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A Database Perspective
on Geospatial Data Modeling

Agnes Voisard and Benoit David

Abstract—We study the representation and manipulation of geospatial information in a database management system (DBMS). The
geospatial data model that we use as a basis hinges on a complex object model, whose set and tuple constructors make it efficient for
defining not only collections of geographic objects but also relationships among these objects. In addition, it allows easy manipulation
of nonbasic types, such as spatial data types. We investigate the mapping of our reference model onto major commercial DBMS
models, namely, a relational model extended to abstract data types (ADT) and an object-oriented model. Our analysis shows the
strengths and limits of the two model types for handling highly structured data with spatial components.

Index Terms—Spatial abstract data type, aggregate/disaggregate function, complex object, extended-relational model, object-

oriented model.

1 INTRODUCTION

MANY new applications that deal with geospatial data,
such as resource management, urban planning,
meteorology, are characterized among other things by
large amounts of data, both alphanumeric and spatial.
They increasingly rely on database management systems
(DBMS). Such DBMS have specific needs for querying,
manipulating, and representing these data and for
integrating geometric processing within their environ-
ment. A challenging issue is to capture a maximum of
semantics of such applications while representing both
their data and associated operations in typical DBMS data
models. This paper focuses on geospatial data modeling
(for a comprehensive survey on features that a geospatial
DBMS should provide, such as graphical user interface,
spatial access method, or query optimization, see [1], [2]).
The basic entities considered in these applications are
collections of geographic objects. In the sequel, we refer to
these collections as maps, although this term might evoke
a different notion to the GIS community, namely, a frozen
representation (on the screen, for example) of what is
denoted map here. A geographic object such as a county
is derived from an entity of the real world. Intuitively, it
has two kinds of components: alphanumeric ones (e.g., its
name and population) and spatial ones (e.g., a polygon).
As customary in this domain, we refer to the spatial
component of a geographic object as a spatial abstract data
type (ADT). In our study, we only deal with vector
representations. Hence, raster objects are not considered
further. The spatial objects can have (not exclusively)
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0 (points), 1 (lines), or 2 dimensions (regions). A third
dimension is not considered here, nor is a possible
temporal component of a geographic object. We denote
geographic model or map model as a representational model
that handles geographic data in general. These models
can be conceptual or can be expressed by means of the
logical model of a DBMS.

One problem in the definition of a geographic model
results from the existence of application-dependent func-
tions on maps that rely on operations on spatial ADTs. A
challenging issue is to embed both these operations on
maps and on ADTs in the same geographic model. In
addition, spatial ADTs must be closed under the operations
one can apply to them. For previous work on spatial ADT,
see [3], [4], [5], [6].

Another problem is derived from the fact that some
general functions on maps correspond to sophisticated
operations for which conventional database models and
query languages are deficient. Consider the following
example of aggregation. Suppose that a map of states is to
be derived from a map of counties, which includes
computing the total population of each state by summing
up the populations of all the counties that belong to that
state. To perform this operation, one needs not only some
implicit geometric union on the spatial part of counties, but
also a general operation that allows, for each state, to
compute its population. This kind of operation, which
correspond to aggregate functions in the relational model,
are not always possible in the geographic models proposed
so far as the function to be applied on all elements is a user-
defined function. Even when aggregation function exist,
they are usually not defined in a clean way (partly due to
the lack of formalism in the definition of aggregate
functions) and are based on ad hoc solutions. Furthermore,
the existing approaches sometimes mix the two levels of
abstraction (map and geometry) and some database con-
cepts appear at the geometry level, which leads to models
difficult to understand (see Section 2).
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The previous example on the map of states shows a
feature that frequently occurs in GIS applications, namely,
the possibility of representing a composition of objects (e.g.,
a state is composed of counties). In the GIS area, it is
relatively late that object composition has received attention
(see [7], [8], [9]). The example above also illustrates the
similarity with statistical databases [10], where a major
problem is to define proper mechanisms for data aggrega-
tion across many dimensions. According to [11], a database
is a statistical database if it contains the following three
kinds of data: microdata (primary data, e.g., census data),
macrodata (grouped or aggregated data, cross-classified by a
set of categorical attributes), and metadata (data about data).
In that respect, a spatial database is a statistical database.
However, the statistical database community looks for a
standard set of statistical operators, mainly based on
aggregation/disaggregation. The spatial database commu-
nity is aiming at finding a set of spatial operators, for which
the concept of aggregation/disaggregation will also play an
important role in the case of space partitioning. It is likely
that these two sets will have a nonempty intersection. In
[12], the authors make the bridge between the two
disciplines by defining an aggregation technique over a
hierarchy of (multiscale) partitions.

Some attempts have been made to define geographic
models using standard database models. Some of them,
such as [13], [14], [9], focus more on pure data modeling
than on the detail of map operations. Others which deal
with both data and operations often suffer from limits due
to the chosen underlying database model or to restrictions
imposed on their own model. The Geo-Relational Algebra
[3] and Spatiarel [15] are based on extended relational
models and cannot gather regions in a clean way (gathering
is the first step before realizing the geometric union of
several regions). In [4], an algebra for manipulating maps is
defined using a complex object model. However, the set
constructor is restricted to spatial values and the model is
nothing other than a powerful relational model extended by
sets of spatial values. The definition of regions incorporates
the notion of set, which should exist at the database level
rather than at the ADT level for a cleaner separation (for a
discussion, see [16]). The Rose Algebra [17], [18] has a clean
approach with a clear separation of levels due to the
introduction of an Object Model Interface that allows one to
make the connection between a geographic model and a
database model. However, this solution may seem complex
and rather ad hoc as it requires the introduction of new
operators within SQL [19].

The considerations above show that handling geospatial
data goes beyond traditional data handling. To summarize,
the peculiarity of geospatial applications is due to:

o the existence of both nonspatial and spatial data,
which implies the definition of spatial data types
closed under the operations applicable to them,

e highly structured data with the notion of objects
composition,

e the existence of user-defined operations (even
though there may exist a kernel of universal
operations), which requires an extensible underlying
model, and

e combinations of functions that exist atboth alow-level
of abstraction, i.e., on the geometric type, and at a
high-level of abstraction, i.e., on the maps, whichleads
intheory to second-order models. Thisis a challenging
issue which is studied throughout the paper.

Our goal is not to define another geospatial model, but to
study the implementation of a general geospatial model
using two major commercial DBMS models as a support.
We chose to base our reference model on the complex object
model of [20]. This model is well-adapted to the representa-
tion of (complex) geographic objects and to their manipula-
tion through the existence of user-defined functions and a
high-level operator, called replace, which applies a function
to all elements of a set.

This paper is organized as follows: In Section 2, we give
as a basis a simple geographic data model, together with
examples of operations that one is likely to apply to maps.
We also present several representative queries on maps,
which serves as references throughout the paper. In
Section 3, we study the use of database concepts for
implementing a geospatial data model. This study leads to
the proposal of three classes of operators which represent a
key point to DBMS extensibility. Finally, we express our
geographic data model using two major database models,
namely, a relational model extended to ADT and an object-
oriented one. Following our operator classification, we
discuss their advantages and drawbacks while implement-
ing a geographic model with full functionalities.

2 A GEOGRAPHIC DATA MODEL

The goal of this section is to present a geographic model
independent of any database representation. Many existing
conceptual models, such as the entity-relationship model
[21], its recent extensions, UML, or IFO [22], could serve as a
basis to express a geographic data model, as it was done in
previous work [9]. Here, we take as an underlying model
the complex object model of [20]. This model offers all the
features required for geographic information handling, both
at the representation level (powerful information structuring)
and at the manipulation level (existence of an algebra and of
high-level operators). Recall, however, that our goal is not
to define yet another map model, but to consider the major
modeling features needed for handling geographic data
efficiently. The complex object model we use is of great
interest in this context, although it does not consider object
identity like other complex object models do (e.g., FAD [23]
and all the true object-oriented models). Nevertheless, we
believe that this concept is not essential for what we want to
show, namely, geospatial data modeling (i.e., data structur-
ing and querying, and no updates).

