
Brief Introduction to Database Concepts

Andrea Rodŕıguez

Summer School - Castellón 2004

Department of Computer Science
University of Concepción, Chile
http://www.inf.udec.cl/∼andrea

andrea@udec.cl

1 Introduction

Information and data are different. Information is understood by a person. Data are values stored
on a passive medium like a computer disk. The purpose of a database management system (DBMS)
is to bridge the gap between information and data - the data stored in memory or on disk must be
converted to usable information.

The basic processes that are supported by a DBMS are:

• Specification of data types, structures and constraints to be considered in an application.

• Storing the data itself into persistent storage.

• Manipulation of the database.

• Querying the database to retrieve desired data

• Updating the content of the database

A database is a model of a real world system. The contents (sometimes called the extension) of
a database represent the state of what is being modeled. Changes in the database represent events
occurring in the environment that change the state of what is being modeled. It is appropriate to
structure a database to mirror what it is intended to model.

Databases can be analyzed at different levels:

• Conceptual Modeling

• Logical Modeling

• Physical Modeling

2 Conceptual Modeling

Conceptual-level concepts permit us to model the application world in terms that are independent
of any particular data (logical) model. Conceptual models provide a framework for developing a

1

database schema from the top to the bottom in the process of a database design. This Section exa-
mines the entity-relationship model and the object-oriented model as representatives of conceptual
modeling. The entity-relationship model is widely used and the object-oriented model is gaining
more acceptance for non-traditional databases.

2.1 The Entity-Relationship Model

The entity-relationship model is a tool for analyzing the semantic features of an application that
are independent of events. This approach includes a graphical notation, which depicts entity
classes as rectangles, relationships as diamonds, and attributes as circles or ovals. For complex
situation, a partial entity-relationship diagram may be used to present a summary of the entities
and relationships that do not include the details of the attributes.

The entity-relationship diagram provides a convenient method for visualizing the interrelation-
ships among entities in a given application. This tool has proven to be useful in making the
transition from an information application description to a formal database schema. The entity-
relationship model is used for describing the conceptual schema of an enterprise without attention
to the efficiency of the physical database design. The entity-relationship diagrams are then turned
into a logical schema in which the database is actually implemented.

Short definitions of some of the basic terms that are used for describing important entity-
relationship concepts are:

1. Entity. An entity is a thing that exists and is distinguishable.

(a) Entity instance. An instance is a particular occurrence of an entity. For example, each
person is an instance of an entity Person, each car is an instance of an entity Car, etc.

(b) Entity class. A group of similar entities is called an entity class or entity type. An entity
class has common attributes.

In this review, I will not make distinction between entity and entity class. In other readings
you may find that what I call entity is called entity class and what I call entity instance is
just called entity.

2. Attributes. Attributes describe properties of entities and relationships.

(a) Simple and composite attributes. A simple attribute is the smallest semantic unit of data,
which are atomic (no internal structure). A composite attribute can be subdivided into
parts, e.g., address (street, city, state, zip).

(b) Single and multivalued attributes. Single attributes have a single value for a particular
entity. Multivalued attributes have multiple values of an attribute for a particular entity;
e.g., degrees or courses that a student can have or take.

(c) Domain. Conceptual definition of attributes: a named set of scalar values, all of the
same type, and a pool of possible values.

3. Relationships. A relationship is a connection between entities. For example, a relationship
between PERSONS and AUTOMOBILES could be an ”OWNS” relationship. That is to say,
automobiles are owned by people.

• Isa hierarchies. A special type of relationship that allows attribute inheritance. For
example, to say that a truck is an automobile and an automobile has a model and serial
number implies that a truck also has a model and serial number.

2

4. Keys. The key uniquely differentiates one entity instance from all others in the entity. A
key is an identifier.

(a) Primary Key. Identifier used to uniquely identify one particular instance of an entity.
A primary key

i. can be one or more attributes (e.g., consider substituting a single concatenated key
attribute for multiple attribute key)

ii. must be unique within the domain (not just the current data set),
iii. its value should not change over time,
iv. must always have a value, and
v. is created when no obvious attribute exists. Each instance has a value.

