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Chapter 1

Introduction

Assessing similarity is a judgment process that requires two “things” to be decomposed
into elements in which they are the same and elements in which they are different.
These types of judgments are typically intuitive, subjective, and part of the everyday
life such that they usually display no strict mathematical models (Tversky 1977). In
information systems, similarity assessment is part of several processes, such as
information retrieval, information integration, and data maintenance. Similarity
assessment is particularly important for geographic information systems (GISs),
because users of spatial data have diverse backgrounds and no precise definitions
underlie the matter of discourse. Satisfactory definitions of geographic phenomena,
such as a mountain, the extent of a village, and the boundary of a valley, are difficult to
obtain (Fisher and Wood 1998), and spatial properties, such as shape, location, and
spatial relations, have varied formalizations. As a result, data stored in a spatial
database represent particular views of reality. By using spatial query languages users
are able to express an approximation of what they want to retrieve, which is likely an

inexact match with any stored data.

This thesis focuses on the semantics of spatial entities and proposes a
computational model for assessing semantic similarity among spatial entity classes.

Much past research in spatial information science that is concerned with similarity



assessments has focused on the geometric properties of spatial information. Examples
of these studies are topological equivalence (Paiva 1998), cardinal direction between
extended spatial objects (Egenhofer and Goyal in press), metric details of spatial
relations (Egenhofer and Shariff 1998), and content-based image retrieval (Fétkner

al. 1995). While omitting the geometric properties of spatial objects, this work
concentrates on the cognitive properties of the semantic similarity assessment that
relate to the spatial domain and leaves for future work the integration of geometric and

semantic similarity.

For this thesis, the term entity classes denotes concepts about the real world.
These concepts about the real world are cognitive representations that people use to
recognize and categorize entities or events in the real world (Dahlgren 1988). In this
sense, this work has a top-down approach by starting from the semantics of entities in
the real world instead of the semantics of data stored in a database (Sheth 1995).
Consequently, this thesis considers studies done by cognitive scientists in the area of
knowledge and behavior as well as by computer scientists in the domain of artificial

intelligence.

The main motivation for this thesis is the need to enhance geographic
information systems with better mechanisms for information retrieval and integration.
A semantic similarity model facilitates the comparison among entities and allows
information retrieval and information integration to handle entities that are
semantically similar. Traditional methods for information retrieval have been primarily
based on query-string matching and statistical analysis. New trends in the research of
information retrieval stress the advantages of using domain knowledge and semantic
similarity functions to compare words or documents (Ginsberg 1993etlale1993,

Richardson and Smeaton 1995, Voorhees 1998). By introducing the semantic



knowledge of spatial concepts, this thesis creates a similarity model that can obtain
flexible and better matching between user-expectated and system-retrieved
information. In addition, heterogeneous spatial databases could achieve real
information integration, because they would be able to identify similar objects that can

be exchanged, without compromising semantics.

Models for semantic similarity among entities have usually been addressed
from two different perspectives. Psychologists and cognitive scientists have analyzed
how people evaluate similarity and have defined models based on features or
descriptors of concepts. This approach is in contrast to the work by computer scientists
who usually define semantic similarity as the semantic distance among concepts within
a hierarchical structure. These two different approaches have advantages and
disadvantages that complement each other. This thesis defines a similarity measure that
combines distinguishing features with semantic relations to create a model that is not
only computationally feasible, but also satisfies cognitive properties of similarity

assessment.

1.1 Similarity Assessment in Geographic Information Systems

New trends in science and technology have produced an increasing expectation for
more intelligent, efficient, and reliable information systems. People are not expecting
to retrieve data, but to find information, that is, data that are meaningful to them. The
large amount of data and the need for the integration of autonomous and heterogeneous
databases have increased the requirements and made information retrieval and

integration essential components of current information systems.



1.1.1 Information Retrieval

In traditional information systems users express what information they need through
gueries, which can be a set of a Boolean combination of keywords, natural language
statements, or user-system dialogs. With the advance of technology, systems deal with
more diverse types of digital information (e.g., images, maps, sounds, and characters)
causing a growing interest in new forms of user interfaces (B&sdrin press, Bruns

and Egenhofer 1997, Egenhofer 1997). A desirable characteristic of query languages
and user interfaces is that users can retrieve and search information without the
requirement of knowing the name and structure within which data are stored. This
characteristic of query languages is a basic principle for the design of data-
manipulation languages of database systems, where the logical access of data is
separated from their physical access (Silberscéiaéd. 1996). Due to the enormous
amount of data stored in a database and the fact that names of the data structure may
not reflect the nature of the information they contain, it is unrealistic to expect that
users could know and directly use those names. Therefore, in order to make progress in
this area users should be able to express queries in terms that are familiar to them

(Mark and Gould 1991, Richardson and Smeaton 1996).

Once a user has expressed a query, the system performs a matching process
between the query and the internal representation. In the past, most approaches to
information retrieval have computed similarity between queries and stored data based
on a statistical analysis of index terms and have treated terms in isolation from their
contexts (Meadovet al. 2000). These approaches soon reach their limits since they
deal with syntactic but not semantic correspondences, and users may express the same
concept in different ways (Lest al. 1993). A falacy of today’s methods for querying

information is the systems’ assumption that the user’s query represents precisely what



the user wants. It is common, however, that a system does not find an exact match or
that users are interested in data that match the query partially. For example, a user
query for a geographic database could be to find cities in the state of New York with at
least one university. If the retrieval process is constrained by searching for an exact
match, it will ignore towns or colleges in generating the query answer. Semantic
similarity assessment goes beyond the determination of an exact matching between
gueries and stored data, because it provides a range of possible answers depending on
conceptually similar terms and gives the users the possibility to choose among them.
Thus, a semantic similarity function is a tool for exploratory access to data. It
resembles browsing, because users do not know in advance what they are looking for
(Schenkelaars and Egenhofer 1997); however, browsing is highly interactive and

leaves all the choices to the users.

Geographic information systems manipulate large collections of spatial scenes.
Spatial scenes consist of sets of objects represented by their spatial relations
[ topological relations, distance relations, and direction reldfi@sswell as by other
geometric characteristicsshape, size, and dendityand attributes specifying the
semantics of the spatial objecentity type classification. Initially geographers
investigated similarity assessment of point sets for spatial analysis (Unwin 1981). More
recent studies have investigated the spatial similarity for content-based image retrieval
(Bimbo et al. 1994, Bruns and Egenhofer 1996, Falousttad. 1994, Papadiast al.

1998, Park and Golshani 1997). In those studies, the visual similarity of images usually
relies on a judgment in terms of visual descriptions, such as shape, size, texture, and
color. For similarity of spatial configurations, on the other hand, the spatial
arrangement of objects becomes the subject of comparison. This spatial arrangement is
typically expressed by a set of constraints about directions (e.g., north and south),

topology (e.qg., inside, overlap), and distances (e.g., 5 miles).



Semantic similarity assessment ignores some of the spatial datasets’ geometric
properties, such as density, dispersion, and pattern derived from representative subsets
(Flewelling 1997) and extent and location displayed by magic lenses (Schenkelaars and
Egenhofer 1997). The classification of geographic entities, however, is spatial, even
when no geometry is involved. Non-geometric concepts, such as building, road, and
place, are spatial concepts that are used for describing the semantics of spatial objects.
By studying the similarity among spatial concepts that underlie people’s spatial
descriptions, this research lies in the field\#ive GeographyEgenhofer and Mark

1995), a field of study that is concerned with formal models of commonsense worlds.

Computer scientists working on traditional information retrieval have addressed
similarity assessment for semantic information (Kim and Kim 1990,etexd. 1993,
Richardson and Smeaton 1995). The main problems faced in those studies are the
resolution of ambiguous terms and the multiple ways in which the same concept can be
expressed. Recent studies have investigated the use of knowledge bases and semantic
similarity functions as a mechanism to compare terms (Jiang and Conrath 1987, Lee
al. 1993, Smeaton and Quigley 1996, Voorhees 1998). Many strategies involving a
knowledge base and a similarity function aim at solving the problem of information
retrieval for a general domain. They have searched for an automatically constructed
knowledge base that contains entries for all concepts used in natural language (Jiang
and Conrath 1997, Richardson and Smeaton 1995, Richaetisdri1994). Another
strategy for a knowledge-based approach to information retrieval has been to work on a
specific domain and create a controlled vocabulary (Monarch and Carbonelli 1987,
Radaet al. 1989). This thesis focuses on the spatial information domain to avoid the
pitfalls of trying to obtain a general knowledge base that satisfies and represents the

information requirements for each domain. The limited success of C, a ten-year project



of generating a generic common-sense knowledge base (Lenat and Guha 1990), is

testimony for the need of alternative approaches.

In order to clarify the use of similarity assessment in a GIS, consider a user who
wants to retrieve information from a spatial database about hospitals that are within her
district. This query is composed of the semantic components (i.e., the notion of
hospital) and the geometric component (i.e., the spatial location defined by the user’s
district). Based on the user’s query, possible scenarios for the retrieval of information

are:

* The database contains one or more hospitals within the user’s district.

* The database contains hospitals, but they are outside of the user’s district. Among
the existing hospitals outside of the district, some are closer and some further away

from the district.

* The database does not contain hospitals in the user’s district, but it contains clinics

and health centers.

 The database does not contain hospitals, even nearby the user’s district, but it

contains clinics or health centers in adjacent districts.

Only the first scenario satisfies an exact matching (spatial and semantic match)
of the query and is addressed by today’s spatial query languages, such as the spatial
SQL (Egenhofer 1994). Although the second scenario does not correspond exactly to
what the user requested, it may provide relevant information about hospitals that are
close to the user’s geographic area of interest. This type of scenario requires spatial
similarity methods such as those addressed by sketch-based query languages and image

retrieval (Bruns and Egenhofer 1996, Park and Golshani 1997). The third scenario



requires the identification of semantically similar objects that could also be relevant for
the user, because it may be sufficient for a user to find a clinic in the district. The last
scenario combines spatial and semantic similarity models and represents the ultimate
goal for the design of a spatial query language. Among these four scenarios, this thesis
contributes primarily to the third one and provides the foundation to solving in the

future queries of the fourth type.

As in the case of a single database, environments with multiple and
heterogeneous databases require mechanisms for information retrieval that allow the
identification of semantically similar objects. For instance, consider the same user who
wants to retrieve hospitals within her district. It may happen that the information
retrieval is done from different databases and that a user distinguishes between
hospitals, clinics, and health centers, whereas a database groups them together into the
concept of a health care provider. In such a case, the user would expect that the system
indicates that health care providers are semantically similar to the objects she

requested.

1.1.2 Information Integration

Information integration is a basic requirement for modern information systems (Sheth
1999) that differs from data integration, because it combines only the selected
information that is derived from data sources (Wiederhold and Jannink in press). Some
of the main reasons for the growing interest in information integration are the
improvement in the interconnection of distributed computing systems (i.e., the Internet)
and the need for the reuse and sharing of data. Heterogeneity among data stored in
information systems makes the integration of information a challenging area of
research. In the spatial domain, in particular, the complexity and diversity of spatial

data are major issues for interoperating GISs.



In environments with multiple and autonomous databases three different
architectures for locating and accessing information have emerged: (1) global schema
integration, (2) federated database systems, and (3) multidatabase languages
(ElImagarmidet al. 1999). A global schema integration provides a consistent and
uniform view of and access to data through a single view of multiple databases
(Spaccapietra and Parent 1994). This approach constrains the autonomy of databases
and becomes impractical as many databases are interconnected and databases update
their local data. A federated database system (FDBS) is a collection of cooperating but
autonomous heterogeneous database systems (Sheth and Kashyap 1992, Sheth and
Larson 1990) that represent a compromise between total integration and no integration
(Bouguettayeet al. 1998). The level of integration depends on how tightly or loosely
coupled the databases are. A tightly-coupled architecture provides a stable interaction
through the definition of a single federated schema controlled by the federation
administrators. As with the global schema, whenever there are changes in the export
schema of a tightly-coupled architecture, integration needs to be redone. A loosely-
coupled architecture is a flexible approach that achieves interoperability by defining
multiple views over databases. In this architecture it is the user who has the control of
the federation. A shortcoming of the loosely-coupled architecture is the assumption
that users know exactly what they are looking for and what each database contains. A
multidatabase language represents a more loosely coupled integration than the loosely-
coupled FDBS approach, because it does not use a partial or global schema (Litwin
1994). Similarly to the loosely-couple FDBS, however, a multidatabase language lacks
the transparency for locating information, because users have toskpaaori where

the data are stored.