In GIS, it is common to make the distinction between
space-based (or field-based) and feature-based (or entity-
based) models [24], [25]. In the first case, the space is seen as
a continuous domain with different values over different
places. Hence, the entities of interest are regions, lines or
points within the space, and attributes (such as temperature
or elevation) are associated with them. In the latter case, the
primary objects are geographic entities with which is
associated a spatial attribute. Recent work has been done
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to integrate both approaches, as for instance in [17], [14].
These approaches are based on a mapping of geographic
models onto geometric layers. The model proposed in this
paper belongs to the latter category, hence our focus on the
notion of geospatial entity.

This section starts with a description of our base complex
object model. We then present our map model as well as the
reference schemas. We detail the notion of spatial types and
of spatial objects and we give a taxonomy of their
operations. Finally, after giving a description of map
operations, we study the mechanisms of aggregation and
disaggregation on maps, as it turns out to play a major role
in map manipulation.

2.1 Underlying Complex Object Model

Using a database model for representing geographic
information allows us to embed both alphanumeric and
spatial data in the same general model and to use common
data modeling operations. A complex object model (some-
times called structured object model in the literature) such
as [20] is especially well-suited for this problem. Complex
objects are obtained from atomic objects using the set and
tuple constructors. These can be applied arbitrarily deep,
contrary to the relational model, where each of them is used
only once (first the tuple constructor and then the set
constructor to create a relation), or even to nonfirst normal
form models, such as Verso [26], [27], and NF2 [28], where
they have to be alternated. This interesting feature allows
one to express compositions of geographic objects in an
elegant way, which is not the case for most of the
geographic models already proposed (for that matter, the
model of [4] can be seen as an “extended relational model”).
The fact that repeated use of these constructors is allowed
can be explored to express the composition of geographic
objects with arbitrary depth.

In [20], Abiteboul and Beeri assume a finite set of domain
names and an infinite set of names called attributes.
Elements of the domains are called atomic values. Types
are constructed from domain names, attributes, and the set
and tuple constructors. If D is a domain name, then D is a
type; if 11, ..., T, are types and Ay, ..., A, are attributes not
used in any of them, then [A, :T},..., A, :T,] is a tuple
type; if T is a type and A an attribute not used in it, then
{A: T} is a set type; if T'is a type and A is a name not used
in it, then A : T is a named type with name A. Hence, tuple
and set types are created by applying the corresponding
constructors to named types. Objects are defined as
instances (values) of a type. Both calculus and algebra are
proposed for expressing queries and the equivalence
between those two is shown.

To remain closer to previous work in this area, we
chose to consider only the algebra in this paper. The
following operations are defined: set operations (union,
difference, and intersection), cross product (creates a set of
tuples), powerset (which creates the set of all subsets of a
set), and filter operations. Tuple-collapse (collapses each
tuple of tuples of a set into a flat tuple) and set-collapse
(collapses a set of sets into a set). Other operations with
intuitive semantics such as rename and extend are also
proposed. Finally, this algebra enables us to consider
user-defined functions and predicates (as “interpreted”

functions and predicates), which are of great interest in
map manipulation.

This approach also offers a high-level operation called
replace. It is similar to the map operation of Lisp-like
languages. This iterator applies a function to a set of
objects. Note that it does not increase the power of the
language. The parameter given to the replace operation is
called the replace specification. The effect of replace is:

replace < f > (m) = {f(t)|t € m A f(t) is defined}.

The nest and unnest operators of N1NF algebras [28],
[26], suitable to gather several values of the same type in a
single set (case of the nest), is not part of the algebra, but
Abiteboul and Beeri show their simulation using replace,
rename, and select.

2.2 Map Model

In the following, we define a thematic map as a collection of
homogeneous geographic objects. A thematic map, sometimes
called a layer, is in the literature [13], [14]. A geographic
object is usually derived from an entity of the real world.
Examples include rivers, cities, countries, or highways.
Such an object has a spatial part and an alphanumeric one
called its description. For instance, a river is characterized by
its name, its flow (both part of its description), and its
geometry (a polyline). A geographic object can be composed
of other geographic objects, such as a river composed of
branches. In this case, a river is considered as a complex
object whose branches are atomic objects. Another common
example is the state-county hierarchy, where states are
composed of counties and counties are in turn composed of
cities and rural areas.

Below is a generic definition of a map schema. The
genericity required for a general map schema implies a
higher level of abstraction. We do not describe, for instance,
the structure of a state or of a river object here. Rather, we
describe the structure of a map in general. This will be
useful in the sequel while defining operations on maps.
Note that because of the lack of subtyping in the underlying
model, we simply give the abstract syntax of a map
description. We use a simplified" metasyntax 4 la Backus-
Naur Form with symbol “:” for type assignment and with
constructors { } (set), [ ] (tuple). Ti denotes a basic type (e.g.,
integer, real, Boolean). In the following, we refer to the Ai’s
as alphanumeric attributes. <Ai:Ti>* denotes an enu-
meration of named types, i.e., the description. S denotes the
name of a spatial attribute whose type is Spatial (see
Section 2.3). Comments are prefixed by \\.

<thematic-map>
= “{” <geographic-object> “}”
<geographic-object>
s= [ [<ai % Ti>*], 8 “” Spatial “]”
\\ atomic
[ “T" [<ai “” Ti>*], M1 “” thematic-map “]”
\\ complex

1. We tried to give the most possible compact version in order to avoid
confusion. Nevertheless, a more expanded version that extracts the kinds of
components (nonspatial and spatial) would have been more correct here.
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Remark on map nesting vs. map atomicity. The definition
of the geographic objects above can be seen as a tree whose
leaves are atomic geographic objects and nodes complex
geographic objects. This distinction is important as it
permits us to associate a geometry with only atomic objects.
One then avoids duplicating the geometry of complex
objects which can be inferred using the propagation
mechanism [7] from the geometry of objects that compose
them (possible recursion). Other attributes such as popula-
tion or even position may be propagated within such nested
maps using the same mechanism. In the country-state-
county partitioning, the geometry and the population only
appear at the lowest level, ie., at the county level. The
county map is hence considered as an “atomic thematic
map,” whose elements are atomic geographic objects. The
notion of map atomicity is useful when describing the
explicit manipulation of the geometry of an entire map. This
leads to the following map-oriented definitions:

<atomic-geographic-object>
“I“ [<Ail “” Ti>*], s “:” Spatial “]”
<thematic-map>
u= “{" <atomic-geographic-object> “}”
\\ atomic thematicmap | “{“ Mi “:” “[”
[<Ai “” Ti>*],Mi’ “” <thematic-map> “]”

“1 \\ complex
To illustrate the definition above, let us consider two
particular map schemas: states (States) and highways per
state (StateHighwayNetwork), which will serve as
references throughout this paper. The term network denotes
a map whose spatial part consists of one-dimensional
objects only.

States:{State: [StateName: string,
Counties: {County: [CountyName: string,
Population: integer, MSL:
string, Geometry: Spatiall} 1}

States is a thematic map, i.e., a set of geographic objects
(State) of same type, whose one component is again a set
of geographic objects, or thematic map (here Counties),
composed in turn of geographic objects (County) having a
name, a population, a main spoken language (attribute
MSL), and a geometry. One can define an object “USA” or
“France” having type States. Because of composition, the
geometry has been factorized, i.e., it only appears at the
County level (atomic thematic map): the geometry of
State or States are implicit.