(b) Candidate Key. When multiple possible identifiers exist, each of them is a candidate
key.

(c) Concatenated Key. Key made up of parts which when combined become a unique iden-
tifier. Multiple attribute keys are concatenated keys.

(d) Borrowed Key Attributes. If an isa relationship exists, the key of the more general entity
is also a key of the sub entities. For example, if serial number is a key for automobiles,
it would also be a key for trucks.

(e) Foreign Keys. Foreign keys reference a related table through the primary key of that
related table.

An ER schema may identity certain constraints to which the content the data must conform.
Two of the most important types of constraints are:

1. The mapping cardinality of a relationship indicates the number of instances in entity E1 that
can or must be associated with instances in entity E2:

(a) One-One Relationship. For each entity instance in one entity there is at most one
associated entity instance in the other entity. For example, for each husband there is at
most one current legal wife (in this country at least). A wife has at most one current
legal husband.

(b) Many-One Relationships. One entity instance in entity E2 is associated with zero or
more entity instances in entity E1, but each entity instance in E1 is associated with at
most one entity instance in E2. For example, a woman may have many children but a
child has only one birth mother.

(c) Many-Many Relationships There are no restrictions on how many entity instances in
either entity are associated with a single entity instance in the other. An example of a
many-to-many relationship would be students taking classes. Each student takes many
classes. Each class has many students.

Mapping cardinality is derived from cardinality constraints. The cardinality constraint be-
tween two entities E1 and E2, denoted by (m,n), specifies that an instance in E1 appears in
E2 at least m and at most n times. Mapping cardinality takes the maximum number of the
cardinality constraint for each entity in a relationship.

2. Existence dependence. If the existence of an entity instance x depends on the existence of an
entity instance y, then x is said to be existence dependent on y.

3

2.2 Entity-Relation Diagram

Symbols used in entity-relationship diagrams include:

• Rectangles represent ENTITY or ENTITY CLASSES

• Circles represent ATTRIBUTES

• Diamonds represent RELATIONSHIPS

• Arcs connect entities to relationships. Arcs are also used to connect attributes to entities.
Some styles of entity-relationship diagrams use arrows and double arrows to indicate the one
and the many in relationships. Some use forks etc.

• Underlined attributes identify keys of entities.

Entity Relationship Attribute

1 N

One to many

Figure 1: Diagram component of a ER conceptual schema

Consider, for example, a model of a cadastral application that does not consider the geometry
of spatial objects. Such model can be described by the diagram of Figure 2.

landparcel
traverse

1

N

M N

inside ownership

river

building Person

M

N

use

landuse

ISA

ISA

agricultural

industrial

SSN
name

id

N

1

soil_type

type

vegetation

street
number

zipcode

area

id

id

code

Figure 2: A simplified ER Conceptual schema for a cadastral application

Additional material for entity-relationship modeling in found in [6]

4

2.3 Object-Oriented Database Model OO

The aspects associated with an object-oriented modeling are:

1. Object Structure. Loosely speaking, an object corresponds to an entity instance in the
ER model. Objects both know things (they have attributes) and they do things (they have
methods). The object-oriented paradigm is based on encapsulating data and code related to
an object into a single unit. Conceptually, all interactions between an object and the rest
of the system are via messages. Thus, the interface between an object and the rest of the
system is defined by a set of allowed messages. In general, an object has associated with it:

(a) a set of variables that contain the data for the object; variables are attributes in ER;

(b) a set of messages to which the object responds; and

(c) a set of methods, each of which is a body of code to implement messages.

2. Object Classes. A class group objects in a database that share a common definition. The
notion of a class corresponds to the notion of entity-class, or just entity, in the ER model. A
class is a representation of an object and, in many ways, it is simply a template from which
objects are created. Classes form the main building blocks of an object-oriented application.
A class object includes:

(a) a set-value variable whose value is the set of all objects that are instances of the class;

(b) implementation of a model for the message new, which creates a new instance of the
class;

(c) inheritance upon which variables and methods of a class are inherited from a super-
class. A super-class establishes a hierarchy similar to the concept of specialization (ISA,
relation). For example, an employee is a person such that employee inherits variables
and methods from person;

(d) multiple inheritance in which case a class inherits from multiples super-classes; and

(e) and object identity.