Syntax, schema, and semantics are a global definition of different levels of

interoperability (Bishr 1997). If any of these levels cannot be solved, interoperability



remains unsolved as well. At the lowest level, syntactic definitions involve classic data
structures (e.qg., field and object based approaches). Schematic definitions refer to class
hierarchies and elements that are used to represent real world entities (e.g., classes,
attributes, and relations). Finally, semantic definitions concern the relationship between

instances of a class and the real world objects (Meersman 1995).

Since the first studies on interoperability, progress has been made concerning
syntactic interoperability (i.e., data types and formats) and structural interoperability
(i.e., schematic integration, query languages, and interfaces) (Sheth 1999). As current
information systems increasingly confront information and knowledge issues, semantic
interoperability becomes the challenge for a new generation of interoperable systems
(Egenhofer 1999). The problem of semantic interoperability is the identification of
semantically similar objects belonging to different databases and the resolution of their
schematic differences (Kashyap and Sheth 1996). Schematic heterogeneity can only
exist, and therefore be solved, for semantically similar objects or schema elements
(Bishr 1997, Bouguettayat al. 1998). Thus, semantic similarity is introduced as a tool

to determine what data can be integrated.

Some methods to solve semantic integration use the semantics underlying the
data representation to determine semantic equivalence. For example, attribute
equivalence is defined by comparing domain, constraints, and operations (&badon
1989). Context and domain definitions are also combined in order to evaluate semantic
equivalence (Ouksel and Naiman 1994, Scetral. 1994, Sheth and Kashyap 1992).
Finally, some researchers have suggested comparing data semantics in terms of the
behavior that characterizes the data stored in a database (Kuhn 1994). All these
semantic similarity methodsattribute-based, context-based, and behavior-

based] rely on the way data are modeled in a database.

10



From a different perspective, some researchers have investigated semantic
similarity in databases based on term definitions and their interrelations (Bishr 1997,
Bright et al. 1994, Colletet al. 1991, Fankhauser and Neuhold 1993, Weinstein and
Birmingham 1999). The general approach has been to map the local terms in a database
onto a shared ontology. An ontology captures the view of the world, supports
intensional queries regarding the content of a database, defines semantics
independently of data representation, and reflects the relevance of data without
accessing thenf{Gofi et al. 1997). Once a common ontology is defined, the
interrelationships among terms in the ontology are translated into their semantic
similarities. One effort to create this common ontology is to create a knowledge base in
terms of a global and domain-independent ontology. An example of this approach is
Cyc (Lenat and Guha 1990, Leratal. 1995), which consists of approximately 40,000
objects. Using Cyc an entity of an information resource is mapped onto concepts of the
global ontology by a set of articulation axioms (Cob¢tal. 1991). Another way to
deal with ontology-based semantic integration is to work with existing ontologies,
which are linked to create an integrated ontology. OBSERVER is a system that enables
interoperation across independent pre-existing ontologies based on terminological
relationships (i.e., synonyms, hyponyms, and hypernyms) that connect terms in

different ontologies (Kashyap and Sheth 1998, Metred. 1996).

This thesis focuses on the spatial domain and follows an ontological approach
to semantic integration. It pursues the definition of a method that finds similar entity
classes that could link entities in independent databases to achieve information
integration. In this sense, a similarity measure is a tool for loosely-coupled

architectures of database integration.

11



1.2 Motivation

The main motivation of this thesis is the need to enhance geographic information
systems at two levels of operation: (1) information retrieval and (2) information
integration. For information retrieval this thesis creates a mechanism that allows users
to express a query in an intuitive way by using terms of their natural (English)
language. These terms should be semantically associated with terms used in the stored
data to retrieve the desired information. For information integration, the model of
semantic similarity provides the formalization for the identification and computational
assessment of semantically similar objects. Furthermore, the semantic similarity model
can be used to compare different data models, since it provides indices of how similar

the objects embedded in those data models are.

Previous work in the assessment of semantic similarity lacks the following

characteristics, which constitute the ground for the investigations of this thesis:

» Context dependence. Although some models consider context in the semantic
representation of entities (Kashyap and Sheth 1996), few of them have introduced
the context influence on the way the similarity assessment is performed. In this
sense, context affects what aspects are more relevant than others in a similarity
judgement. These aspects may be the concepts’ descriptors (e.g., functions and

parts) or cognitive properties (e.g., commonalities vs. differences).

» Asymmetric evaluation for cases of subclass-class and part-whole relations. Most
semantic similarity models define symmetric similarity functions. Psychologists,
however, have argued that similarity often needs asymmetric measures. Some cases
in the spatial domain, such as building vs. museum and building vs. building

complex, are examples for the need of an asymmetric evaluation.

12



Adequate semantic representation for spatial concepts. Most models based on
features or descriptors have an ambiguous explanation of what these features are.
These models are usually applied to a broad domain and do not address the
particular properties of concepts in the spatial domain. Likewise, models based on
semantic relations usually include two types of relation: synonymy (equivalence)
and hyponymy (is-a). In the spatial domain the meronymic relation (i.e., part-
whole) represents another important semantic relation that needs to be considered
in order to provide a more satisfactory representation of the interrelations among

spatial concepts.

Evaluation across multiple and autonomous definitions. Most current models for
similarity assessment are based on the use of a shared ontology that semantically
interconnects concepts. This approach has limitations in dynamic environments,
such as the Internet, where scalability and variability are frequent properties of

ontologies.

1.3 Goal and Hypothesis

The goal of this thesis is to create a formal model for the assessment of semantic
similarity among spatial entity classes. This model should reflect properties of people’s
similarity judgments and a solid computational formalism. Major questions that drive

the development of this thesis are:

What are the desirable properties of a similarity model among spatial entity

classes?

What are the main components that semantically distinguish spatial-entity classes?

13



« What are the advantages and disadvantages of current models for semantic
similarity? Can advantages of current models be integrated into a new similarity

model?

» How does context affect similarity assessment?

The answers to these questions yield the definition of the Matching-Distance
model that combines distinguishing features with semantic distance (Chapters 3 and 4).
This model produces asymmetric evaluations and considers contextual information for
the determination of the relevant features in the similarity assessment. The hypothesis

of this work is therefore that

the Matching-Distance model matches people’s judgments of similarity.

This hypothesis is supported by the statistical analysis of a human-subject

experiment (Chapter 5).

1.4 Research Approach

This thesis develops a mathematical model to evaluate semantic similarity of spatial
entity classes. The model is strongly influenced by studies in cognitive psychology and
natural-language processing. This influence is due to the belief that a similarity model
that employs elements of people’s mental models could produce results that are well
accepted and commonly desired. If a system simulates the way people reason and
communicate about spatial concepts, the system is most likely to give users their
desired answers (Mark 1989). This thesis shares the assumption by Talmy (1983) and
Herskovits (1997) that the language we speak reflects our conceptual system; that is,

we can treat concepts as linguistic terms and represent their semantics. This work,
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however, focuses on spatial entities expressed as nouns, rather than spatial relations

expressed as prepositions in natural language.

This thesis considers similarity assessment as a process in which common and
different distinguishing features among entity classes are analyzed (Tversky 1977). In
addition to distinguishing features, entity classes are defined by their semantic
interrelations. We call this set of entity class definitions an ontology. In artificial
intelligence, the term ontology has been used in many different ways. Ontology has
been defined as a “specification of a conceptualization” (Gruber 1995a) and as a
“logical theory which gives an explicit, partial account of a conceptualization”
(Guarino and Giaretta 1995). Thus, an ontology is a kind of knowledge base that has an
underlying conceptualization. For the purpose of this work, an ontology will be used as
a body of knowledge that defines (1) primitive symbols used in the representation of
meaning, and (2) a rich system of semantic relations interconnecting those symbols.
Unlike the philosophical notion of ontology (Milligan 1992, Smith and Mulligan
1983), this definition relaxes the idea that an ontology describes a unique and task-
independent reality. Instead, it allows us to have different ontologies, each of the

ontologies having its own perspective for partially describing the same entity classes.

A natural idea for organizing concepts is to use a hierarchical structure derived
from the hyponymic (is-a) relation among entity classes. Although linguists and
computer scientists have commonly used lexical hierarchies for organizing nominal
meanings, cognitive scientists have questioned the inheritance assumption implicit in
those hierarchies (Miller 1998). Furthermore, the idea of typicality or prototyping has
been suggested to better represent a concept (Lakoff 1987, Rosch 1973). Under the
typicality theory, a concept is represented by its focal instances, which are the best

examples of the concept.
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Despite all arguments against hierarchies, this thesis follows this approach since
practical work has shown the usefulness and importance of lexical hierarchies for
nominal concepts (Miller 1998) and hierarchical structures for cognitive maps (Hirtle
and Jonides 1985). These hierarchies, however, should not only include associations
based on shared features, but also associations among concepts regarding the context in
which they are used. The idea of using prototyping as part of the conceptual
representation is valuable and is also considered. For this thesis, prototyping is
assumed to be part of the definition of the typical distinguishing features of a concept.
Furthermore, the effect of prototyping over the similarity assessment among concepts
has also influenced our model, such that the similarity assessment between a variant
and its prototype, or vice versa, results in an asymmetric evaluation (Rosch and Mervis

1975).

The foundation for many semantic distance approaches to similarity assessment
(Radaet al. 1989, Ripset al. 1973) is that distance in a lexical hierarchy can be
translated into the response time that associates two concepts (Collins and Quillian
1969). Objections to this assumption soon appeared, though (Smith and Medin 1981).
Those studies argued that the time of response of associated concepts is influenced by
the typicality of the concepts. Although our model uses the semantic distance among
concepts, it embeds this distance into a feature-matching process (Tversky 1977). A
feature-based approach to semantic similarity can distinguish entity classes even when
they are all grouped under the same superclass, can produce asymmetric evaluations,
and can use contextual information that affects the similarity assessment. The semantic
distance is basically used to identify the relation between a variant (subclass) and its
prototype or more general concept (class). Based on the semantic distance, a feature-
matching process can be adjusted by using weights between non-common features that

reflect the asymmetric evaluation of a similarity assessment.
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The notion of context is also an important issue for the evaluation of semantic
similarity (Shoham 1991). The definition of context in this thesis pursues the
determination of the relevance of features for the similarity assessment. Context in this
thesis is specified by the user’s intended operations, because the meaning of a term is
strongly affected by how the term is used (Miller and Charles 1991). This work
describes an application by the set of tasks and the entity classes in the tasks’ domain
that characterize this application. The determination of feature relevance can then be
obtained by two different approaches: (1) commonality and (2) variability, of
distinguishing features in the domain of the application. In addition to the features’
relevance, contextual information can partially resolve word-sense ambiguity, since
entity classes of the application domain may limit the possible senses of polysemous

terms.

Using a common and single ontology constrains the use of the model to
individual databases or to multiple, homogenous databases. In multiple and
heterogeneous databases different classifications or entities are defined, which leads to
diverse conceptual models. Even if databases have the same conceptual models, the
issue ofscalability of the ontology is critical as new information resources enter to
form part of the federation of databases (Kashyap and Sheth 1998). This thesis extends
the basic model for similarity evaluations within an ontology to create a model that
finds the most similar entity classes across ontologies. This model compares names,
features, and semantic neighborhoods of entity classes using a matching process.
Through the matching process, the model avoids disconnected hierarchical structures

and proposes a set of similar entity classes that create anchors for ontology integration.
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1.5 Scope of the Thesis

This thesis is concerned with the definition of spatial entities and, therefore, limits its
domain of discourse to the set of entities that are part of standard spatial catalogs, such
as the Spatial Data Transfer Standard (SDTS ) (USGS 1998). These spatial entities are
concepts expressed in the English language. Through the concepts of synonymy and
polysemy, this thesis permits the distinction of regional differences in the use of
language. Polysemy arises when the same word has more than one meaning (different
sensepand synonymy corresponds to the case when two different words have the same
meaning (Milleret al. 1990). For example, while the term for a small stream in the
South of United States eek in New England a small stream is callebraok This

thesis links the termsreekandbrook by a synonymy relation.