StateHighwayNetwork: {Highway:
[HighwayName:string, StateName: string,
Elements: {RoadElement : [MaximumSpeed:
integer, AverageTraffic:

Real, Edge:Spatiall}]}

StateHighwayNetwork is the map of highways per state
in which each basic highway portion (RoadElement) is an
atomic geographic object. As in the previous example, the
geometry appears only at the lowest level (in the Road-
Element object).

2.3 Spatial Data Types

In spatial databases, spatial data types are usually defined
as ADTs, ie., encapsulated types which are associated
operations. At implementation time, one can define spatial
indexes on spatial ADTs. In this paper, we do not elaborate
on the notion of ADT in general. For more information on
this topic, see [29], [30], [31], [32], [33]. A spatial object is an
instance of a spatial type. It can have 0 (point), 1 (line), or
2 (zone) dimensions. A set of spatial objects is usually
referred to as a layer. In [34], we compared different
definitions of spatial ADT and proposed one based on
spatial values (heterogeneous geometric figure). Common
geometric operations (union and intersection) and topolo-
gical operations (interior and closure) can be applied on this
type. We assume that Type Spatial above follows the
same definition. Of course, this is just a possible spatial
model. Other spatial models such as raster or topological
models, see [35], [36], [37], are also widely used. Puppo and
Dettori [38] define a mathematical model of maps based on
abstract cell complexes, which fulfills topological and
metric consistency rules. Erwig and Schneider [39] propose
a spatial model for handling vague regions (based in
particular on the fuzzyness of boundaries). A recent
proposal by the Open GIS Consortium [40] describes a
complete geospatial model which is likely to become a
standard.

2.3.1 Major Issues in Spatial Types Definition

Defining spatial types means defining both their structures
and the operations applicable to them. It is a challenging
task as it must meet at least the following criteria:

1. Visibility of the internal structure of ADT and encapsula-
tion. The ADT definition (or more precisely, its
interface) must be rich enough so that many
applications can access an object of the type without
frequently “disencapsulating” the type. Indeed, if a
type is not appropriately defined, one might need to
access its internal structure, hence to violate its
encapsulation. A typical example is the access to
holes of polygons in applications dealing with
objects of such types (e.g., lakes on islands if a lake
is defined as a polygon). If holes (i.e., lakes) are not
directly accessible, users will constantly have to
access the internal structure of the polygons contain-
ing them (i.e., polygons representing the islands).

2. Closure of the type under operations applicable to it. One
may then be tempted to define a general type such
that it remains closed under at least a set of common
operations. However, a too general type implies
encompassing a large number of cases and not
taking advantage of the power of typing. Thus, the
challenge is to define the smallest domain for
appropriate types. As we will see further, object-
oriented models with their notion of inheritance
and overriding are useful to overcome this
difficulty. Consider, for example, the intersection
operation, which is often used in GIS applications.
The intersection operation does not preserve the
dimension of geometric figures. The intersection of
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polylines (dimension 1) can be either a line
segment (dimension 1), or a set of isolated points
(dimension 0), or even the union of these two, One
may surmount this problem by defining a different
intersection operation such that it preserves the
dimension of its operands (as the regularized
intersection in [41]). In [34], this approach was
chosen and two cases of intersection were defined,
a “geographic intersection” that preserved dimen-
sions and a regular geometric intersection.

A general spatial type was defined as a geometric
union of zero-, one-, and two-dimensional figures,
which can easily be implemented by ADT (such as in
[5] in the closely-related domain of graphics data-
bases) or object-oriented classes.

3. Independence of the type with regard to the DBMS data
model. This concerns the use of particular features of
a DBMS in the (encapsulated) ADT definition that
might lead to models lacking genericity. An example
is [4], where the set constructor appears at the
geometric level (a region is defined as being either
an elementary region or a set of elementary regions,
in order to meet the requirement on closure).

2.3.2 Operations on Spatial ADT: A Classification
Trying to give an exhaustive list of ADT operations is
obviously not realistic, as many operations are application-
dependent. Providing an application designer with a
framework able to handle a large variety of such operations
is more sensible. To our knowledge, although there exists a
great variety of operations on spatial types (see, for instance
[42], [43], [44], [40], [45]), there is no standard classification
of them. The reader will find in [43] a complete list of
geometric operations based on the types of the arguments.
Many criteria for a classification can be of interest. They
include the type of the arguments or the semantics of the
operations, consequently leading to categories such as
geometric operations, operations using a metric, or topolo-
gical operations. Below is a classification that takes into
account the signature of the operations on spatial objects,
which are denoted SO (of type Spatial from the previous
section). Each operation takes one or many spatial objects as
arguments and returns a spatial object, a Boolean, a
number, or a set of spatial objects. With this classification,
there is no distinction between geometric and topological
operations. Here, we do not describe the structure of a SO.
Whether it is defined as an infinite set of points, a set of
polygons, etc. is not relevant here. Note also that we
distinguish spatial objects from sets of spatial objects
although this is not absolutely necessary as a spatial ADT
could encompass the notion of set. Yet, making such a
distinction at this point is important for later describing a
way to embed these types into a DBMS (Section 3).

® (S0,S0) -> SO. These operations are binary (set)
operations such as union, intersection, difference,
which can be easily generalized to n-ary operations.

e SO ->Bool ; (S0,80) -> Bool. These predicates
are test predicates, such as for adjacency or for the
inclusion of an object in another one’s object.

e SO->n; (SO,S0) ->n, (where n denotes a real).
These operations use a metric. Examples include the
length, perimeter, and area of an object or the distance
between two objects.

® SO -> SO. These operations are geometric and
topologic transformation of objects such as rotation
or change of scale, shape, or position.

® SO -> {SO0}. Such operations include the decomposi-
tion of objects into their nonconnected parts. They
could be defined within an ADT if the type is
general enough to handle the notion of set. In this
case, the set is transmitted from the ADT to the
database where the spatial operation is performed,
as we shall see further. In addition, the database
must be able to handle a set when returning the
result of the operation.

e {SO} -> S0; {SO} -> {SO}; {SO} -> n. These
operations are performed on collections of objects.
Some examples include the computation of the center
of a set of points, the Voronoi diagram, or the minimal
distance between spatial objects.

For more information about spatial operations, the
reader is referred to [46], [47], [3], and [48] and for a
description of geometric algorithms to [49].

2.4 Examples of End User Operations

We now give several examples of simple operations that an
end user is likely to apply to maps. Some of them can be
found in [4], [18]. For each operation, we give its signature,
in which map corresponds to Type thematic-map
described in Section 2.2 and Ai corresponds to a collection
of alphanumeric attributes. To avoid any confusion with
well-known algebraic relational operations, we chose to
prefix operation names with “map” when there might be
ambiguities. Most operations seem trivial at first sight, but
expressing them in a database model is sometimes difficult.
Note that this set of operations does not claim to be
complete. Someone may come up with new map operations
that are not part of our list. Completeness would have to be
defined with respect to another system, which does not
make sense in this case as there is no reference set of map
operations. However, one could show that the set {map-
projection, map-selection, map-union, map-overlay, mer-
ger, map-decomposition} is minimal.

2.4.1 Operations on Sets of Geographic Objects

1. Map Projection. The signature of this operation is
map X Al — map, where Ai is a collection of
alphanumeric attributes of map. It gives back a map
whose description is made of the Ai attributes and
whose spatial part is unchanged. Note the difference
with a standard relational projection where the
spatial part is projected out (hence, the “map” prefix
here). If S denotes a spatial type and m denotes an
instance of the map type, this operation is expressed
as m4;,5(m) in the relational algebra. Let us illustrate
this operation and consider the map of the Western
European countries with their name and population.
As explained previously, each country is a geo-
graphic object and the name of the country together
with its population represents its description (Fig. 1,
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Geographic
A map of countries Projection

and population on attribute
of Western Europe population

Fig. 1. Map projection.