2.4 UML: Unified Modeling Language

UML is a visual modeling language of general purpose. The UML combines certain number of
graphical elements into diagrams. Because it is a language, the UML has rules for combining these
elements. UML consists of nine basic diagrams, where UML class diagrams (Object Management
Group 2003) are the mainstay of object-oriented analysis and design. UML class diagrams show the
classes of the system, their interrelationships (including inheritance, aggregation, and association),
and the operations and attributes of the classes. Class diagrams are used for a wide variety of
purposes, including both conceptual/domain modeling and detailed design modeling.

Classes are typically modeled as rectangles with three sections: the top section for the name of
the class, the middle section for the attributes of the class, and the bottom section for the methods of
the class. Attributes are the information stored about an object (or at least information temporarily
maintained about an object), while methods are the things an object or class do. For example, a
class hospital has attributes such as name, number of beds and address. Hospitals also check-in
patient, check-out patient, and transfer patient. Those are all examples of the things that happen
at a hospital, which get implemented (coded) as methods.

An important consideration is the appropriate level of detail. In class Hospital, the attribute
address is composed of street, number, zip code, city and country. One could, therefore, model this

5

Hospital
name: string
number of beds: int
phone: int
address_street: string
address_number: int
zipcode: int
city: string
country: string

check-in()
check-out()
transfer()

Clase

attributes

methods

Figure 3: A class in UML class diagram

situation by using a different class Address and associating Hospital with Address. By introducing
the Address class, the Hospital class has become more cohesive. It no longer contains logic (such
as validation) that is pertinent to addresses. In addition, the Address class could now be reused in
association with other classes.

Address
street: name
number: int
zipcode: int
city: string
country: string

validate()

Hospital

name: string
number of beds: int
phone: int

check-in()
check-out()
transfer()

located at
1 1

association

Figure 4: Influence of the detail in modeling classes

Methods in the class may be of several types;

• public (+) if the method is visible for all classes,

• private (-) if the method is only visible to the members of the class, and

• protected (#) if the method is visible to the member of the class and all subclasses

Objects are often associated with, or related to, other objects. When you model associations
in UML class diagrams, you show them as a thin line connecting two classes. Associations can
become quite complex; consequently, you can depict some things about them on your diagrams.
The label, which is optional, although highly recommended, is typically one or two words describing
the association. Multiplicity of an association is the degree in which each class participates in the
association. The multiplicity of the association is labeled on either end of the line, one multiplicity
indicator for each direction (See Table 1).

Another option for associations is to indicate the direction in which the label should be read.
This is depicted using an arrow, called a direction indicator. Direction indicators should be used

6

Indicator Meaning
0..1 Zero or one
1 One only
0..* Zero or more
1..* One or more
n Only n (where n > 1)
0..n Zero to n (where n > 1)
1..n One to n (where n > 1)

Table 1: Multiplicity Indicators

whenever it isn’t clear which way a label should be read. My advice, however, is if your label is not
clear, then you should consider rewording it. The arrowheads on the end of the line indicate the
directionality of the association. A line with one arrowhead is uni-directional whereas a line with
either zero or two arrowheads is bidirectional. Officially you should include both arrowheads for bi-
directional assocations, however, common practice is to drop them. At each end of the association,
the role, the context an object takes within the association, may also be indicated. This indication
may be used only in cases when it isn’t clear from the association label what the roles are, if there
is a recursive association, or if there are several associations between two classes.