For the purpose of this thesis, we distinguish between similarity of entity
classes and similarity of entity instances. While entity classes refer to concepts in the
real world, entity instances denote physical objects in the real world. Since this study
focuses on entity classes, this thesis does not address the similarity assessment among
attribute values of specific instances of a class. For example, when assessing the
similarity between @ports arenaand aroffice building this study considers what type
of structural components (e.g., ceiling, color, floor, external material, and type of
architecture), functional descriptors (e.g., to play, train, and work), and attributes (e.qg.,
owner, color, and age) belong to both concepts, while it disregards the similarity
assessment among values associated with structural elements, functions, or attributes.

For example, this thesis does not address the similarity of colors red and blue.
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1.6 Major Results

This thesis develops two models for calculating semantic similarity among entity
classes: (1) the Matching-Distance model (MD) for evaluations within a single
ontology and (2) the Triple Matching-Distance model (MD3) for evaluations across
multiple ontologies. The MD model gives similarity values among entity classes as a
function of the combination of the matching process over distinguishing features and
the semantic distance of entity classes in a hierarchical structure. The MD3 model
extends the MD model such that not only the distinguishing features but also the names
and the semantic neighborhoods among entity classes are compared. The models have
been implemented in an object-oriented prototype written in C++. This prototype
allows users to check the semantic similarity among entity classes based on either a
single ontology (user-defined or pre-defined) or across existing ontologies, such as

WordNet (Miller et al.1990) and SDTS (USGS 1998).

A human subject experiment supported the hypothesis that the MD model
matches people’s judgments. This result suggests that at different levels of
generalization expressed in terms of is-a relations, semantic-similarity evaluations
among entity classes produce asymmetric values. This claim resembles Rosh’s (1973)
hypothesis that in the similarity assessment a prototype (superclass) is less similar to its
variants (classes) than its variants are to the prototype. For entity classes related by
part-whole relations, however, asymmetric evaluations vary depending on the number
of common distinguishing features among classes. For entity classes that share many of
their distinguishing features, such as building and building complex, the similarity
assessment tends to give similar asymmetric results as the results found when the
classes are related by is-a relations. Since generalization (is-a relation) and aggregation

(part-whole relation) are common abstraction mechanisms for handling spatial entities
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(Egenhofer and Frank 1992), the MD model is well-suited for detecting semantically

similar spatial entities.

The domain of entity classes that are involved in an application (i.e., the context
domain) affects the results of similarity evaluations. While this effect is small but
significant, the major determinant for a good similarity evaluation is the correct
definition of entity classes in terms of distinguishing features. Commonality or
variability may be the right approach to the determination of feature relevance

depending on the specificity of the application.

The performance of similarity evaluations across ontologies depends on the
level of formalization and explicitness of the ontologies. Although the MD3 model
detects similar entity classes correctly, it is not clear if the model can detect all entity
classes that are indeed similar. While distinguishing features are a basis for detecting
similarity within a single ontology, lexicon and semantic neighborhood appeared to be

better parameters for cross-ontology evaluations.

1.7 Intended Audience

The intended audience of this thesis is any person interested in information retrieval in
general and in similarity assessment for spatial objects in particular. This may include a
multidisciplinary group of computer scientists and geographers. This thesis is of
particular interest to designers of spatial database systems and spatial query languages,
as well as researchers from the fields of geographic information science, artificial
intelligence, interoperating information systems, natural language understanding, and

cognitive science.
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1.8 Organization of Remaining Chapters

The remainder of the thesis is organized into six chapters.

Chapter 2 reviews previous work on semantic similarity assessment. This
review includes the topics of ontology, cognitive properties of similarity, and models to
assess semantic similarity. Models for semantic similarity assessment are analyzed in
terms of the type of information they require and their main properties as compared

with the cognitive property of similarity assessment.

Chapter 3 introduces the MD model for semantic similarity assessment among
spatial entity classes. It explains the considerations and the components of the entity
class representation. Subsequently, Chapter 3 presents the mathematical model for
similarity assessment and its theoretical basis. Finally, an example illustrates the use of

the MD model.

Chapter 4 complements the MD model with the contextual information in the
similarity assessment. It describes the approach to modeling context and the use of
context in similarity assessments. This chapter discusses the effect of context
specification with examples of similarity evaluations over the same set of entity classes

but under different contexts.

Chapter 5 presents the evaluation of the MD model by a human-subject
experiment. This chapter describes the design of a survey given to 72 students, the
results of both the subjects’ responses and the MD model for the same questions, and

the statistical analysis that compares these results.

Chapter 6 extends the MD model to account for semantic similarity assessment

across multiple ontologies and defines the MD3 model. This chapter explains
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additional components of entity class representations, the mathematical model for
cross-ontology evaluations, and a test of the MD3 model with analyses over different

combinations of ontologies.

Chapter 7 presents conclusions and further research directions. It discusses the
main contributions and limitations of the MD and MD3 models, and addresses needs

for future research.
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Chapter 2

Modeling Semantic Similarity

Semantic similarity involves an assessment based on what is known about concepts. In
information systems, this knowledge is expressed in the ontology that describes the
conceptualization of the world the system is trying to represent. This chapter starts by
reviewing the concept and use of ontologies. It focuses on the use of ontologies for
information retrieval and information integration. Subsequently, this chapter presents
properties of similarity assessments described by theories of knowledge and behavior.
These properties constitute desirable characteristics of similarity models and are used
as parameters for a comparison of current models. The discussion of current models for
similarity assessment includes only those models that consider concept definitions and
interrelations. Hence, this review excludes semantic similarity definitions among data
modeled in databases that have been carried out by computer scientists in the area of

heterogeneous and autonomous information systems (Elmagetradid999).

2.1 Ontology

In a philosophical sense Ontology is the discipline that concerns the definition of a
particular system of categories accounting for a certain vision of the world (Milligan
1992). Under this definition, an ontology is independent of a language used to describe
it. The artificial intelligence community, in contrast, defines an ontology in regard to a

specific vocabulary that describe a certain reality. Gruber (1995b) defines an ontology
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as an explicit specification of @nceptualizationDistinguishing aconceptualization

from anontology Guarino and Giaretta (1995) modified Gruber’s definition and
described an ontology as “a logical theory designed to account for the intended
meaning of a vocabulary; i.e., itentological commitmentto a particular
conceptualizationof the world.” They suggested that a conceptualization is “an
intensional semantic structure which encodes the implicit rules constraining the
structure of a piece of reality.” Figure 2.1 clarifies the relationship among
conceptualization, language, and ontology (Guarino 1998). A relationship between the
philosophical and engineering senses of an ontology exists if a conceptualization is

associated with the philosophical sense of an ontology.
Conceptualizatiol©

commitmenK = <C,00 >
Language.

l ModelsM (L)

Ontology

Intended models« (L)

Figure 2.1:  Relationship among conceptualization, language, and ontology.

Although an ontology is seen as a kind of knowledge base, an ontology
contains state-independent information. It describes facts that are assumed to be always
true by a community of users. A knowledge base, in contrast, may also include facts
and assertions related to a particular state of affair. In a simple case, an ontology

describes a hierarchy of concepts created by a generalization process. A more complex
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ontology introduces axioms that relate concepts and constrain their interpretations. A
classification of ontologies in terms of their level of explicitness and formalization is

the following (modified from the classification done by Ganggral. (1998)):

» Catalog of normalized terms. A list of normalized terms without inclusion, axioms,

and glosses.
* Glossed catalog. A catalog with natural glosses (e.g., dictionary of medicine).

« Taxonomy. A collection of concepts organized by a partial order induced by
inclusion, such as WordNet (Millet al. 1990) and SENSUS ontology for machine
translation (Knight and Luk 1994).

» Characterized taxonomy. A collection of concepts, relations, and properties that
characterize concepts, such as Mikroskomos (Mahesh 1996) and the ontology for

the (KAY community (Bejamins and Fensel 1998).

» Axiomatized taxonomy. A collection of concepts, semantic relations, properties,
and axioms, such as the GALEN core model (Reetal. 1993) and the PSL

ontology (Schlenofet al. 1998).

» Context (or ontology) library. A set of axiomatized taxonomies with relations

among them, such as Cyc (Leeatal. 1990).

A generic form of an ontology specification is given by a 5-tiipke <CD, RD,
FD, ID, AD>, in whichCD is a set of class definition®D is a set of relation
definitions,FD is a set of function definition$D is a set of instances definitions, and
AD is a set of axioms definitions (Gruber 1992, Visséral. 1998). A definition
consists of alefinienduni.e., a term that refers to the concept being defined) and a set

of definieng(i.e., terms used to define the definiendum).
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The interest in ontologies in the computer science community is reflected by
the increasing use of ontologies in such diverse areas as knowledge representation
(Guarino 1995), knowledge engineering (Gruber 1995b, Us@t@t 1998), language
engineering (Lang 1991, Mahesh and Nirenburg 1995, Milligan 1992), information
retrieval and extraction (Guarino 1997, Guareioal. 1999, Welty 1998), and
information integration (Bergamasatti al. 1998, Menaet al. 1998, Wiederhold 1994).

The following sections focus on the uses of ontology for information retrieval and

information integration that apply to this thesis.

2.1.1 Ontology-Based Information Retrieval

An ontology-based information retrieval, also called knowledge retrieval, uses
primitives of an ontology to specify queries and resource descriptions. These primitives
are semantically rich so that a better semantic matching between query and data stored
can be accomplished. In current ontology-based information systems, semantic
matching has meant the agreement on the vocabulary used by different agents. Thus, it
implies sharing the same conceptualization, or agreeing to adopt a common
conceptualization, which is the intersection of the original conceptualizations (Guarino

1997).

An initiative for ontology-based information (knowledge) retrieval in the
World-Wide Web is (KAJ (Bejamins and Fensel 1998). Using a shared ontology, a
web-crawler accesses the web pages and uses the ontology to infer answers. Depending
on the level of specification of the ontology, the web-crawler may infer new
information that is not explicitly stored on the Web. FindUr (McGuinness 1998) is
another initiative in ontology-based information retrieval in the Web. FindUr uses an
ontology to perform retrieval by abstracting classes, organizing content, and

maintaining a knowledge base that captures the domain knowledge that is needed for
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all services on the site. The experience with FindUr shows that an ontology-based
information retrieval improves recall (i.e., the proportion of relevant material actually

retrieved in the answer to a search request) and precision (i.e., the proportion of
retrieved material that is actually relevant). These improvements are observed when the
documents’ lengths are short, there are few content words per document that are
related, documents use an unfamiliar vocabulary, there is variability in the specificity

of documents, meta-tagging is inconsistent or irregular, or general documents have

higher (relevant) values over specific documents.

Concentrating on online yellow pages on the Web, Guasinal. (1999)
discussed the advantages of using a linguistic ontology such as WordNet and a

structured representation formalism for information retrieval. They conclude that:

e users can express queries by using the most common English words rather than the

data vocabulary;

» recall increases by exploiting the hierarchy to make generic queries and

recognizing synonyms; and

» precision increases by a disambiguation mechanism and the ability to navigate the
hierarchy to select specific queries. There is a further increment in precision if the

system considers the structure of queries and descriptions.

In general, recent research indicates that ontology-based systems are suitable
for obtaining effective information (knowledge) retrieval. These studies assume that
users subscribe to a common ontology. Moreover, these studies emphasize the
shareable nature of ontologies (Gruber 1995a), which may not be the case for all

existing ontologies.