Relational
Selection:
Countries

of more than Q
50 Millions inh.

A map of countries

and population
of Western Europe

Fig. 2. Map selection.

left). When a map projection is applied to the
population, the country names are eliminated (right
hand side of Fig. 1). In the previous section, we made
the distinction between an atomic or basic map (a
map with explicit geometry) and a complex map
with implicit geometry. Map projection easily
applies to a basic map. In case of a complex map,
the geometry has to be “pulled up” from the lower
level by using aggregation, as detailed in the next
section.

Map Selection. The signature of this operation is
map X condition — map, where condition is a
predicate on one or many alphanumeric attributes
(condition = p(ai)). It is similar to the relational
selection and can be expressed as g,4;)(m). On the
previous map by applying a map selection to the
countries whose population is greater than 50 million
inhabitants, we obtain the map on the right hand
side of Fig. 2.

Map Union. This operation (signature map x map
— map) consists of performing the union of sets of
geographic objects having the same schema. This
operation is similar to the relational union, hence if
m; and my are two map instances, the result is
denoted m; U my. In the example of Fig. 3, we

consider two maps, one with the countries of
Western Europe having less than 10 million inhabi-
tants and the other one with the countries having
more than (or exactly) 10 million inhabitants. The
relational union consists of gathering in a single map
the geographic objects coming from these two maps.
The final map is thus composed of all countries of
Western Europe. If one wants to perform the union
of heterogeneous maps (different schemas), then a
common schema has first to be defined.

Spatial Selections. As opposed to the previous
selection, the following ones refer to a spatial
property and they are useful for region and point
queries. Their signature is map x SO — map. SO is,
for instance, an area drawn by the user on the screen
(e.g., a rectangle) or a point.

e Windowing. Windowing returns the geographic
objects of a map whose intersection with a given
area is not empty (Fig. 4). Let w be such an area,
e an element of a map (tuple in relational-like
models), and e the intersection of spatial
objects.> Then, windowing is expressed as

2. Hence, w, e.5, and (e.S e w) have the same (spatial) type.
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Map of countries A map of countries

and population and population of Western
of Western Europe Europe with more than

with less than 10 Millions inh. (or exactly) 10 Millions inh.

Fig. 3. Map union.

Map m Areaa

Fig. 5. Map clipping.

Ocsewzp(m). In Fig. 4, the area is a rectangle
drawn on the screen by the user. But, the
argument could have any shape, for instance, a
circle. Consider the following query [4]: “Get all
countries located less than 100 kilometers from a
given point.” The windowing of the initial map
with a circle of radius 100 kilometers and center
given by the user is performed. A special case of
windowing is selection-by-pointing or point
query, which consists of selecting a single 5.
geographic object on a displayed map. For this

A map of countries
and population

of Western Europe

Clipping of map m with area a

operation, the area argument is reduced to a
point or to a very small region that permits a
certain approximation.

Clipping. This operation extracts the portion of
a map located within a given area (Fig. 5). As
opposed to windowing, the geometry of the
result corresponds exactly to the intersection
between the geometry of the geographic objects
and the geometry of the area.

Map Overlay. This operation (signature map x map
— map) is very common in GIS applications. It
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| - Anglo-Saxon
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L] Celtic

|

m1: Map of Western

European countries

[ ] Greek

- Albanese

Overlay of m1 and m2

m?2: Families of languages spoken

all over Western Europe

Fig. 6. Map overlay.

ermany

A map with two geographic objects

Fig. 7. Merging two geographic objects on a map.

computes a new map from several overlaid maps.
New geographic objects are created in the resulting
map. Their geometry is computed by applying the
intersection operation to the geometry of the
participating geographic objects, and their descrip-
tion is a combination of the participating descrip-
tions. If > is a spatial join (i.e., a relational join
whose predicate is defined over the spatial domain),
m; and my are maps, then the overlay is expressed as
my g mg. In Fig. 6, two maps with a different
partitioning are drawn, the map of Western Eur-
opean countries (whose description is the country
name) and the map of the distribution of families of
spoken languages over Western Europe. The result
of the overlay is a map whose geographic objects are
areas characterized by both the country they belong
to and the family of languages spoken in the area.
The maps considered do not necessarily have the
same surface. In this case, the resulting surface is the
intersection of the participating surfaces (regions).
Note also that clipping can be seen as a particular
case of map overlay when a map is created from the
geometric argument (a simple map with only one
geographic object having no description).

Q

5
LIS
o~

A map with one geographic object

Merger. The merger operation performs the geo-
metric union of the spatial part of n geographic
objects that belong to the same map, under a
condition given by the end user (Fig. 7). As it
operates within a single map, its signature is map x
condition — map (observe the difference with the
map union, which takes it as arguments between
several maps and gathers them into a single one.) A
merger relies on the concept of object aggregation
(see further) and on the union operation on sets of
spatial objects. According to the condition, it parti-
tions the input set, similarly to a SQL “group-by.”
This expression cannot be denoted with relational
symbols as second order cannot be expressed
explicitly. Below is an example of the merger
operation using our reference schemas (Query 1).

Note regarding the following queries.

1. From now on, we omit the type of attributes
when it is not essential for the understanding.

2. Applying a function f to a value of attribute A is
denoted £ (A) in the explanations below. Creat-
ing an attribute B whose value is the result of
applying £ to Ais denoted B <- £ (A). This is an
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Fig. 8. Map decomposition.

abbreviation for the composition of the extend

operation and projection on all attributes but A.
Query 1. From the map of Western Europe, build
the map of language regions using the main
spoken language of each county (merger).

This query shows an aggregation on the spatial
part of counties. The evolution of the schema during
its execution is given below. The counties whose
main spoken languages are identical are first
grouped and their geometry is gathered in a set
(nest). Then, the geometric union is applied to each
set (function union-set on spatial ADT).

a. Initial Schema
States: {State: [StateName, Counties:
{County: [CountyName,
Population, MSL, Geometry]}]}

b. Gather all the counties of all states in a single set
(map projection on County and set-collapse):

States’: {County: [CountyName,
Population, MSL, Geometry]}

C. Project on MSL and Geometry and nest on
Geometry: States:”

{County"’ : [MSL, G: {Geometry}]}

d. Apply union-set to set G (G’ «— union-
set (G)): States”: {County”:[MSL, G']}.

In [4], [6], [18], a somewhat comparable operation,
called fusion, is proposed. Its semantics are slightly
different since the union of the geometry of
geographic objects is applied if they have the same
value for a given attribute. For instance, if the fusion
attribute is “crops,” two fields growing corn on a
crops map are merged to form a single field.
However, this is a particular case which illustrates
the need for a more general merger operation that
allows one to gather several geographic objects
under a general condition given by user-defined
predicates. In the complex algebra we use, we can

Decomposition of map m

always express this via a composition of operations
(cross product followed by relational selection on the
predicate in question, followed by an aggregation
and a geometric union). We cannot express the
general case because a second order signature tool is
missing. Using such an operation, a combination of
alphanumeric attributes (such as a sum of popula-
tions in Fig. 7) can be considered. New values are
assigned to (alphanumeric) attributes as described in
our queries.