Landparcel

association attribute

1..* Person

partner

owner
0..*

0..*

0..*

Ownership
registration_date
registration_number

association class

role

Figure 5: Notation for associations

Two other characteristics of associations are qualifiers and constraints. A qualifier is a value
that selects an unique object among the set of objects related by the association. Constraints
applies rules that the associations must satisfy. These properties in the design of associations are
illustrated in the following example:

7

Landparcel

Industrial zone

used_as

{xor} constraint

used_as

0..1

0..1

0..1

0..1

id_sectionid_section

id_sectionAgricultural zone

Figure 6: Qualifiers and constraints in associations

Similarities often exist between different classes. Very often two or more classes will share the
same attributes and/or the same methods. Inheritance models ”is a” and ”is like” relationships,
enabling you to reuse existing data and code easily. When A inherits from B, we say A is the
subclass of B and B is the superclass of A. Furthermore, we say we have pure inheritance when A
inherits all the attributes and methods of B. The UML modeling notation for inheritance is a line
with a closed arrowhead pointing from the subclass to the superclass. In same cases, it is reasonable
to create an abstract class that joins common attributes and methods of subclasses. In abstract
classes, objects are not created directly from it, they capture the similarities between subclasses.
Abstract classes are modeled with their names in italics, as opposed to concrete classes, classes
from which objects are instantiated, whose names are in normal text.

Sometimes an object is made up of other objects, having composition or aggregation associations.
For example, a building is composed of several rooms and a rooms may be composed of several
sub-rooms, i.e., you can have recursive composition. A composition is a static association in the
sense that the existence of the part depends on the existence of the whole. Such type of associated
is represented by a filled diamond. In an aggregation, the existence of the part is independent of
its whole. An aggregation is represented by an empty diamond.

As a general example of a model using UML, consider a cadastral application where different
classes and associations are depicted (Figure 7).

8

Lanparcel
id

soil_type
area

Building
id

Owner
SSN

name

Industrial
type

Agricultural
vegetaion

Used_zone
code

Section
id

Township
id

1

1..*

1

1..*

0..*

1

1..*

0..*

1

1..*

owned_by

used_as

inside

Figure 7: A cadastral application in UML

A more complete tutorial of UML can be found in [2].

3 Logical Data Model and Query Languages

At the logical level, the conceptual schema is translated into the data model of a particular DBMS. A
logical model is described as a set of relatively simple structures. In addition to data representation,
a DBMS needs to specify the data manipulation, which is done through expressing queries and other
operations in a data manipulation language. The following Section reviews the main concepts
associated with relational and objects-oriented databases.

9

3.1 Relational Data Model Concepts

In the relational data model the database is represented as a group of related tables. The relational
data model was introduced in 1970. It is currently the most popular model. The mathematical
simplicity and ease of visualization of the relational data model have contributed to its success.
The relational data model is based on the mathematics of set theory, whose basic components are
the following.

1. Relation. A two dimensional table. A relation is a collection of tuples, each of which
contains values for a fixed number of attributes. Relations are sometimes referred to as flat
files, because of their resemblance to an unstructured sequence of records. Each tuple in a
relation must be unique; that is, there can be no duplicates.

2. Attribute. A table column. Other commonly used terms for attribute are property and field.
The set of permissible values for each attribute is called the domain for that attribute.

3. Tuple. A table row. A tuple is an instance of an entity or relationship or whatever is
represented by the relation.

4. Key. A single attribute or combination of attributes whose values uniquely identify the
tuples of the relation. That is, each row has a different value for the key attribute(s). The
relational model requires that every relation have a key and that:

• no two tuples may have the same key value and

• every tuple must have a value for the key attribute (the key fields have non-null values).

There are two restrictions on the relational model that are sometimes circumvented in practice:

1. Duplicate tuples are not permitted. If two tuples are entered with the same value for each
and every attribute, they are considered to be the same tuple. In practice this restriction is
sometimes overcome by assigning unique line or tuple numbers to each entry, thus assuring
that it is unique.

2. No ordering of tuples within a relation is assumed. In practice, however, one method or
another of ordering tuples is often used.