27



2.1.2 Ontology-Based Information Integration

A major application of ontologies is the area of information integration. Ontologies
capture the semantics of data sources and are the basis for the link among diverse
sources (Wiederhold 1994, Wiederhold and Jannink in press). As current information
systems increasingly confront information and knowledge issues, semantic integration
becomes the challenge for a new generation of interoperable systems. The problem of
semantic integration is the identification of semantically similar objects that belong to
different systems and the resolution of their schematic differences (Kashyap and Sheth

1996).

The general approach to semantic integration has been to map the local terms in
a database onto a shared ontology. Most of these approaches use the terms’
interrelationships to determine semantic similarity (Bishr 1997, Beglal. 1994,
Collet et al. 1991, Fankhauser and Neuhold 1993). Other approaches are measures
based on graph matches and probabilistic measures that predict the probability that an
instance of a concept in differentiated ontology will satisfy a request (Weinstein and
Birmingham 1999). Efforts that create the shared ontology define a knowledge base in
terms of a global and domain-independent ontology, such as Cyc (Lenat and Guha
1990, Lenatkt al.1995), LILOG (Lang 1991), and WordNet (Miller 1990). Although a
shared ontology ensures complete integration, this type of ontology is costly if not
impractical, because information systems are forced to commit to the shared ontology

and compromises are difficult to maintain when new concepts are considered.

In environments with multiple and independent information systems, each
system may have its own conceptualization and, therefore, its own intended model.
Different intended models result in multiple ontologies that describe specific domains,

such as an engineering ontologBorst et al. 1997) and a medical ontology
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(Zweigenbaumet al. 1995). These existing ontologies are well defined and their
integration may reduce the cost of building a global ontology from scratch
(Bergamaschet al. 1998, Kashyap and Sheth 1998, Me&tal. 1996). The ontology
integration, however, is a complex task, because concepts can overlap or definitions of
concepts may be inconsistent across ontologies (Vetsdr1998). Since there may be
several ways to integrate ontologies, the definition of a systematic and consistent

methodology for this integration becomes a real challenge.

ONIONS (Gangemet al. 1998) is a methodology for ontology analysis and
integration that has been applied to large medical terminologies. Ontology integration
in ONIONS is done by formally representing all concepts and by ontologically
integrating these concepts through a set of generic ontologies. ONIONS’s methodology
includes the following steps: extraction of relevant set of terms from terminological
sources, local definitions of terms, multi-local definitions of terms by triggering
theories related to distinctions made in local definitions, and multi-local definitions of

terms by triggering theories for the design of top-level categories.

A systematic approach to integrating ontologies is the use of the degree of
overlap among ontologies (Wiederhold 1994). This approach considers intersection
points and mutual exclusion points between various ontologies based on matching rules

(Figure 2.2).
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Component B

ComponentA

watercourse{...} 'r?\f r{{}}
street{....} road{....}
recreation_area{... city{...}
district{...} district{...}

Matching rules

....................................................................................................

street.name = road.name

street.lanes = road.track i
watercourse.name = river.name i
watercourse.width = river.width
district.name = district.id £

Figure 2.2:  Example of ontology integration based on matching rules.

Subconcept-superconcept relationsfiiammeret al. 1994) is an approach to
ontology integration that defines a concept as a collection of types determined to be
similar by a common advisor. The similarity between types is based on heuristics with
user inputs as required. The heuristics assess the distinguishing capability of a property
of a concept that depends on the inter-concept dissimilarity among concepts and the
intra-concept similarity within a concept. Then, a concept hierarchy is generated based

on a subconcept-superconcept hierarchy (Figure 2.3).
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River Brook Streamle

Wetland Lake

Loch Tarn
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T Hyponymy

Body of water

’ Wetland / \

Lake Watercourse

/\ /l\

Loch Tarn River Brook Streamlet

Figure 2.3: Example of ontology integration based on superconcept-subconcept
relationship.

The use of semantic interrelations is yet another approach for ontology
integration. OBSERVER is an ontology-based system that is enhanced with
relationships for vocabulary heterogeneity resolution (Kashyap and Sheth 1998, Mena
et al. 1996). It uses terminological relations (hyponymy and hypernymy) to map the
non-translated terms in a user ontology onto terms (which are not synonymous) in a
target component ontology. This translation process is recursive and consists of
substituting non-translated terms with the intersection of their immediate parents or the
union of their immediate children. The loss of information is evaluated for both cases,

and the translation with the least loss of information is chosen.
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Figure 2.4: OBSERVER'’s terminological relationships for the integration of two
ontologies.

As OBSERVER, Bergamaslat al. (1998) used synonymy and hyponymy
terminological relations for ontological integration, but they also included a relation of
positive association that connects terms generally used in the same context. Their
approach is semiautomatic and starts with the extraction of hyponyms and associated
terms from the source schema. Synonyms and domain-related knowledge are

introduced by a person responsible for the integration. A validation of terminological
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relations defined for attributes in the ontology is then followed by the inference of new

relations.

2.2 Properties of Similarity Assessment

The study of similarity judgment has been an important area of investigation for
psychologists and cognitive scientists. They have pursued the questions of how people
classify objects, form concepts, solve problems, and make generalizations. A result of
these studies has been the constant debate about the properties of similarity assessment.
Many studies focus on the analysis of whether similarity satisfies properties of a metric

distance functioml (Equations 2.1a-c)

d(a,b) = d(a,a) (i.e., minimality) (2.1a)
d(a,b) = d(b,a) (i.e., symmetry) (2.1b)

d(a,b) +d(b,c) = d(a,c) (i.e., triangle inequality) (2.1¢)

Although most studies assume that similarity satisfies minimality, Tversky
(1977) argued that the same self-similarity for all objects implied by the minimality
property does not hold for some similarity evaluations. Likewise, Krumhansl| (1978)
stated that the observed measure of similarity between an object and itself may be
related to the status of the object within the domain. Thus, the self-similarity measure
may not be the same for all objects, and the variation of the self-similarity may be
related to the prototyping characteristics of the object within the domain. Krumhansl
considered, however, that similarity satisfies the minimality property, because what
really matters about minimality is that the self-similarity must be larger than the

similarity between two different objects.
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Similarity is not always a symmetric relation (Tversky 1977). In the naive view
of the world, distance as well as similarity defined in terms of a conceptual distance are
frequently asymmetric (Egenhofer and Mark 1995). In the study of semantic
categories, Rosch (1973) supported the view that categories are naturally formed and
defined in terms of focal points or prototypes. She hypothesized that (1) in sentences
such as “a is essentially b,” the focal stimuli (i.e., prototypes) appear in the second
position, and (2) the perceived distance from the prototype to the variant is greater than
the perceived distance from the variant to the prototype. Asymmetry of similarity may
result from searching for properties or features that characterize two objects
(Krumhansl 1978). The transformation from one feature to another plays a role in
similarity measures, because the need for less transformations between two objects
results in a higher similarity judgment. Raelaal. (1989), however, argued that when
similarity is limited to a feature comparison process, it is symmetric. They believe that
the asymmetric problem of similarity found by Tversky (1977) is a result of the
existence of another asymmetric relation. For example, a metaphor relating two
concepts by a “like” relation involves a selective rather than an unconstrained
comparison process. In other cases, people use a fuzzy category-membership (Zadeh

1965) rather than an evaluation of similarity.

The validity of the triangle inequality as a foundation for similarity models has
been discussed (Tversky 1977). The triangle inequality implies tha duite similar
to b, andb is quite similar tcc, thena andc cannot be very dissimilar from each other
(Equation 2.1c). Based on this property gports fieldis similar to agym(because of
their roles) and gymis similar to auilding (due to their structural definitions), then
the sports fieldmust be somehow similar tdoailding, a statement hard to accept. This
example also reflects that similarity is not always transitive. Supporters of the triangle

inequality property of similarity argue that the triangle inequality property fails due to
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the different emphases on features and dimensions that are used to evaluate similarity
(Krumhansl 1978, Radet al. 1989). For instance, in the previous exanmole was
used to evaluate semantic similarity betweengberts fieldand thegym whereas

structural characteristicsvere used between tggmand thebuilding.

Similarity vs. difference, context, and correspondence are also characteristics of
similarity assessment discussed in the literature. In general, the often assumed inverse
relation between similarity and difference is inaccurate. Naturally, an increase in the
measure of the common features increases the similarity and decreases the difference,
whereas an increase in the measure of distinction decreases similarity and increases
difference. The relative values of these two semantic relations, however, may differ.
While subjects may pay more attention to the similar features in the assessment of
similarity among objects, they may pay more attention to their distinctive features in

the assessment of difference (Krumhansl 1978, Tversky 1977).

Context and the frame of reference determine the relevant features for the
evaluation of similarity. Sometimes the relevant frame of reference is explicitly
specified (Tversky 1977). For example, how similar are an apple and a pear with
respect to taste? Features or dimensions may be given different weights in different
stimulus contexts (Krumhansl 1978). A suggestion is that weights are determined by
how diagnostic the feature is for a particular set of objects under consideration
(Goldstoneet al. 1997, Tversky 1977). The diagnosticity of a feature refers to the
classificatory significance of the feature or the degree of informativeness of a
dimension. Tversky described artensive effecccording to which features influence
similarity judgment more when they vary within an entire set of stimuli. Likewise,
Goldstone suggested that a dimension is highlighted when it presents a variability

within a context.
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The context effect of range and frequency is associated with the categorical
judgments along a single dimension. The range-frequency theory states that a person
(1) tends to divide his or her psychological range into a fixed number of subranges of
equal size, and (2) employs the alternative categories with equal frequency (Krumhansl
1978). Interms of similarity, the first principle means that if the range of stimuli
increases by adding more extreme stimuli, the similarity judgment of stimuli that are
common to the original should increase. The second principle states that the similarity
value between two objects in a relatively dense region of stimuli should be lower than
the similarity value between two objects that differ in an equivalent amount, but

occupy a less dense region.

When similarity assessment involves the comparison between scenes,
correspondence should be consistent (Goldstone 1994). The similarity between two
scenes cannot be determined before the parts of the scenes are placed in
correspondence. In spatial scenes, correspondence refers to the spatial distribution of
the parts. The degree of importance of a correspondence for the similarity assessment
between two scenes depends on the consistency with respect to the emerging pattern of
other correspondences between the scenes. Thus, the matching of corresponding
features has a greater contribution to the similarity rate than the matching of features

that do not correspond.

Another factor found to influence similarity judgment is classification. The
diagnostic value of a feature is determined by the prevalence of the classification that is
based on it. Thus, similarity has two faces, causal and derivative. It serves as a basis to

classify objects, but it is also influenced by the adopted classification (Tversky 1977).
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2.3 Models for Semantic Similarity Assessment

A general classification of models for semantic similarity assessment distinguishes
models based on features, based on semantic relations, based on information content,
and based on contextual information. Feature-based models have been proposed by
cognitive psychologists who judge similarity in terms of distinguishing features of
concepts or objects, such as properties, role, and rules. Models based on semantic
relations, on the other hand, have primarily arisen from the computer science domain.
These semantic relations are typically organized in a semantic network where nodes
denote concepts and links represent semantic relations. Derived from the use of
semantic networks, recent studies relate information content to semantic similarity
determination. Finally, an approach to semantic similarity coming from the cognitive-
linguistic domain presents a model for similarity assessment that considers the

contextual representation of words within sentences.

2.3.1 Feature-Based Models

Using set theory, Tversky (1977) defined a similarity measure as a feature-matching
process. It produces a similarity value that is not only the result of common features,
but also the result of the differences between two objects. Taking two cdpadib,

the matching process is defined by the two set-theory functions of intersectioB)A

[ the set of features common to batandbl] and set difference (A B) [ the set of
features that belong t® but not tob. Tversky’'scontrast modetlefines the similarity

between two object§(a,b) (Equation 2.2).
Sab) =6 (AnB)-af (A-B)-pf(B-A), for6,a,andf=0 (2.2)

The terms@, a, andp refer to the weights for common and different features

between the two objects. These weights allow the definition of an asymmetric measure
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for similarity. The asymmetry property is the result of the relative salience of the
stimuli or classificatory significance of the feature. Under the assumption that all
objects are of equal salience, similarity between objects is a linear function of the
measure of their common features. Another matching function that normalizes the

value of similarity is theatio model(Equation 2.3).