Map decomposition. It creates independent geo-
graphic objects from their nonconnected geometric
components. Its signature is map— map. As in the
case of merger, it cannot be expressed by a relational
expression. Fig. 8 gives an example of the decom-
position of a map. Take, for instance, the simplified
geometry of France (the same reasoning applies to
other countries having islands). It is made of two
nonconnected polygons, the larger one correspond-
ing to the mainland and the smaller one correspond-
ing to an island, Corsica. After the decomposition of
map m, the polygon of Corsica is the spatial part of a
new geographic object. Map decomposition turns
out to be a complex operation as 1) the nonconnected
parts of a geographic object have to be isolated and
2) attributes and attribute values of the newly-
created objects have to be specified (here, the name
“Corsica” has to be entered and the population
either removed or set to some unknown value). In
any case, there must exist a way for restructuring the
objects, possibly extend their description, and for
computing new values for some attributes.

This operation can become quite complicated in
some GIS applications that require sophisticated
computing. For instance, such a value can be a ratio
that depends on the values of other attributes of
either the same object (e.g., the area of a spatial
attribute value) or of all the objects of the map (e.g.,
the average of one attribute). This requires the
existence of a high-level function, say g, which
operates on each element e (geographic object) of a
map m to assign a value to a (possibly new) attribute
A,, as described below. In the following expression,
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e.S is not mandatory here as it behaves as any other
attribute. Nevertheless, given its importance in
geographic applications, mentioning it better illus-
trates our discourse.:

e.A, = g(e.4;,e.5, f(m.A;)),Ve € m.

In other words, the new attribute value is a
function (g) that is a combination of: 1) the value of
an alphanumeric attribute A4;, 2) the value of the
spatial attribute S, and 3) possibly a function to be
applied to the attributes of all the elements of a map,
such as average (here f(m.A;)). Such functions are
not easily expressible in database languages because
of their second order nature, as we will see in next
section.

2.4.2 Operations Based on Pure Geometric Algorithms

Even though some operations presented above make
intensive use of spatial type functions, most of them belong
to what can be considered as an algebra on maps. They take
as argument one or several maps and return a map.
However, some applications require specific operations
whose output does not belong to the map domain anymore.
As a simple case, take selection-by-pointing which returns a
single geographic object. A geographic object can be, of
course, stored in a map as a singleton, but this is not very
elegant. Below is an example of query whose execution
requires such a specific operation (Query 2).

Query 2. Find the shortest path between Paris and Berlin.

First, the Paris and Berlin coordinates have to be located
on the network (geocoding function). This can be performed
as follows: From Counties, extract counties of Paris and
Berlin and, for each one, get a representative point such as
its center (apply a geometric function center on each
county’s geometry) and map it onto the network. Then, the
query execution consists of calling the shortest path
algorithm on the network (external function), with the two
end-points.

It is not our goal to elaborate on graphs here. The reader
will find in [50] an approach for embedding graphs in
databases, together with relevant algorithms. What we want
to show through this example is the existence of two
independent features: 1) the possibility of defining and
calling elaborate functions on the geometry (such as
shortest path) and 2) the possible heterogeneity of the
result of such queries, which can be, for example, a map (a
subnetwork in this particular case) or even a spatial object
(the union of lines composing the path).

2.4.3 Operations Based on Geometric Algorithms and
Descriptive Attributes

A problem may arise in the input structuring when such
specific functions require data from the description of
geographic objects. On the previous example, suppose that
one wants to find out the average time it takes by car
between the two given cities (function of the maximum
speed on a segment, the average traffic, and the length of a
segment). The shortest path operation is applied between
these two points with a cumulative sum of average
traveling times per road segment. This example shows the
case of a function that is more than a pure geometric

operation. Indeed, the special shortest path algorithm
invoked in this case takes as input not only the geometry
of all the segments (in order to obtain the network), but also
attribute values from the description of each segment.
Therefore, one must be able to specify such an input, which
is feasible in our model by applying the composition of
functions. As another example, take the allocate function
which is a common function on networks in GIS. The
allocate function takes a network consisting of edges and
nodes and a set of centers as arguments. Its purpose is to
allocate each edge and node of the network to a center by
considering a resource demand. In practice, resource
demand is, for instance, the number of students who live
along an edge or on a node in a street network. Each center
has a resource capacity which is the total number of
resources which can be supplied to or from a center to meet
the demands along edges and nodes. Resource capacity can
be, for instance, a school’s capacity. A similar case occurs
with “Voronoi with weight,” that is a special case of
Voronoi (which is a function on the geometry) that
computes a new map not only from geometric constraints
but also from alphanumeric ones.

All the examples above and many others such as a
kriging algorithm, show that although some operations
might look like pure geometric functions at a first glance,
they sometimes require values from the description as
well. They are applied on maps as a whole. The crucial
point is to be able to specify the input and the output of
these functions. As shown previously, the input is more
than a simple map as it concerns a structuring of its
elements, subparts of their description, and of their
spatial component.

2.5 Expressing Aggregation and Disaggregation

Although aggregation and disaggregation are meant as
database features, they deserve a particular attention in
map manipulation as illustrated above (e.g., merger and
decomposition). The basic case of aggregation is the
following. Consider the schema: {[A:«,B: ]} and sup-
pose that a function f such as sum, union, ... is to be applied
to attribute B. The signature of £ is {3} — 3. To express that
correctly, a first step consists of gathering the values of Bina
set C' as follows: {[A:«a,C:{B:3}]} and then to apply
function £ to the created set (D <« £(C')), where D is a new
attribute name: {[A : o, D : #']}. When the language used is
SQL and (3 is an ADT, the set is not created explicitly. Only
the attribute on which function £ is to be applied is given
(e.g., “Select Name, sum(B) from...where...”). In the case
of disaggregation, a function g: {8} — (' is considered.
Similar schema transformations can be defined.

Aggregate/disaggregate functions are defined on collec-
tions of attributes values, i.e., on sets of values in a database
context, such as a aggregate function sum defined on
integers. Therefore, a set has to be introduced for
restructuring before or after applying the function. This is
not a problem in the complex object model we use.
However, it is difficult to introduce aggregate functions in
the standard relational model because of the nonexplicit
existence of sets of values. Hence, we see again the power of
explicitly manipulating sets arbitrarily deep. The two
following queries are examples of the use of aggregate/
disaggregate functions.
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Query 3. Create the map of states from their counties with
sum of their population (aggregation).

This query shows how to aggregate data according to the
hierarchy defined by the data schema. Its execution requires
the following steps: For one state (“replace”), do the
following: 1) compute the total of population of all its
counties (function sum) and 2) perform the geometric union
over the regions of all its counties (function union on the
spatial attribute). The schema evolution is the following:

a. Initial schema (we give up the county names and
languages)
States: {State: [StateName,
Counties: {County:
[Population, Geometry]}]}

b. Restructuring (for each state, projection on both the
population and the geometry of its counties)

States’:{State: [StateName,
P:{Population},G:
{Geometry}l]l}

c. Treatment: Apply sum to populations (P’ < sum(P))
and union to regions (G’ < union(G)), where P’ and
G represent new attribute names

States”: {State: [StateName,
P’, G']}
As stated before, all these operations can be
expressed using replace and ADT operations.
Query 4. Decompose counties into connected parts and
distribute the population proportionally to the area
(“disaggregation”).