Following the example of the cadastral application of Figure 2, the ER conceptual model is
mapped onto a relational model. Using the relation schema that corresponds to the programming
notion of type definition, a portion of the relational schema of the cadastral application is:

Landparcel − schema = (landparcel id, soil type, area)
Building − schema = (building id, street, number, zipcode, city, landparcel id)

Person− schema = (person SSN, person name)
River − schema = (river id)

Ownership− schema = (landparcel id, person SSN)
Traverse− schema = (river id, landparcel id)

Note that in this schema, two relations (i.e., ownership and traverse) are specified as indepen-
dent tables, whereas the relation inside between building and landparcel is defined by incluiding
a foreign key in the relation building, since each building is inside of only one landparcel.

10

SQL, or standard query language, is the widely accepted language used in all relational database.
The SQL2 data definition language (DDL) can be used to specified the previous relational schema.
SQL2 provides a specific clause (foreign key) to declare that one or several attributes reference a
tuple in another relation.

Create Table Landparcel
(landparcel id integer,
soil type varchar(30),
area integer
Primary Key (landparcel id))

Create Table Building
(building id integer,
street varchar(30),
number integer,
zipcode integer,
city varchar(30),
Primary Key (building id),
Foreign Key (landparcel id) References Landparcel))

Create Table Ownership
Primary Key (building id, person SSN),
Foreign Key (landparcel id) References Landparcel),
Foreign Key (person SSN) References Person))

SQL is declarative, that is, it expresses queries without specifying how the system must operate
to compute the result of a query. In addition, SQL relies on solid theories such that what is
expressed by SQL can be defined by two equivalent formal languages: relation calculus, essentially
a first order language, and relational algebra, a set of operations that describes how relations are
manipulated to answer queriers. These operation are:

1. Select operation (σpredicate). It selects tuples in a relation that satisfy a given predicate. For
example,

σarea>10000(Landparcel)

will return all tuples from the entity Landparcel with area > 10000.

2. Project operation(πattributes). It extracts a subset of attributes of the relation. For example,

πlandparcel id,soil type(Landparcel)

will return the id and soil type of all landparcels.

3. Union operation ∪. It results in the union of the data sets coming from the two input relations.
For example,

πlandparcel id(Traverse) ∪ πlandparcel id(Building)

will return the id of landparcels that contain buildings or are traversed by rivers.

4. Cartesian product operation (×). It combines information from any two relations. For exam-
ple,

11

πstreet,number,zipcode(σbuilding.building id=ownership.building id(σperson SSN=249873245(Building×Ownership)))

will return the address of buildings that are owned by a person with SSN = 249873245.

5. Set intersection operation. It results in the intersection of the data sets coming from the two
input relations. For example,

πlandparcel id(Traverse) ∩ πlandparcel id(Building)

will return the id of landparcels that contain building and are traversed by rivers.

6. Set difference operation. It finds tuples that is one but not in another relation. For example,

πlandparcel id(Traverse)− πlandparcel id(Building)

will return the id of landparcels that contain building but are not traversed by rivers.

7. Join operation (./). A join operation allows us to combine certain selection and cartesian
product into one operator. For example, a query example for cartesian product:

πstreet,number,zipcode(σbuilding.building id=ownership.building id(σperson SSN=249873245(Building×Ownership)))

can be expressed with the join operation as:

πstreet,number,zipcode(σperson SSN=249873245(Building ./ Ownership))

8. Division operation. It takes two relations, one binary relation and one unary relation, and
gives the values of an attribute of the binary relation that correspond with values in the unary
relation. For example,

πlandparcel id,person name(Ownership ./ Person)÷ πlandparcel id(Building)

will return the id of landparcels and the name of these landparcels’ owners for all landparcels
that contain buildings.

SQL language expresses queries with ”select from where” clause. Some of the previous queries
may be expressed by:

Query 1:
select landparcel id, area, soil type
from Landparcel
where area > 10000

Query 2:
select all landparcel id, soil type
from Landparcel

Query 3:
(select all landparcel id
from Traverse)
union
(select all landparcel id
from Building)

12

Query 4:
select street, number, zipcode
from Buildingb,Owershipo
where b.landparcel id = o.landparcel id and o.person SSN = 249873245
from Building

Query 5:
(select all landparcel id
from Traverse)
intersect
(select all landparcel id
from Building)

A more complete tutorial of SQL language can be found in [1].