Sab) = f(An B)
f(An B)+af (A-B) +Bf(B-A)

,foraandB=0 (2.3)

A different strategy for feature-based models is to determine a semantic
distance between concepts as their Euclidean distance in a semantic, multidimensional
space (Rip®t al. 1973). This approach describes a similarity measure by a monotonic
function of the interpoint distance within a multidimensional space, where the axes in
this space describe features of concepts. The distance between two points in the
multidimensional space is typically computed by Equation 2.4, whex¢he number
of dimensions anX; is the value of objedtin dimensionj. The distance model in a
semantic space satisfies the usual properties of a distamzeimality, symmetry, and

triangle inequality (Equations 2.1a-c).

d(a,b) = %1 Xow — xb,k\zgllz) (2.4)

Krumhansl| (1978) also suggested a distance function for similarity assessment
that complements the interpoint distance with the spatial density of the space, called
the distance-density model. This model assumes that within dense regions of a stimulus
range finer discriminations are made than within relatively less dense subregions. The
distance-density model defines a distance functiofEquation 2.5), wherd(a,b) is
the normal distance)(a) is the density function, andandf are relative weights of the

density function.
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d(a,b) = d(a,b) +ad(a) +Ba(b), with a andB= 0 (2.5)

Krumhans| (1978) argued that the distance-density model may be able to
account for variations on self-similarity with the condition that the self-similarity is
larger than the similarity between any two objects. The asymmetric property of
similarity may be reflected in the distance-density model by considering that the
density around one point affects the similarity more than the density around the other

point in a directional evaluation of similarity.

In a more recent work Goldstone (1994) proposed a new model for similarity
assessment of scenes that shares many characteristics with the cognitive process of
analogical reasoning. He argues that neither feature-matching nor distance approaches
of feature-based models account for the correspondence between scenes. This type of
correspondence becomes relevant as propositionally and hierarchically structured
scenes are compared. Propositional representations contain relational predicates such as
the spatial relations above, below, left, and right. Hierarchical representations involve
entities that are embedded into one another, sughi@part ofY or X is a kind ofY.
Goldstone’s model, called SIAM, evaluates similarity as an interactive activation and
mapping between features, objects, and role correspondences. The overall similarity
between two objects is determined by feature-to-feature matching between the objects,

adjusted by the importance of the similarity in terms of the degree of alignment.

A shared disadvantage of feature-based models is that two entities are seen to
be similar if they have common features; however, it may be argued that the extent to
which a concept possesses or is associated with a feature may be a matter of degree
(Krumhans| 1978). Consequently, a specific feature can be more important to the

meaning of an entity than another. On the other hand, the consideration of common
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features between entity classes seems to be cognitively sensible for the way people

assess similarity.

2.3.2 Models Based on Semantic Relations

The semantic distance results in an intuitive and direct way of evaluating similarity in a
hierarchical semantic network. This type of hierarchy is a common and efficient way to
organize and connect concepts (Collins and Quillian 1969). For a semantic network
with only is-a relations, the semantic relatedness and semantic distance are equivalent
and one can use the latter as a measure of the former€Ralda989). In this context,
conceptual distance is the length of the shortest path between two nodes in the

semantic network (Figure 2.5).

Physical
Entity
Artifact Tract
N
v \ Hyponymy
Facility Field —_—
Shortest path
v
Sports facility Lawn
v
Athletic field

Figure 2.5:  Shortest path between the concathietic fieldandlawn.

Although the semantic distance model has been supported by a number of

experiments and has shown to be well suited for specific domains, it has the
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disadvantage of being highly sensitive to the predefined hierarchical network. In a

realistic scenario, adjacent nodes are not necessarily equidistant. Irregular density

results in unexpected conceptual distance measures. The density effect suggests that the

greater the density, the closer the distance between the nodes. With respect to the depth
of a hierarchy, the distance shrinks as one descends the hierarchy, because the
differences between nodes are based on finer details. By contrast, most concepts in the
middle to high sections of the hierarchical network, being spatially close to each other,

are deemed to be conceptually similar to each other.

In order to account for the underlying architecture of a hierarchical network, the
semantic distance model should allow for weighted indexing schema and variable edge
weights (Leeet al. 1993). To determine weights the structural characteristics of the
network, such as the local density, the depth of a node in a hierarchy, the type of link
(i.e., type of semantic relation), and the strength of an edge link (i.e., closeness between

a child and its parent node), are typically considered.

Some studies have considered weighted distances in a semantic network (Jiang

and Conrath 1997, Sussna 1993). Jiang and Conrath (1997) proposed to assign weights

to the edges as a function of the link stren$ii),(the depth of the noddy), the local
density (D) of a node, the overall densitWD), and the type of link (Equation 2.6).
The parameterg (a = 0) andB (0< < 1) control the degree to which the node depth

and density factors contribute to the edge weighting computation.

WD [dp(p) +10
LD(p)HH dp(p) O

wi(e,p) =B+~ ) LSePTER (26

In Equation 2.7, the strength of the link§ from a child to its parent is
proportional to the conditional probability of encountering an instance of the child

conceptc; given an instance of its pargm{Equation 2.7)
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P(c n p) _ P(c)O
P(p) P(p)

LS(e, P) = ~logeP(c  p) = @7
Sussna (1993) defined a similarity measure in terms of the weighted distance in
a semantic network that considers the local density, the depth in the hierarchy, and the
type of relations. The weighted link between two nodes of a hierarchy is defined by
Equation 2.8 and 2.9 wheR is a relation,R is its inversedp is the depth of the
deeper of the two nodespax andmin are the maximum and minimum weights

possible for a specific relatidr; andng(Xx) is the number of relatiorR leaving from

nodex.
Given
WH(XRy) = maxR—% (2.9)

Semantic-distance based models have been widely used in information systems
(Bishr 1997, Brightet al. 1994, Colletet al. 1991, Fankhauser and Neuhold 1993,
Guarinoet al. 1999); however, they present same important disadvantages with respect
to cognitive properties of similarity assessment. Semantic-distance models satisfy all
metric properties (i.e., minimality, symmetry, and triangle inequality), they are context
independent, they are highly sensitive to the semantic structure, they consider only is-a
relations among concepts, and they give coarse values of similarity for concepts that

have a same superordinate.

2.3.3 Models Based on Information Content

Information-based models use a hierarchical network and information theory to define
a measure for semantic similarity (Resnik 1999, Richardson and Smeaton 1996). The

basic idea is that the more information two concepts share, the more similar they are.
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Conceptual similarity is considered in terms of class similarity. The similarity between
two classes is approximated by the information content of the first superclass in the
hierarchy that subsumes both classes. The general idea of the information content is
that, as the probability of occurrence of a concept in a corpus increases,
informativeness decreases, such that the more abstract a concept, the lower its
information content. For example, the information content of the abstract cemtdypt

is less than the information content of more concrete concepts stmddasdhouse

The information content of this superordinate is derived from the statistical analysis of
word frequency occurrences in a corpus. In mathematical terms, information content is
computed by Equation 2.10, wheP€e) is the probability of the occurrence ofin a

corpus.

IC(c) = —Iog% (2.10)

In the case of multiple inheritance (Cardelli 1984), similarity can be determined
by the best similarity value among all possible senses to which the classes belong.
Equation 2.11 defines the similarity function of the information-based model, where
Supc,,c,) is the set of concepts that subsume lmptindc,, andIC is the information

content of a concept or class.

S(c,¢,) = _max )[IC(C)] (2.11)

cOup(cy,c,

The information-content model requires less information on the detailed
structure of the network. The determination of information content can adapt a static
knowledge structure to multiple contexts (Resnik 1999). On the other hand, many
polysemous words and multi-worded classes have an exaggerated information content
value. The information-content model can generate a coarse result for the comparison

of classes, because it does not differentiate the similarity values of any pair of classes
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in a sub-hierarchy as long as their “smallest common denominator” is the same (Jiang

and Conrath 1997).

2.3.4 Context-Based Models

Studying the relation between semantic similarity and contextual similarity, Miller and
Charles (1991) discussed a contextual approach to semantic similarity. Contextual
representation of a word comprises syntactic, semantic, pragmatic, and stylistic
conditions that affect the use of that word. Although they found that the similarity
among contextual representations is one of several factors for similarity assessment
among words, their work revealed a clear relationship between semantic similarity and
contextual similarity, when the words belong to the same syntactic category (i.e.,
nouns, verbs, adjectives, or adverbs). For such words, the similarity assessment is
defined in terms of the degree of substitutability of words in sentences. The more often
a word can be substituted by another word in the same context, the more similar the
words are. The problem with this similarity measure is that it is difficult to define a

systematic way to calculate it.

2.4 Summary

In information systems, ontologies capture the semantics of data sources and are a
basis for information retrieval and integration. For this work we confine the definition

of an ontology to be a kind of knowledge base that describes a certain reality in terms
of a set of entity classes and their interrelations. Models for semantic similarity
assessment have usually compared objects or concepts by considering the concepts’
descriptors (features) or the concepts’ interrelations (semantic relations). Important
characteristics of similarity assessment are asymmetry, non-transitivity, and context

dependence. Besides some feature-based models, models for similarity assessment
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have been characterized by being symmetric and context independent. The next chapter
introduces a new approach to create a computational model for semantic similarity
assessment among entity classes that overcomes limitations of current models to
account for symmetric and asymmetric evaluations and part-whole relations. The

model is further expanded in Chapter 4 to include contextual information.
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Chapter 3

A Computational Model for Semantic Similarity among Entity Classes

A computational model for semantic similarity provides a systematic way to determine
guantitative values of semantic similarity. This mapping into the domain of numbers
enables an ordering as well as limited inferences about degrees of similarity. This
chapter presents a computational model for the determination of semantic similarity
among spatial entity classes, called the Matching-Distance model (MD). It assumes a
single ontology for the evaluation of similarity between two entity classes, i.e., the
same conceptualization underlies the definition of both entity classes. The goal of the
computational model is to provide a similarity measure that reflects cognitive
properties of similarity judgments, in particular cases of asymmetric evaluations and
contextual dependence. It is also expected that the computational model can make use
of already available information about entity classes, such as the information found in
lexical databases, taxonomies, thesauri, or catalogs. Thus, the model would be not only

cognitively plausible, but also computationally achievable.

3.1 Components of the Entity Class Representation

For this work the purpose of the semantic representation of entity classes is to capture
sufficient knowledge about entity classes in order to differentiate them. In this thesis no
attempt is made to create a knowledge base that allows a person or a machine to

completely capture the entity classes’ semantics. Thus, this thesis distinguishes two
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approaches to the semantic representation of entity classes: differential and
constructive (Milleret al. 1990). The former approach has more modest requirements

since it considers only the relevant knowledge that distinguishes two entity classes.

This work represents entity classes by defining two main components: (1)
semantic relations among entity classes and (2) distinguishing features of entity classes
(Table 3.1). It organizes entity classes based on their semantic interrelations and

describes the set of entity classes and their semantic relations as an ontology.

Components Description
Definiendum Term or synonym terms that refer to an entity class
Definiens What is used to define an entity class

Semantic Relations Relations to other entity classes

Distinguishing Features Properties of the entity classes

Table 3.1: Components of entity class representations.

Since entity classes are associated with concepts represented in natural
language by words, this thesis takes into account two linguistic concsypt®nymy
and polysempyl that characterize the mapping between words and meanings (&iller
al. 1990). The class-entity representation incorporates synonyms, spahkasy lot
andparking area and different senses of entity classes, such as the case waek a
may be arelevation of the seaflopasloping margin of a riverafinancial institution,

or abuilding that houses a financial institution
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3.1.1 Semantic Relations

Semantic relations are a typical way to describe knowledge about concepts. In natural-
language communication, for instance, synonymy, antonymy, hyponymy, meronymy,
and entailment are examples of semantic relations used to define terms (Miller 1995).
The MD model refers to entity classes by using synonym sets, which are interrelated by
hyponymy and meronymy relations. It has been suggested that the two abstraction
mechanisms of object-oriented theory (Dittrich 1986) that are associated with
hyponomy and meronymy relations (i.e., generalization and aggregation, respectively)
are fundamental for adequately modeling spatial configurations (Egenhofer and Frank
1992). The hyponymy relation, usually called is-a relation (Smith and Smith 1977), is
the relation most commonly used in an ontology. This relation goes from a specific to a
more general concept. The is-a relation is transitive and asymmetric and defines a
hierarchical structure where terms inherit all the characteristics from their

superordinate terms.