This query shows the ability to disaggregate a spatial
value into a set of spatial values and a particular case of
allocation. First, we need the function decompose that
returns all the connected parts of a single region in a set of
values of type Spatial:

decompose(R : region) — R = {R;},

The query execution is then the following: 1) apply
decompose to the geometry of all counties (“replace,”
resulting in a set of regions G’ for the geometry and 2) create
a new geographic object for each element of G’ (“disag-
gregation”) with a population value computed from the
ratio of the respective area.

a. Initial Schema (we focus on the population and
geometry of counties)
Counties: {County: [Population,
Geometry]}

b. Add attribute G’ by applying decompose to
Geometry

(G" «— decompose(Geometry)) Counties’:
{County: [Population,
Geometry, G’ : {Spatiall}]}

c. For each value R; (attribute name Geometry, type
Spatial) in R’ (attribute name G’, type set of
Spatial), compute a new tuple having as spatial
attribute Geom and as new population attribute

P’ «+— (County.Population*area(s)/

area (County.Geometry)),

where County.Population, county.Geometry
represent, respectively, the population value and the
geometry of the county that has to be decomposed,
and area a function on spatial ADT that takes and
ADT and returns its area size (a real):

Counties”: {County: [Population,
Geometry, G': {[P’:
real, Geom:Spatial]}]l}

d. Project out Population and Geometry and collapse
the inner set and tuple: Counties’’’:{Coun-
ty:[P’, Geom]}

2.6 Relationships between Maps and Geometric
Components

The informal presentation of maps and operations above
points out the necessity of having 1) operations on the
description (the nonspatial part), as well as 2) high-level
operators, such as iterators and operators for restructuring
information, in order to apply operations to collections of
geographic objects and to parts of them. Furthermore, our
approach also shows intuitively two levels of abstraction,
namely, a higher level of abstraction, with collections of
geographic objects, and a lower level of abstraction, namely,
encapsulated spatial types. The higher level processing
relies heavily on operations defined on the lower level. For
instance, the merger operation presented above needs the
geometric union defined on spatial types. Map overlay
needs the intersection operation defined on the geometry of
spatial types.

The same underlying model was chosen in [4]. This
approach adapts the replace operators (renamed apply) to
the map context to give the possibility of applying a
geometric operation to all geographic objects of a set. It
shows that operations on maps can be expressed using this
operator and basic geometric operations. For instance, the
map overlay operation can be described using apply, the
geometric intersection (in the role of the function to be
applied), and the Cartesian product. The join of m; and m,
is expressed as

my g mo = apply <# 0 < @ >>m; X mo,

where X is the Cartesian product of the two maps.
Similarly, the fusion (W) is expressed as apply < & > (m),
where @ denotes the geometric union of all the elements of
a set. This mechanism turns out to be very useful both at
modeling time and at implementation time.

However, having only the notion of map, spatial types,
and replace is not enough as operations such as some
specific operations on the maps geometry, as illustrated in
Sections 2.4.2 and 2.4.3, have also to be considered. Hence,
we see a need to combine general operators and user-
defined functions. As far as previous approaches are
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concerned, note that the operations of Section 2.4 were not
all treated in [4] as it was not the focus of this approach. In
[18], only a particular case of the merger operation, the
fusion, is considered, and queries 1 and 4 are treated using
specific operators introduced for this particular purpose.

3 IMPLEMENTING GEOGRAPHIC FEATURES IN A
DBMS

We now address the problem of defining a logical model
that corresponds to the geographic data model of Section 2.
If we focus on logical aspects of map manipulation as
opposed to physical aspects, it appears from Section 2 that a
DBMS should provide the following features to handle
geographic information:

l. A possibility to consider spatial data types with
operations defined on them.

2. Constructors for considering collections of objects
and semantic links among objects (e.g., hierarchies of
geographic objects). For instance, the set constructor
for a collection of geographic objects and the tuple
constructor for describing the structure of an object.
In addition, in nonflat database models, the set
constructor can be used for describing relationships
between objects (as done in Section 2).

3. The possibility of refering to the spatial part of an
object, e.g., by a dot notation (for example, Cali-
fornia.Geometry for a named object Califor-
nia, or more generally, x.Geometry for any
geographic object variable x).

4. Operators for handling collections of data, no
matter their nature (set of descriptions, of spatial
objects, of geographic objects, etc.) and which
allow restructuring.

This section starts with a classification of the required
operators within a standard database system, whatever its
underlying model is. Following this classification, we then
study how to match the requirements with DBMS data
models. Two major database models are considered,
namely, a relational one extended by ADTs and an object-
oriented one. We illustrate our discourse through the
examples of Section 2. We end up with a study, for both
of these data models, of 1) the implementation of the
operators, 2) the representation of geographic data, and
3) the formulation of the reference queries.

3.1 Three Classes of Operators

From the operations and queries of the previous section,
three classes of operators applicable to geographic objects
can be extracted, according to the kind of objects they apply
to: 1) ADT or sets of ADTs, 2) sets of objects independent of
each other (i.e., object after object), and 3) collections of
objects as a whole, i.e., combinations of geographic objects,
functions of spatial objects, functions of descriptions, or
subpart thereof, etc. In [43], operators are divided into six
major groups. The classification criterion is different from
ours as it corresponds to their type of output in a relational
environment. Our approach is orthogonal to the one of [43]
and is oriented toward the study of geographic DBMS
extensibility. More precisely, our three classes are the
following;:
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Class I: User-defined functions. We take as exam-
ples operators on spatial ADT, but this class applies
to any (nonstandard) data type. Apart from the
simple case where a function takes one or many
ADT as arguments and gives back a value of a basic
type (e.g., distance: ADT X ADT — real), input
and output of these operators can be:*

e ADT x ADT (input) and ADT (output): Class La,
e.g., geometric intersection.

e set of ADT and ADT (Class Lb), i.e., aggregate
functions on ADT such as union (sometimes
denoted sum).

e ADT and set of ADT (Class Lc), i.e., “disaggre-
gate” functions on ADT such as decompose or
connected-parts.

o set of ADT and set of ADT (Class I.d) such as the
Voronoi operator which takes a set of points as
arguments and returns a set of regions(note that
the set of points could also be a simple ADT,
with the set notion incorporated in it.)

Class II: Database generic algebraic operators.
When executing these operations (e.g., projection
and selection) objects (tuples) are considered se-
quentially and independently of each other. Thus,
we shall call the processing of data “linear.” In our
context, these operations are simply expressed using
one replace. We cannot describe the general mechan-
ism here because we would need second order tools
(for describing functions of functions). Hence, when
using this simple although powerful underlying
model, operations must be described case by case, as
we did above. We could have chosen other attractive
base models in the domain of complex objects, as, for
instance, FAD [23], which provides the user with the
possibility of defining the abstraction of functions
and predicates. This enables us to express anon-
ymous functions (denoted by fun x y...), which can
be used in turn as argument to other functions. It is
very similar to the lambda calculus definition of
functions. The possibility of expressing such func-
tions establishes a bridge between databases and
programming languages.

Class III: Specific database operators with “non-

linear” processing. As illustrated throughout our

examples, the input or output of these operators

(e.g., shortest path) is more complex than a

simple set of ADT. Thus, they cannot be defined on

ADT. They are not part of the regular set of algebraic

operations either because they are not generic. If the

application changes, they may have to be modified
as well. Hence, they correspond to some other class
of user-defined operators. The input and output
structures are “frozen” and the structuring before
and after processing is done by the programmer
using database operators of Class II. For defining
this kind of operator, programming languages need
to be considered. From a data model point of view,
such an operator is only defined by its signature. In

3. Only the most common classes are represented here.
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other words, only the interface to the algorithms is
relevant.

As an example, take the shortest path operation
on the StateHighwayNetwork and consider a
weight on each edge it consists of. This weight can
be a function f (maximum-speed, traffic). The
algorithm takes as input 1) the start and end points,
and 2) the network itself, that is, a set E of edges
together with their weight and whose schema is
(edge:spatial,weight:real). It might return
a value such as a set E” of type edge:spatial. The
algorithm itself is not relevant here and can be seen
as a “black box.”