3.2 Object-Oriented Model

In an object-oriented environment, each objects class in represented by a class using an object-
oriented language. The following will describe the way a conceptual model based on UML is
mapped onto a logical model using an object-oriented language. To this effect, we will use OQL
proposed by the Object Database Management Group (ODMG) [4]. This language allows end
users to access complex structures, to run methods, and return results that make use of specific
constructors, such as sets, lists, bags, and arrays.

Consider the cadastral application described in UML of the previous Section. OQL works with
the object description language (ODL) in much the same way that SQL. The ODL schema of the
cadastral application is the following:

class Landparcel {
(extent Landparcel)

attribute integer id;
attribute string soil type;
attribute integer area;
relationship Section in section

inverse Section:: landparcels
relationship Building contains

inverse Building:: inside
relationship Person owned by

inverse Person:: owns
relationship Use used as

inverse Use:: in use
};

13

class Section {
(extent Section)

attribute integer id;
relationship Set< Landparcel > landparcels

inverse Landparcel:: in section
relationshipTownship in town

inverse Township:: sections
};

class Township {
(extent Township)

attribute integer id;
relationship Set< Section > sections

inverse Section:: in town
};

class Building {
(extent Building)

attribute integer id;
relationship Landparcel inside

inverse Landparcel:: constains
};

class Person {
(extent Person)

attribute integer SSN ;
attribute string name;
relationship Landpacel owns

inverse Landparcel:: owned by
};

class Use {
(extent Use)

attribute integer code;
relationship Landparcel in use

inverse Landparcel:: used as
};

14

class Agricultural : Use {
(extent Agricultural)

attribute string vegetation;
};

class Industrial : Use {
(extent Industrial)

attribute string type;
};

Based on these definitions, OQL can express different types of queries:

Query 1: retrieve id, area and soil type of landparcels with area larger than 10000
select l.id, l.area, l.soil type
from l in Landparcel
where l.area > 10000

Query 2: retrieve id, area and soil type of all landparcels
select l.id, l.soil type
from l in Landparcel

Query 3: Retrieve id of sections with landparcels that contain buildings
select s.id
from s in Section, l in s.landparcels
where exists b in l.contains

Query 4: Retrieve area of sections as an aggregation of the area of their landparcels grouped by use code
select s.id, sumArea: sum(Select p.l.area from partition p)
from s in Section, l in s.landparcels, u in l.used as group by LUSE: u.code

Review [5, 3] for more details about ODL and OQL review.

4 Physical Model

Al the physical level, a DBMS is in charged of:

• Storage. The representation of efficient organization of data in a persistent secondary unit.

• Access Methods. Organization of data to accelerate data retrieval by defining data structures
or index.

• Query Processing. The set of operations to answer a query. Such operations defines algorithms
that make use of access methods.

• Query Optimization. Strategy of evaluation of query processing.

• Concurrency and recovery. Strategy to manage concurrent access to data and resources from
several users and the recovery of the database after a system failure.

15

References

[1] A. Cumming. A Gentle Introduction to SQL: An interactive tutorial. School of Computing of
Napier University, Edinburg, UK, URL: http://sqlzoo.net/, 2003.

[2] S. Kalajdziski. UML Tutorial. URL: http://odl-skopje.etf.ukim.edu.mk/uml-help/, 2004 (ac-
cess).

[3] ODL. EyeDB: The Object Definition Language. Sysra Informatique, URL:
http://www.infobiogen.fr/services/eyedb/pub/manual/node5.html, 1999.

[4] ODMG. Object Database Management Group: The Standard for Storing Objects. ODMG, URL:
http://www.odmg.org/, 2000.

[5] OQL. OQL - Object Query Language. UCSD: Department of Computer Science and Engineer-
ing, URL: http://www.cs.ucsd.edu/classes/wi00/cse132a/oql.htm, 2000.

[6] Information Technilogy Services. Introduction to Data Modeling. University of Texas at
Austin, URL: http://www.utexas.edu/its/windows/database/datamodeling/dm/erintro.html,
2004 (access).

16