Mereology, the study of part-whole relations, also plays an important role in an
ontology (Guarino 1995). Studies have usually assumed that part-whole relations are
transitive such that iais part ofb and b is part ofc, thena is part ofc as well.
Linguists, however, have expressed concerns about this assumption (Cruse 189, Iris
al. 1988). Explanations of the transitive problem rely on the idea that part-whole
relations are not one type of relation, but a family of relations. Wirettah (1987)
defined six types of part-whole relations based on three main aspects: functional
relation, homeomerous property (i.e., whether parts and whole are of the same type)

and separable property (Table 3.2).
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Relation Example Relation Elements

Functional Homeomerous Separable

Component - Object  pedal - bicycle v - v
Member - Collection tree - forest - - Vv
Portion - Mass slice - pie - v v
Stuff - Object steel - bike - - -
Feature - Activity paying - shopping v - -
Place - Area oasis - desert - Vv -

Table 3.2: Types of meronymy relations defined by Winstoal. (1987).

In addition to defining types of meronymy relations, Winsébral.(1987)
discussed similarity between meronymy relations and other semantic relations. They
suggested a partial classification of semantic relations (Figure 3.1) and defined a
transitive property among these semantic relations. Transitivity among the semantic
relations holds if (1) the same type of semantic relation is used for the two premises of
the syllogisms, or (2) the conclusion contains the relation that is lower in the hierarchy
of inclusion relations. The hierarchy of inclusion relations establishes that spatial
inclusion, meronymy inclusion, and class inclusion are the lower, medium, and higher
relations, respectively. Irist al. (1988), however, showed contradictions in Winston’s
transitivity hypothesis. For example, consider that a handle is part of a door
(component-object) and the door is part of the house (component-object). By
transitivity, the handle would be part of a house, which is debatable because it is

spatially part of the house, but not functionally.
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Semantic Relations

\

Inclusion Possession Attribution

Class Meronymic Spatial
(is-a)

Component Member Portion Stuff Feature Place

Figure 3.1:  Partial classification of semantic relations (Winetal. 1987).

Among all types of part-whole relations, this thesis considers the component-
object and stuff-object relations with the properties of asymmetry and (with some
reservations) transitivity. When describing the semantic relations among entity classes,
the model distinguishes the two relations “part-of” and “whole-of” to be able to
account for cases when the converseness of part-whole and whole-part relations does
not hold. For example, we can say thaudding complexhasbuildings(i.e., building
complexis the whole for a set dfuildings; however, not albuildingsare part of a

building complex

The MD model organizes the is-a and part-whole relations in an acyclic graph
(Figure 3.2). It uses is-a and part-whole relations for hierarchically comparing entity

classes such that a factor of asymmetry is determined.
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Figure 3.2:  Fragment of a hierarchical network with is-a and part-whole relations
based on WordNet.

3.1.2 Distinguishing Features

Although the general organization of entity classes is given by their is-a and part-whole
interrelations, this information may be insufficient to distinguish one class from
another. For example,hspitaland arapartment buildinghave a common superclass
building, however, this information falls short when trying to differentiateoapital

from anapartment building since the is-a relation does not indicate the important
difference in terms of the entity classes’ functionality (i.ehoapitalis a building
where medical care is given and gpartment buildings a group of apartments that

serves as living quarters).

Usually, attributesdescribe different types distinguishing featuresf a class.
They provide the opportunity to capture details about entity classes, and their values
describe the properties of individual objects (i.e., instances of an entity class).
Attributes can be also seen as relations. By treating attributes separately from relations

we distinguish between the organization of entity classes using semantic relations and
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the description of entity classes in terms of distinguishing features. This thesis suggests
a finer identification of distinguishing features and classifies them into functions, parts,
and attributes. This classification attempts to facilitate the implementation of the entity
class representation as well as to enable the separate manipulation of each type of
distinguishing feature. Considering that entity classes correspond to nouns in linguistic
terms, this work matches Miller's (1990) description of nouns. Using a lexical
categorization, parts are given by nouns, functions by verbs, and attributes by nouns
whose associated values are given by adjectives or other nouns. As with entity classes,
more than one term may denote the same feature (i.e., synonymy) or a term may denote

more than one feature (i.e., polysemy).

The notion of use-based semantics (Kuhn 1994) leads this thesis to consider
functions as one of the distinguishing features of an entity class representation.
Function features are intended to represent what is done to or with a class. For
example, the function of eollegeis toeducate Thus, function features can be related
to other terms such affordanceqGibson 1979) andbehavior (Khoshafian and
Abnous 1990). In the spatial domain, parts play an important role for the description of
spatial entities. Parts are structural elements of a class, sucdofaandfloor of a
building. It is possible to make a further distinction between “things” that a class may
have (“optional”) or must have (“mandatory”). This thesis focuses on mandatory parts
that are associated with part-whole relations. While the part-whole relations work at the
level of entity class representations and force us to define all the entity classes
involved, part features can have items that are not always defined as entity classes in
this model. Finally, attributes correspond to additional characteristics of a class that are
not considered by either the set of parts or functions. For example, some of the

attributes of a building argge user typeowner type andarchitectural properties
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The representation of entity classes does not contain the values of attributes
because these values are associated with specific instances of the entity classes. For
example, the representation of the condaplding specifies an attributage but it
does not store the value fage Consequently, the evaluation of similarity is done at a
higher level of abstraction than the similarity assessment among instances of entity

classes.

3.2 The Matching-Distance Model

This thesis introduces a computational model that assesses similarity by combining a
feature-matching process with a semantic-distance measurement. While this model
uses the number of common and different features between two entity classes, it
defines the relevance of the different features in terms of the distance among entities in
a hierarchical structure. The global similarity functio,,c,) is a weighted sum of the
similarity values for parts, functions, and attributes (Equation 3.1), where
w,, wy, and « are weights of the similarity values for parts, functions, and attributes,
respectively. These weights define the relative importance of parts, functions, and
attributes that may vary among different contexts. The weights all together must add up

to 1.
3c.,6,) = w, [§,(C,C,) + w; [5(c,,C,) + « [F(c,c,) (3.1)

For each type of distinguishing features we use a similarity fun&{onc,)
(Equation 3.2) that is based on tla¢io modelof a feature-matching process (Tversky
1977). In§(cy,C,), €1 andc, are two entity classessymbolizes the type of features,
andC,; andC, are the respective sets of features of tyfee ¢, andc,. The matching
process determines the cardinality (| |) of the set intersec@ipm (C,) and the set

difference C, — C,), defined as the set of all elements that belon@ fout not toC,.
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|G n G |+a(c,)UC -G [+ -a(c,c,))IIC, -G, |

S(c.c) =

The functiona is determined in terms of the distance between the entity classes

(c; andcy) and the immediate superclass that subsumes both classes. The immediate
common superclass corresponds to the least upper bound (l.u.b.) between two entity
classes in partially ordered sets (Birkhoff 1967). When one of the concepts is the
superclass of the other, the former is also considered the immediate superclass (l.u.b.)
between them. For instance, consider the hierarchical structure shown in Figure 3.2.
The immediate superclass betwetadiumandhouseis construction In like manner,

the immediate superclass betwdrnlding and museumis building. The distance of

each entity class to the l.u.b. is normalized by the total distance between the two
classes, such that we obtain values in the range between 0 and 1. Then, the final value

of a is defined by a symmetric function (Equation 3.3).

d(c,,l.ub.)
W d(c,,l.ub.) < d(c,,l.ub.)
a(cl,cz):g d(c.lub)
c,l.ub.
d(c,,c,) (G 1ub) > e [ub) (3.3)

The determination ofr is based on the idea that similarity is not necessarily a

symmetric relation (Tversky 1977). For example, “a hospital is similar to a building” is

a more generally accepted than “a building is similar to a hospital.” It has been
suggested that the perceived distance from the prototype to the variant is greater than
the perceived distance from the variant to the prototype, and that the prototype is
commonly used as a second argument of the evaluation of similarity (Krumhansl 1978,
Rosch and Mervis 1975). Hence, this work assumes that a prototype is generally a
superclass for a variant and that the concept used as a reference (i.e., the second

argument) should be more relevant in the evaluation.
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The similarity function (Equation 3.2) yields values between 0 and 1. The
extreme value 1 represents the case when all distinguishing features are common
between two entity classes, or when the non-common features do not affect the
similarity value (i.e., the coefficient of the non-common feature is zero). The value 0,
on the other hand, occurs when everything is different between two entity classes. An
interesting case occurs when comparing a class with its superclass or vice versa. Since
subclasses inherit features from their superclasses, only subclasses may have non-
common features. It can easily be seen that when comparing a class with its superclass
(e.g., aclinic with abuilding), the weight associated with the non-common features of
the first argumentr is 0 and the weight for the non-common features of the second
argument {—a) is 1. By considering the direction of the similarity evaluation, a class is

more similar to its superclass than the same superclass is to the class.

For the purpose of calculating, part-whole relations are treated like is-a
relations, because they also represent a hierarchy among concepts. For this model, the
main difference between is-a relations and part-whole relations depends upon the
inheritance property of the former. While subclasses usually inherit all the behavior
and properties of their superclasses, the same principle does not apply to composite and
compound entities in part-whole relations (Egenhofer and Frank 1992). To determine a
class that subsumes two classes under comparison, not only the is-a relation, but also
the part-of and whole-of relations are checked. In Figure 3.2, the superclass between
building andbuilding complexs building complexsince the closest path between the
two classes is given by the lifduilding complex has always buildifgy Considering
only is-a relations for the same two classes, however, would yield the superclass
construction Unlike the comparison between class and superclass, evaluations between
parts and wholes, or vice versa, follow unpredictable behavior, since parts do not

necessarily share features with their wholes.
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In the MD model, synonym sets denote entity classes and distinguishing
features. A set of synonyms contains more semantic information than a single term.
Since the model does not assess similarity of distinguishing features, we expect that a
set of synonyms can identify a distinguishing feature with little ambiguity. Words with
different semantics or senses (polysemy) are also included. Different senses of an
entity class are handled as independent entity classes with a common name. For parts,
functions, and attributes, the model first matches the senses of the terms, and then it
evaluates the set-intersection or set-difference operation among the set of features.
Furthermore, a term in one sense might have a set of synonyms such that the model
matches terms or their synonyms that belong to the same sense. For example, the
functionplay associated with a sports facilityight have different senses in a database,
play for recreation anglay for competition. For any entity class that has the function
play (e.g.,sports arenastadium park, andsports field, the knowledge base also
identifies the sense of the word so the model can find the synonyplaydior the

respective sense.

Since the MD model is based on the comparison of distinguishing features, the
lack of distinguishing features in an entity class’s definition produces a similarity value
with respect to any other entity class in the ontology equal to zero. This is a common
situation for entity classes that are general concepts located at the top level of the
hierarchical structure, such astity andnatural entity Although this can be seen as a
drawback of the MD model, the model's strength is the capability to assess the
similarity among concepts located at or below Rosch’s (Rosch 1975) basic level of a
hierarchical structure, such as the concepts found in spatial catalogs (e.g., Spatial Data
Transfer Standard (USGS 1998)). This characteristic of the MD model is in contrast to
previous models based on semantic distafRadaet al. 1989). While semantic

distance can determine similarity among general concepts of a hierarchical structure, it
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usually assigns the same similarity value to any pair of entity classes that have a

common superclass.