3.2 Embedding the Operators in a DBMS

The previous considerations lead us to examine the
problem of extensibility in geographic DBMS note that we
are focusing on single systems rather than on distributed
systems, even though some operators and geometric
functions can be part of external libraries. More precisely,
the problem is to find the minimal set of operators to be
attached to each class. The tradeoff is the following: Having
Class III (specific GIS operators) completely independent of
Class II (generic database operators) might lead to incon-
sistencies. On the other hand, the interest of having Class III
separated relies on the fact that at implementation time, this
set of operators can correspond to a module external to the
database (expert system, statistics, ...). Then, merging Class
III and Class II leads to a too specific system. In the same
way, it is now well-known [51], [18] that Class I has to be
independent from Class II for efficiency. It could be
implemented by a specific geometric library. One crucial
problem is the communication between these modules, i.e.,
combining the three categories of operators. In a consistent
framework, all operators can be combined. For instance,
map overlay is a combination of join and geometric
intersection. More precisely, it is nothing other than a
0-join with the geometric intersection test as the 6 predicate.
Class II belongs to the DBMS kernel. Take, for instance,
Class I and the decompose operation, which takes a region
and returns its nonconnected parts in a set. The set
constructor has to be known by Class I, which is not trivial.
A similar problem arises for Class III, whose operators take
sets as arguments. These modules must have an analogous
notion (e.g., collection) that can be mapped to the database
“set” concept. Such a mapping is realized both ways in the
interface between the two modules.

3.3 Relational DBMS Extended to ADTs

There have been several proposals to extend the original
relational model with abstract data types [31], [52], [33],
[53]. This facility has often been used to add a spatial data
type within a relational DBMS. ADT enables user-defined
operations from Class I, but only from the first subclass
“ADT x ADT and ADT” (Class La). The three other
subclasses (Classes Lb, I.c, 1.d) cannot be easily defined in
the framework of the extended-relational data model
because of its inability to express explicitly sets of values.

3.3.1 The Operator Classes

Some operations of subclass “set of ADT to ADT” (Class L.b)
can be expressed as aggregate functions which are defined
in relational query languages such as SQL. However,
aggregate functions are not universally accepted in the
relational paradigm. As far as languages are concerned,
aggregate functions are defined in an ad hoc manner and
extending the mechanism to abstract data types is therefore
difficult. The two last subclasses of operations (i.e.,
classes I.c and I.d) cannot be expressed in query languages
such as standard SQL either.

Most of the Class II algebraic operators are part of the
relational algebra. In an extended-relational system such as
Sabrina-Objet [53], it is possible to use any function or
predicate in the operators. Some operators such as nest or
unnest do not fit in the relational context, and we will see
later that a query such as Query 4 cannot be expressed.

Specific algebraic operators (Class III) cannot be gen-
erally introduced in extended-relational systems, but some
systems can handle them by coupling the DBMS with a
programming language (e.g., RAD [32] and its transforma-
tion operations). This drawback of the relational approach is
particularly regrettable since many geographic operators
such as shortest path have to be expressed as specific
operators.

GeoSabrina [54] is built on top of an extended relational
system [53]. In this system, Class L.a operations are defined
as (regular) ADT functions, Class Ib operations are
considered as aggregate functions and operations of
Class L.c, Class I.d, and Class III cannot be implemented.
Gral [55] is based on an extended-relational approach that
allows the designer to add new executable operators.
However, due to the lack of the set constructor, Class I
and Class III are merged.

3.3.2 Data Representation

In contrast to a complex object model as the one used in
Section 2, the relational model imposes flat tuples repre-
sentation, which means that object composition cannot be
expressed by nesting the set and tuple constructors. It is
therefore necessary to split the representation in several
relations and to keep a foreign key to be able to retrieve
hierarchical information. Hence, the States and Coun-
ties representation could be defined as follows:

create table States (StateName: string)

create table Counties (StateName: string,
CountyName: string,
Population: integer,
MSL: string, Geometry:
spatial)

Similarly, the StateHighwayNetwork and RoadElement

representation is the following:

create table StateHighwayNetwork
(HighwayName:
string,
StateName:
string)
create table RoadElement (HighwayName: string,
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MaximumSpeed:
integer,
AverageTraffic:
real, Edge:spatial)

3.3.3 Expressing Queries

In an algebraic approach, expressing queries is equivalent
to combining operators of the previous classification.
However, we chose to express them below in SQL-like
languages as it is the standard end user languages for the
moment. We now express the queries of Section 2 in
extended-SQL.

Query 1. Build a “language” map using the main spoken
language of each county (merger).

select MSL, sum(Geometry) from Counties group
by MSL

Note that this approach does not allow one to keep the
geometries in a set without running explicitly an aggregate
function such as the geometric union.

Query 2. Find the shortest path between Paris and Berlin.
This query cannot be expressed in most SQL-based

relational DBMS because an external function such as
shortest path cannot be used. Such cases are usually
handled by embedding SQL into a programming language
such as C++ or Java, in which such algorithms are coded
(they can also be coded in a more appropriate language
such as a functional language called from C, for instance).
Query 3. Create the map of states from its counties with
sum of their population (aggregation).

select s.StateName, sum(Population),
sum (Geometry)

from States s, Counties c

where s.StateName = c.StateName

group by s.StateName

Query 4. Decompose counties into connected parts and
distribute the population proportionally to the area
(“disaggregation”).

This query cannot be expressed because 1) disaggregate
function such as decompose (Class L.c) cannot be expressed
and 2) the unnest operator is not defined.

3.4 Object-Oriented DBMS

In the past 15 years, object-oriented DBMS (OODBMS) have
received considerable attention from the database commu-
nity. One of the goals of object-oriented DBMS (OODBMS)
was to allow extensibility. This is generally done by
allowing the use of a general programming language such
as C or C++ to express the operations on objects stored in
the database. In the GIS community, some experiments
were made to implement a GIS, or part of, on top of
OODBMS such as O [51] or ObjectStore [56]. Embedding
typical GIS features within a so-called object-oriented GIS
was studied as well [57]. For more information regarding
the use of object-oriented system to handle geographic data,
see [57], [58], [8].

3.4.1 Defining Spatial ADTs and Operator Classes
Operations of both Class I and Class III can be expressed
using the general programming language of an OODBMS.
Spatial ADT can be defined as a class in any OODBMS and
operations of classes I.a and I.c can easily be defined as
methods on that class. It is necessary to define “a set of
spatial ADT” either as a class or as a value in a OODBMS
that makes a difference between object and value (such as
O7 [59]). Let us take as an example the case of Oy, which has
a clean data model and which was used as a basis for
several other proposals [51], [60], [18]. Defining a spatial
ADT is done as follows:

class spatial \\ class definition
type ... \\ not relevant here
method
area: real, center: spatial,
intersect (arg: spatial) : boolean,
intersection (arg: spatial) : spatial,
union (arg: spatial): spatial,
decompose: set (spatial)
end class;

User-defined operations may be defined as methods on a
class if the first argument of the function is an object of the
class. The declaration of union and intersection
methods shows examples of class l.a operations. The
decompose method realizes the disaggregation of a spatial
value; it is an example of class I.c operations. For other user-
defined operations, general functions have to be used. The
following example shows how to define:

e A function that realizes the aggregation of spatial
values (class Lb):

function union (arg: set(spatial)):
spatial;

e A function that calculates the Voronoi diagram
(class 1.d):

function voronoi (arg: set (spatial)):
set (spatial);

e A function that computes the shortest path (class III):

function shortestpath (begin: spatial,
end: spatial,
network:set (tuple (edge:
spatial,
weight:real))):
set (spatial);

3.4.2 Data Representation

The schemas defined in Section 2 can be expressed directly
in the Oy definition language [61] using the tuple and set
constructors. For example, the States schema can be
defined as:

type States: set (State);
type State: tuple (StateName: string,
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Counties: set (County));
type County: tuple (CountyName: string,
Population: integer, MSL: string,
Geometry: spatial);

