point. The model could define the model intersection
point to be the nearest raster point to the real intersection point, here this
is v, but then we deduce in the model that v is on line B. Since v is also on
line A it is the raster intersection point of A and B, but p is also the raster
intersection point of A and B, since it is a raster point as well as the real
intersection point of A and B. This kind of problems is handled in [24, 23].

In the context of these approximation problems it is easy to show that the
raster model does not support translation-generic queries. We will illustrate
this with Figure 8 in which we assume that the raster points correspond
to points (a, b) ∈ R2 with integer co-ordinates a and b. The query Q that
gives the intersection point of the lines B and C does not commute with
the translation τ determined by τ(0, 0) = (0, 0.3). The translation of the
result (v) is again v. The query on the translated databases returns u on the
other hand. It is easily verified, on the other hand, that the raster model
does support queries that are integer-translation-generic (or maybe more
appropriately raster-generic), i.e., that commute with any translation τ for
which τ(0, 0) ∈ Z2.

3.3.2 The Spaghetti Model

In the spaghetti model, or vectorization model [37], the information in an
n-dimensional space is represented only using m-dimensional hyperspaces,
with m < n. This means that in a three-dimensional space we only consider
polyhedra, the boundaries of which contain planar facets, segments and
points.

In the two-dimensional case we only consider polygons, the boundaries
of which contain segments and points. More concretely we use here:

1. points;

2. graphs, whose data structure is a finite set of pairs of points;

3. polylines, whose data structure is a finite sequence of points;

4. polygons that are represented by non-selfintersecting closed polylines;
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5. complex polygons, that can contain holes, which are again complex
polygons (up to a finite level);

6. objects are sets of polygons, points or graphs.

Hence we have

POINT = (x : REAL, y : REAL, a : DOM)
GRAPH = (g : {(p1 : POINT, p2 : POINT)}, a : DOM)
P LINE = (p : POINT∗, a : DOM)
POLYGON = P LINE
COMPLEX
POLYGON = POLYGON | (p : POLYGON,

holes : {COMPLEX POLYGON}, a : DOM)
OBJECT = {(id : KEY, p : POINT, a : DOM)} |

{(id : KEY, g : GRAPH, a : DOM)} |
{(id : KEY, c : COMPLEX POLYGON, a : DOM)}}.

“a : DOM” denotes one or more thematic attributes. Figure 9 gives
an example in a GIS-application showing one object that contains some
complex polygons (representing pieces of land and houses) one object that
contains a graph (representing streets).

The reason why this model is so popular is the existence of very efficient
algorithms for detecting properties in this model [39]. We are thinking of
verification algorithms to detect whether two polygons overlap, whether a
point lies in a polygon or on a segment, whether two segments intersect,
whether a polyline selfintersects, whether a polygon is contained in another
one, etc. Furthermore, the model is simple to use and offers in most applica-
tions a sufficient approximation to reality. Also the technique of “recursive
holes” has some unexpected applications, such as the representation of a
third dimension in a two-dimensional space (like isobars and isotherms).

The spaghetti model is a widely discussed model [5, 17] and numerous
query languages [9, 38, 21, 13] and algebras [19, 20] can be found in the
literature that are based on a spaghetti-like model.

3.3.3 The Peano Model

In contrast to the spaghetti model, some models try intentionally to repre-
sent every point of an object, in the same sense as the raster model. Such
models are sometimes called the “pizza” models. The Peano model is such
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Figure 9: An example of a database in the spaghetti model

a model. It is an elegant marriage of two different well-known techniques:
space-filling curves and quad-trees.

A space-filling curve is an infinite sequence of curves, whose limit fills a
given square. Two of the most well-known examples are the Peano curve [35]
and the Hilbert curve. The Peano curves is illustrated in Figure 10.

The quad-tree [39] is a generalization of the binary tree in which every
node is a leave or has four children. Each node represents a quadrant of its
parent. The quad-tree is an appropriate implementation technique for the
two-dimensional information of a square. It is illustrated in Figure 11.

[i, j] indicates the subsquare with edge-length j, whose left bottom unit
subsquare is labeled by i. Remark that the unit subsquares are labeled
according to the second Peano curve of Figure 10. There is a very handsome
technique to calculate the label of a unit square:

label(u) = interleave(ux, uy)

with
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Figure 10: Peano curves

• label(u) the binary representation of the label of the subsquare u;

• ux and uy the binary coordinates of u; and

• interleave a function that shuffles its two binary arguments.

The Peano model [37] is particularly interesting to represent surfaces or
volumes. As in the raster model the information is represented by a finite
number of points, but these points are not uniformly distributed as is the
case in the raster model. Actually it is a special kind of the relational model
where each relation contains tuples that represent subsquares. Each Peano
relation has the form

PR(OID, P, S, A1, . . . ,An),
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 5          7

4            6          12

    9           11

0                        8            10

3          5            7          13          15

1          1            3           9           11

0          0            2           8          10

  0            1           2            3

2          4            6          12          14           

[0,2]

  white                                   

  

  [4,1]         [5,1]           [6,1]          [7,1]        

black       white          black         black     

[12,2]

  black

       [8,1]        [9,1]               [10,1]       [11,1]   
     black        white            white        black

Figure 11: The quadtree for a black and white colored square

where

• PR is the name of the Peano relation;

• OID is the object identifier of which the subsquare is a part;

• P is the Peano key, that is the label of the bottom-left unit subsquare
of the square that is represented;

• S is the edge-length of the subsquare;
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• A1, . . . ,An are attributes.

Clearly, we will always endeavor a maximal quadrant compaction.
On this model, the Peano algebra was defined with 12 operators on

relations:

• union, intersection, difference;

• translation of an object, rotation of a object over k · 90 degrees;

• scaling of an object with a factor 2 · i;

• symmetry according to an axis;

• extracting, which is deleting all objects outside a given window;

• duplication of an object;

• changing the unit, which looses some information;

• classical projection and join.

The Peano model is an elegant model for a direct representation of areas
and volumes that is not based on contours. Because of its relationship with
Peano curves it is efficiently implementable. Concerning genericity, it is
clear that as for the raster model, raster-genericity is supported.

4 Conclusion

From the example models of the previous section it is clear that they can
be divided into two categories. On the one hand there are the polynomial
model, the topological data model and the model by Egenhofer which are
primarily geared to handle theoretical issues. On the other hand there are
the raster model, the spaghetti model and the Peano model which were
developed for efficient implementation. The former models are not really
concerned with issues of efficiency and implementability. The latter models
were not developed with theoretical issues (such as genericity) in mind.

We think that a solid theory of spatial information systems will be found
at the converging point where practical implementation concerns and theo-
retical foundations meet.
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[22] R. Güting. An introduction to spatial database systems. The VLDB
Journal, 3(4), 1994.
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