3.3 Using the Matching-Distance Model

To experiment with the MD model, a prototype has been implemented in C++, and an
ontology with 257 entity-class definitions has been derived from two readily available
resources: the Spatial Data Transfer Stand8RITS) (USGS 1998) and WordNet
(Miller 1995). SDTS was adopted by the American National Standard Institute to
provide a common classification and definitions of spatial features used in processes of
spatial data transfer. It contains a set of entity types (approximately 200 standard terms
and 1300 included terms) and their corresponding attributes. Included terms in SDTS
can be either synonyms or subclasses. For this work, however, we assume all included
terms to be subclasses, which increases the ontology without affecting the similarity,
because included terms hold the same definitions as their standard term. SDTS narrows
the domain of the ontology in the MD model. Thus, SDTS gives the list of the entity

classes to be defined, their partial definition of is-a relations, and their attributes.

WordNet is an on-line lexical reference system that was developed by the
Cognitive Science Laboratory at Princeton University. WordNet organizes concepts in
sets of synonyms (synsets) connected by semantic relations. It contains approximately
118,000 words organized into 90,000 sets of synonyms. These synonym sets are
semantically interrelated depending on their syntactic category (Table 3.3). The
application of WordNet in an information system is found in areas such as text retrieval
(Richardson and Smeaton 1995, Voorhees 1998), word sense disambiguatiore{Basili
al. 1997, Leacock and Chodorow 1998), and conceptual modeling (Burg and Riet
1998). This work extracts synonym sets as well as hyponyny and meronymy relations

from WordNet's definitions to complement definitions of entity types in SDTS.
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Semantic Relation Syntactic Category Example

Synonymy nouns, verbs, adjectives, adverbs building - edifice

Antonymy adjectives, adverbs (nouns, verbs) bright - dark

Hyponymy nouns hospital - building

Meronymy nouns apartment - apartment
building

Troponomy verbs march - walk

Entailment verbs buy - pay

Table 3.3: Semantic relations in WordNet (Miller 1995).

To complete the entity class definitions, functions are derived from verbs
explicitly used in the natural-language descriptions of entity classes, augmented by
common sense. A partial hierarchical structure of the ontology that was created is
shown in Figure 3.3. The hierarchical structure includes is-a and strict part-whole
relations. It presents a case of polysemy involving the teamk (i.e.,bankas a
building andbankas a financial institution) and cases where an entity class has more
than one superclass, such as the casepafldng area which is afacility and alot.

Figure 3.4 shows the complete description of the entity cdaadium i.e., its

distinguishing features, semantic relations, and synonyms.
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Figure 3.3: Portion of the ontology derived from the combination of SDTS and
WordNet.
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Figure 3.4:  Definition of atadium

By default the MD model assigns the same weight to each type of
distinguishing feature. Figure 3.5 shows an example of a similarity evaluation with

default settings betweerstadiumand the rest of the entity classes in the ontology.
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Figure 3.5:  Results of the similarity betwestadiumand a portion of the WordNet-
SDTS ontology.
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Two characteristics of the MD model are (1) the asymmetric evaluation of
entity classes located at different levels in the hierarchical structure and (2) the use of
weights for the relative importance of distinguishing features. Table 3.4 shows some
results that demonstrate the asymmetric evaluation of the MD model. For example,
sports arenandtheaterare subclasses btiilding at the same level in the hierarchical
structure, so the similarity evaluation between them is symmetric. The evaluations
betweensports arenaandbuilding or betweentheaterandbuilding, however, are
asymmetric. For all evaluations that go from a class to a superclass (i.ethé&atar
to building) the similarity value is greater than the similarity value from the superclass
to the class (i.e., frorhuilding to theate)). In the case of part-whole relations, Table
3.4 shows that the similarity value from the whole to its part (e.g., tagiumto
athletic field is greater than the value from the part to the whole (e.g., dtbiatic
field to stadium). Bear in mind, however, that this situation may not always occur,
since there is not a general relationship between the distinguishing features of entity

classes related by a part-whole relation.
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Athletic field 1.00 0.83 0.17 0.12 049 0.70 0.16
Ballpark 0.84 100 0.16 0.10 0.49 0.74 0.14
Building 0.18 0.16 1.00 0.10 0.48 0.30 0.44
Road 0.17 0.18 0.10 1.00 0.10 0.14 o0.10
Sports arena 052 050 0.67 010 1.00 0.78 0.58
Stadium 0.74 0.74 030 0.12 0.74 1.00 0.38
Theater 0.19 0.17 0.67 0.10 0.58 0.42 1.00

Table 3.4: Example of similarity values for a subset of the WordNet-SDTS
ontology.

The sensitivity of the model to the distinguishing features’ weights is shown by
performing a set of evaluations that considers only one type of distinguishing feature
(i.e., only parts, functions, or attributes) and the combination of these types (i.e., parts-
attributes, parts-functions, functions-attributes, and parts-functions-attributes). Table
3.5 shows the evaluation with different sets of weights betwsgdaimand a portion

of the ontology.
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Weights

W, W w,

Athletic field
Ballpark
Building
Road

Sports arena
Theater

100% 0% 0% 0.33(4) 0.50(2) 0.22(5) 0.00(6) 0.60(1) 0.50(2)
0% 100% 0% 1.00(1) 1.00(1) 0.00(4) 0.00(4) 1.00(1) 0.00(4)
0% 0% 100% 0.90(1) 0.71(2) 0.67(3) 0.36(6) 0.64(4) 0.64(4)
50% 50% 0% 0.67(3) 0.75(2) 0.11(5) 0.00(6) 0.80(1) 0.25(4)
0% 50% 50% 0.62(1) 0.61(3) 0.44(5) 0.18(6) 0.62(1) 0.57(4)
50% 0% 50% 0.95(1) 0.86(2) 0.33(4) 0.18(6) 0.82(3) 0.32(5)

33% 33% 33% 0.74(1) 0.74(1) 0.30(5) 0.12(6) 0.74(1) 0.38(4)

Table 3.5:  Similarity evaluations with different distinguishing features’ weights
between astadium and a portion of the ontology. (Numbers in
parentheses denote the rank in each horizontal combination.)

Table 3.5 indicates that important variations may occur, either in absolute
values or ranks, as a result of different weights for distinguishing features. When an
ontology has been designed for a specific application, distinguishing features in the
entity class definitions are already selected as important for the application. Thus, we
could have a good approximation of the similarity assessment by assuming that
distinguishing features are equally important. When an application-independent
ontology is used, in contrast, distinguishing features may be more or less important for

some particular application.
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3.4 Summary

The basic characteristic of the MD model is the combination of two different
approaches to similarity assessment: (1) a feature-matching process and (2) a semantic-
distance determination. This model for semantic similarity has a strong basis in
linguistics. It introduces synonyms and different meanings (senses) in the use of terms.
The model also provides a first approach to handle part-whole relations in the
evaluation of semantic similarity. It defines a semantic-similarity function that is
asymmetric for classes that belong to different levels of generalization in a hierarchical
structure. This model organizes information about distinguishing features of an entity
class into parts, functions, and attributes such that different relevance weights can be
assigned to them. The next chapter discusses context as the determinaning factor of
weight definitions and proposes two approachesommonality and variability to

obtain weights for distinguishing features.
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Chapter 4

Integrating Context into the Similarity Model

Context is an important aspect for such diverse areas as natural language processing
(NLP), knowledge-based problem solving, database systems, and information retrieval.
Despite this recognition, the meaning of context in information systems is usually left
to the user’s interpretation and its role may vary among different domains (Akman and
Surav 1996). For NLP, context has a sense-disambiguation function (Leech 1981) so
that otherwise ambiguous statements become meaningful and precise. Studies in NLP
analyze the meaning of words within either a topical context or the local context of a
corpus (Leacock and Chodorow 1998). Knowledge representation involves statements
and axioms that hold in certain contexts; therefore, context determines the truth or
falsity of a statement as well as its meaning (McCarthy 1987). For knowledge-based
problem solving, context is usually defined as the situations or circumstances that
surround a reasoning process (Aimeur and Frasson 1995, Dojat and Pachet 1995,
Turner 1998). Recent studies on data semantics and interoperability have stressed the
importance of context to describe data content. In this domain, context is the
knowledge needed to reason about another system (Ouksel and Naiman 1994), the
intentional description of database objects (Kashyap and Sheth 1996), and the extent of
validity of an ontology (Wiederhold and Jannink in press). For information retrieval,

context provides a framework for well-defined queries and, therefore, improves the
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matching process between a user’s query and the data stored in a database (Hearst

1994).

Following the idea of Naive Physics (Hayes 1990) and Naive Geography
(Egenhofer and Mark 1995), it is possible to derive common sense definitions of entity
classes such that entity classes are described by their essential properties. Using these
common sense definitions, we could expect to obtain a good approximation of the
similarity assessment among entity classes by considering the essential properties as
equally important. Psychologists and cognitive scientists, however, have pointed out
that some features may be more important than others depending on context
(Krumhans| 1978, Tversky 1977), since the classificatory significance of features

varies with the set of entity classes under consideration.

This chapter presents an integration of contextual information into the MD
model. The first section describes the thesis approach to modeling context through a
user’s intended operation. Subsequently, two approaches to determining relevant

features are presented and explained with examples.

4.1 Modeling Context

Similar to the analysis of word meaning within statements (Leaeb@&k. 1993),
similarity assessment is analyzed within a domain of discourse. In experimental studies
of how people assess similarity, the domain of discourse is the set of entities that the
subject observes and compares. Using information systems, however, it is unlikely that
users could know the set of entities against which their queries will be compared. This
work defines the domain of discourse (application domain as the set of entity classes
that are subjects of the user’s interest. Since a domain of discourse may change among

applications, the similarity assessment changes as well.
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This work derives the domain of discourse from the user’s intended operations.
The user’s intended operations may be abstract, high-level intentions (e.g., “analyze”
or “compare”) or detailed plans (e.g., “purchase a house”). From a linguistic point of
view, the user’s intended operations are associated with verbs that denote actions.
Verbs alone, however, may not be enough to completely describe operations, since
they can change the operations’ meaning depending on the kinds of noun arguments
with which they co-occur (Fellbaum 1990). For example, different senses of the verb
play areplay a role play the flute andplay a gameHence, verbs together with their

noun arguments describe the underlying goal for the use of the similarity assessment.

Contextual information() is specified as a set of tuples over operatiopg (
associated with their respective noun argumeasfs (Equation 4.1). The nouns
correspond to entity classes in the MD model, while the operations refer to verbs that

are associated as methods to these classes.

C={(op{e,K .6})K ,(op, {&.K .6})) (4.1)

In the specification of context an entity-class argument may be empty; if no,
further explanation is needed to describe the intended operation. Since the context
specification uses operations and entity classes, the knowledge base used by the entity-
class representation of the MD model can be extended to represent the components of
the context specification. For example, if a user wants to analyze some on-line datasets
with the purpose of purchasing a cottage, she would describe her intention by
C = <(purchase {cottagg)>. By using the hierarchical structure of the knowledge
base, an operation's argument can be expressed at different levels of generalization. For
example, a user may be looking &ports facilitiesand in such a case, she can specify
C = <(search {sports facility)> or C = <(search {athletic field bowl park tennis

court, sports arenastadiun})>. Another user’s intention can be described by using

68



operations without arguments, suchCas <(play, {})>. In this case, the operatiqriay
corresponds to a common function that characterizes the entity classes the user is

looking for.

The context specification defines the domain of the application based on the
operations that characterize the entity classes and the semantic relations among entity
classes. These semantic relations provide a flexible way to describe context because the
specification of one entity class can be used to obtain other entity classes that are
semantically related. Following a top-down approach in the hierarchical structure of

interrelated entity classes the domain of the application is given by:

» entity classes whose functions correspond to the intended user’s operations,

* entity classes that are parameters of the operations in the context specification, and

» entity classes derived from a recursive search of parts and children of the entity

classes found in (1) and (2).

Like the topical context of word-sense disambigua{@ale et al. 1992), the
domain of the application helps to select among senses of a term with multiple
meaning (i.e., polysemous terms). Since the domain of the application is usually a
subset of the entire knowledge base, the contextual specification decreases the number
of entity classes that possess the same name. Unfortunately, this approach may not
distinguish polysemous terms that are semantically similar and belong to the same

domain of discourse.