The named value containing the set of states may be
defined by: name states: States. Similarly, the Sta-
teHighwayNetwork schema can be defined by:

type StateHighwayNetwork: set (StateHighway) ;
type StateHighway: tuple (HighwayName: string,
StateName: string,
Elements: set
(RoadElement) ) ;
type RoadElement: tuple (MaximumSpeed:
integer, AverageTraffic: real,
Edge:spatial) ;
name stateHighwayNetwork:
StateHighwayNetwork;

We only use set and tuple constructors (definition of types)
and no class constructor. This means that no method can be
defined on these sets and tuples. Moreover, values cannot
be shared in the database. It is however possible to define
corresponding classes. This would make no difference in
the query language and would enable method definition
and data sharing. Nevertheless, for the sake of fairness
when comparing this approach with extended-SQL, we do
not use methods for expressing queries in the following.
Hence, we need not consider the notion of classes and
objects here. The presence of classes, objects, and methods
at the geometry level (class spatial) is justified by the
extreme similarity between ADT of the extended-relational
model and classes of an object-oriented model. As we will
see further, the major difference of the two models concerns
data manipulation at the map level.

3.4.3 Expressing Queries

We now use the O,SQL language [61] in order to express
the queries of Section 2 (all examples have been tested).
O,SQL is a database query language whose syntax is close
to SQL standard. It was a basis for defining OQL, the object-
oriented SQL-like standard query language proposed in
1994 by the Object Data Management Group (ODMG) [62], the
OODBMS vendors consortium.

Query 1. Build the map of language regions using the
main spoken language of each county (merger)/

group X in (select tuple (c.MSL, c.Geometry)
from s in states, ¢ in s.Counties)
by (MSL: x.MSL)
with (Geometry: union (select p.Geometry fromp
in partition))
Query 2. Find the shortest path between Paris and Berlin.
We assume the existence of a function £ that computes
the weight needed for the shortest path:

function f (averageTraffic: real,

maximumSpeed: integer) : real;

The shortest path is computed using the following expression:

shortestpath (Paris.Geometry->center,
Berlin.Geometry->center,
select (tuple(edge: r.Edge,
weight:f (r.AverageTraffic,
r.MaximumSpeed) ) )
fromn in stateHighwayNetwork,
r inn.Elements)

with Paris and Berlin considered as named objects
(counties), and center returning a point corresponding to
the center for a given Geometry.
Query 3. Create the map of states from their counties with
sum of their population (aggregation).

It can be expressed using O,SQL:

select tuple ( Name: s.StateName,
Population: sum (select c.Population from c
in s.Counties),
Region : union (select c.Region fromc in
s.Counties))
from s in states

Query 4. Decompose counties into connected parts and
distribute the population proportionally to the area
(“disaggregation”).

select tuple (Population: c.Population *
e->area / c.Region->area,
Region: e)
from s in states, ¢ in s.Counties, e in
c.Region->decompose

In summary, using “extended SQL” seems easier than
using O,SQL for expressing aggregates (such as sum or
union), thanks to the group by clause. However, the
inability to represent sets in a relational-based model
restricts the use of functions. Many GIS functions such as
decompose or Voronoi are not expressible in most
systems based on this model. This is not the case in an
object-oriented approach, where all the operations defined
in Section 2 can be expressed.

4 CONCLUSION

In this paper, we studied the problem of modeling and
manipulating geospatial data in a DBMS environment. We
showed that geographic data, or thematic maps, can be
decomposed into two levels of abstraction in many database
models, such as extended relational, complex objects and
object-oriented models. A higher level, the map level, is
represented by geographic objects and a lower level, the
geometric level, corresponds to the spatial components of
geographic objects. General operations on maps (e.g., map
overlay) use low-level operations on the geometry (e.g.,
intersection). In many approaches [3], [4], [63], [6], [15],
[18], the geometric level corresponds to the definition of
spatial abstract data types (ADTs). Some of this work [3],
[15] is based on the relational model extended to abstract
data types. It suffers from several drawbacks, including
poorness of data structures, embedding of geometric
operations in high-level operations, and lack of flexibility.
The thematic-map model of [4] is based on a complex object
model and emphasizes the separation between map level
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and geometric level. The originality of this approach is the
association of the geometric operations with the data model
through general constructs. However, a database model
concept, the set constructor, still appears at the lowest level
and is used intensively inside ADT manipulation, which
leads to a model that is difficult to understand.

Useful mechanisms encountered in many GIS applica-
tions are aggregation and its dual, disaggregation. These
two operations are used heavily in statistical databases.
Aggregation allows one to apply a function to a set of
values (e.g., the geometric union of several regions), hence
switching from a given dimension to a lower one.
Disaggregation allows one to get a set of values as a result
of a function (e.g., the decomposition of regions). Unfortu-
nately, aggregate/disaggregate functions are not well-
defined in the relational model (impossibility of manipulat-
ing explicitly sets of values) and only aggregate functions
are considered in standard SQL.

Given these observations, it seemed necessary to
investigate precisely which database features are required
for defining powerful geographic models. Our approach
consisted of studying the mapping of a general geographic
model onto DBMS data models. We first presented our
reference model, i.e.,, a way of representing geographic
objects, their spatial part (spatial ADT), and of manipulat-
ing them through general map operations. As an under-
lying database model, we chose [20] for the following
reasons: 1) it is a database data model, 2) it allows the
definition of user-defined types and functions, and 3) it
allows the repeated use of its intrinsic constructors (in
contrast to the relational model for instance) which in turn
allows one to express the composition of geographic objects
with arbitrary depth. Besides, through the set of queries we
presented, the reader could get an impression of the type of
functions that one is likely to consider within a geographic
DBMS.

We then studied the embedding of both the spatial ADTs
and operations on maps in a database environment We
proposed three classes of operators for manipulating
geographic data: 1) user-defined functions on ADT (e.g.,
geometric union), 2) generic database algebraic operators
with tuple-by-tuple processing such as selection and
projection (which we called “linear processing”), and
3) specific algebraic operators with “nonlinear” processing
(e.g., shortest path or allocate). We discussed the distribu-
tion of operations in these three classes. For instance,
gathering user-defined functions and algebraic operations
in the same class leads to a closed DBMS that is certainly too
specific. We believe that considering these three indepen-
dent classes is essential for flexibility and extensibility while
designing geographic systems on top of existing DBMS.

We then took two database models as supports, namely,
a relational model extended to ADT and an object-oriented
one. In both cases, we studied 1) data representation (ADT
and object composition) and 2) query formulation, i.e.,
adequacy for defining and using the three classes of
operators. As far as our underlying reference data model
is concerned, its neutral aspect together with its power for
representing and manipulating complex geographic objects
was very useful in our approach. We could define all the

geographic features needed, and once the mapping of this
model onto database model was done we could see the
drawbacks and advantages of the two approaches. The
example queries were formulated in SQL-like languages
(generic “extended SQL” and O,SQL, respectively) for a
better comparison of the two approaches.

It turns out that in practice, due to the suitability of SQL
for ad hoc operations, queries based on aggregation (e.g.,
queries 1 and 2) are easily expressible in extended SQL (use
of group by). In contrast, their formulation in O,SQL is
more complicated because operations on sets have to be
explicitly expressed. This is the price to be paid for a model
handling sets, which allows, on the other hand, the
expression of queries such as Query 4 (disaggregation).
As far as calls to specific operators (Query 2) are concerned,
SQL alone is not sufficient. However, a query of that type
can be expressed in an algebraic language (e.g., in Gral [55])
although such a solution may lead to interfaces difficult to
use. Finally, O;SQL allows us to embed both set handling
and calls to specific operators in a unified way.
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