4.2 Determining Feature Relevance

Tversky (1977) and later Goldstoee al. (1997) pointed out that the relevance of a

feature is associated with hoswvagnosticthe feature is for a particular set under
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consideration. The diagnosticity of features refers to the classificatory significance of
features, which is highly sensitive to the particular entity classes under consideration.
The previous section presented a method to derive the entity classes of interest for an
application (i.e., application domain). This application domain may or may not be the
set of entity classes that are compared in the similarity assessment. For example, a user
may be looking for places to play a sport and may use a stadium as the prototypical
entity to search in a database. In an information retrieval process, stadium will be
compared with other entities in the database, where these entities may be either inside
or outside the application domain. Based on the characteristics of the application
domain and the database, two different approaches to determining features’ relevance

arevariability andcommonality

4.2.1 Variability

The variability approach relates the relevance of a feature to the degree of the feature’s
informativeness, such that if a feature is shared by all entity classes of the domain, its
relevance decreases. For example, consider a small domain with buildings that differ in
their structural characteristics, but have a common function (e.g., they all serve as sport
facilities). Based on this approach, the buildings’ structural characteristics are more

relevant for the similarity assessment than the buildings’ functional characteristics.

This approach defines weighted values for the similarity among parts, function,
and attributes &y, ,w;, and w, of Equation 3.1) by analyzing the variability of
distinguishing features within the application domain. In this sense, the type of
distinguishing features that presents greater variability is more important in the
similarity assessment than the type of features that do not contribute significantly to

distinguishing entity classes. The variability of a type of featife") is based on the
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converse of the frequency with which each distinguishing feature of this type
characterizes an entity class in the domain (Equation 4.8 lo; is the number of
occurrences of a feature in the entity class representatiaaghe number of entity

classes, antis the number of features in the application domain.
|
o
Pr=1-\ — 4.2
Zl o (4.2)
The final weightsw,, w, andw, (Equation 3.1) are functions of the variability

of a type of feature with respect to the variability of the other two types of features

(Equation 4.3a-c).

PV
w=— 4.3a
NI (4.32)

PV
W= (4.3b)

(P’ +P'+P)

PV

(4.3c)

W, = ——=——
(P’ +P'+P)

When the application domain has maximum variability, that is, no feature is
shared by entity classes or only one entity class is part of the application domain, the
relevance for parts, functions, and attributes are equally assigned. Similar results occur
without variability. In such a case, equal weights are assigned to the different types of

distinguishing features.

4.2.2 Commonality

The commonality approach associates the relevance of distinguishing features with the
feature’s contribution to the characterization of the application domain. When users

specify an application domain, they are implicitly classifying entity classes that are of
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interest to the application. These entity classes share some features that make them
subjects of interest. For example, when the user’s intention is to find a place to play a
sport, a greater weight for this type of distinguishing feature in the similarity
assessment results in higher similarity values among those entity classes where people

canplay a sport

This approach defines weighted values for the similarity among parts,
functions, and attributesu(,, w, andw, of Equation 3.1) by analyzing the frequency
with which each distinguishing feature type characterizes an entity class in an
application domain, that is, the converse of the measure given by the variability
approach (Equation 4.4). High frequency is translated into a high relevarRe.dns
the number of occurrence of a feature in the entity class definitaaghe number of

entity classes, ands the number of features in a domain of discourse.
Lo
Pe=y L =1-P' 4.4
> - =1-FR (4.4)
As in the variability approach, the final weiglits, w, andw, in Equation 3.1

are functions of the frequency of occurrence of a type of feature with respect to the

frequency of occurrence of the other two types of features (Equation 4.5a-c).

PC
A — 4.5a
p (P;: + Pfc + P:) ( )
PC
L (4.5b)
(P + P +F)
PC
(4.5¢)

waz—a
(P + P +P)
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A special case occurs with maximum variability; that is, when each
distinguishing feature characterizes only one entity class. In such aRjade’, and
P! are zero and the model assigns equal importance to parts, functions, and attributes.
The same weights are also obtained when either an application domain has only one
entity class or entity classes share all features. When there are no common features
among the entity classes, the similarity values are zero, regardless of the assignment of
weights. Likewise, when features are shared by all entity classes, the similarity values

are 1.0, independently of the assignment of weights.

4.3 Using Contextual Information with the Matching-Distance Model

To illustrate the integration of context into the MD model, this section presents
different specifications of context with their corresponding results of the MD model.
These examples of context specification use the ontology derived from SDTS (USGS

1998) and WordNet (Miller 1995) described in Section 3.3.

The evaluations take a set of entity classes and apply a number of similarity

assessments that use different context specifications. The scenarios are the following:
» Context-1. The user’s intention is to play a sport.

» Context-2. The user’s intention is to compare downtowns.

» Context-3. The user’s intention is to assess a transportation system.

The first scenario (Context-1) represents a domain of entity classes where a
person can play a sport. The contextual information for this scenario could be
expressed by specifying that all entity classes in the domain have the fuslaion
(Figure 4.1), that is, an intentional specification of context, or by listing all the entity

classes in the ontology that satisfied this condition (Figure 4.2), that is, an extensional
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specification of context. What matters is to obtain an application domain with all the
entity classes that are in fact of interest for the user. The latter context specification is
more tedious, and in some cases, impractical. It may be, on the other hand, a more
accurate specification of the user’s interest than an intentional context specification. A
portion of the application domain derived from the intentional context specification is
shown in Figure 4.3. In this case, the application domain corresponds to 3% of the

entire ontology.

-ﬁ Ontology Edit Similarity Legend Window Help
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Figure 4.1:  Intentional specification of context for a user who searches for a place to
play a sport.
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Figure 4.2.  Extensional specification of context for a user who searches for a place
to play a sport.

In the same way that Context-1 was specified, Context-2 and Context-3 were
defined in an intentional manner. The specification is done with a general operation
(i.e., compareandassesdor Context-2 and Context-3, respectively) and a general
entity class whose subclasses or parts are included in the application domain (i.e.,
downtown and transportation systenfior Context-2 and Context-3, respectively).
Figures 4.4 and Figure 4.5 present partial application domains for both context
specifications. The application domain in the case of Context-2 represents 30% of the

ontology and in the case of Context-3 7% of the ontology.
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Figure 4.3:  Application domain for a user who searches for a place to play a sport.
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Figure 4.4:  Application domain for a user who compares downtowns.
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Figure 4.5:  Application domain for a user who assesses a transportation system.
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Table 4.1 displays the sets of weights for parts, functions, and attributes that
result from the definition of the three scenarios and using the variability and
commonality approaches. An obvious observation is that a high weight in the

commonality approach yields a low weight in the variability approach.

Commonality Variability
Context w, w w w, w w,
1 9% 62% 29% 46% 19% 35%
2 10% 13% 77% 36% 35% 29%
3 4% 29% 67% 45% 35% 20%

Table 4.1: Weights (%) for different specifications of context based on the
commonality and variability approaches.

Table 4.2 presents results of the similarity evaluation betwetsadaumand a
portion of the entire ontology based on the commonality and variability approaches.
While variability highlights differences that decrease the similarity values,
commonality emphasizes likelihood that increases the similarity values. Although
absolute values are likely to vary with different approaches to weight determination,
relative values in terms of ranks could remain invariable. When determining ranks, if
ties occur, each tied rank is assigned the mean of the rank positions for which it is tied
(Daniel 1978). For example, if the three most similar entity classes have the same

value, the rank assigned to these entity classes is 2.

Table 4.2 shows similarity in terms of absolute values between 0 and 1 and
Figure 4.6 presents the results in ranks. These results indicate that similarity values
vary not only in terms of absolute values, but also in terms of ranks. Figure 4.6

suggests that changes occur depending on context specification as well as in terms of
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approaches to weight determination. In terms of weight determination, the
commonality approach produces more variation in the ranks than the variability
approach. Overall, drastic changes are rare, and it is still possible to distinguish the
group of most similar entity classes. In the next chapter, a human-subject experiment is

used to evaluate the sensibility of the MD model with respect to people’s judgments

under different contexts.

Entity Context-1 Context-2 Context-3
c v c v c v
Sports arena 0.86 0.69 0.68 0.75 0.74 0.75
Athletic field 0.91 0.66 0.85 0.73 0.90 0.68
Theater 0.23 0.45 0.54 0.36 0.45 0.35
Ball park 0.88 0.67 0.73 0.74 0.79 0.72
Commons 0.43 0.29 0.52 0.32 0.53 0.27
Museum 0.20 0.36 0.50 0.29 0.42 0.27
Tennis court 0.86 0.48 0.77 0.59 0.84 0.52
Transportation 0.10 0.07 0.15 0.06 0.13 0.04
Library 0.19 0.31 0.48 0.25 0.41 0.22
Building 0.21 0.34 0.54 0.27 0.46 0.23
House 0.18 0.30 0.46 0.24 0.39 0.21
Table 4.2: Example of similarity values betweestadiumand a portion of the

WordNet-SDTS ontology for three different scenarios of contextual

information. (Symbolc denotes commonality and symboldenotes
variability.)
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sensitivity to the set of entity classes defined in the ontology. This sensitivity becomes
more important for a narrow application domain, where the omission of one entity

class may affect the determination of common and different features of the application
domain. To check this sensitivity, evaluations that use the specification of Context-1 (a

narrow application domain), but with slightly different ontologies, are performed. The

Similarity Ranks

ontology for different context specifications and different approaches to

weight determination.

A characteristic of the commonality and variability approaches is their
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first case contains the default ontology that contains seven entity classes in the
application domainsports arenastadium athletic field swimming poqlgolf course
ballpark, andtennis courtSubsequent cases eliminate one by one entity classes of the
ontology to reduce the application domain (spgrts arenagolf coursefennis court

and athletic fieldare eliminated). Table 4.3 shows the changes of weights for parts,
functions, and attributes based on the commonality and the variability approaches and

using subsets of the default application domain.

Commonality Variability
Case  Application Domain w, w w w, w w,
1 Default 9% 62% 29% 46% 19% 35%
2 (1) —sports arena 8% 57% 35% 48% 20% 32%
3 (2) —golf course 12% 52% 36% 47% 22% 31%
4 (3) —tennis court 15% 52% 33% 44% 23% 33%

5 (4) —athletic field 19% 56% 25% 37% 27% 36%

Table 4.3: Weights based on the same context specification and different
ontologies.

The main trend in the weights of distinguishing features for Context-1 remains
stable across different ontologies, that is, commonality highlights functions whereas
variability highlights parts. Although changes occur depending on the set of entity
classes in the ontology, the model is robust enough to capture the main property of the
application domain and allows a systematic way to determine the features’ relevance

for similarity assessment.
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4.4 Summary

The feature-distance model has been complemented with contextual information.
Context is defined as the set of tasks and corresponding entity classes to which the
tasks apply. The set of entity classes that belong to the application domain reduces the
problem of word-sense ambiguity, since only these entity classes are considered in the
similarity assessment. The variability or commonality of the entity class features that
belong to the application domain determines the weights for the similarity of parts,
functions, and attributes. The next section describes a human-subject experiment that
tests whether the results given by the MD model are compatible with people’s

judgments.
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Chapter 5

Assessment of the Matching-Distance Model

A model for similarity assessment is useful when it gives results that match people’s
judgments. Such cognitive evaluation of a computational model cannot be
accomplished without comparing the model’s results with people’s judgments of
similarity. The cognitive plausibility of the MD model is analyzed with a human-
subject experiment whose design addresses the context dependence of similarity
evaluations. The following sections describe the experiment and present subjects’
responses. Subsequently, an evaluation of the MD model is based on the statistical

analysis of these results.

5.1 Experimental Design

The experiment consisted of five questions with sets of entity classes that subjects were
asked to rank according to their judgments of similarity ( See Appendix). Four of the
five questions (Questions 1-4) involve entity classes of a constructed kind, such as a
building and a road. The last question addresses the similarity assessment among large
geographic entities, such as a lake, a desert, and a forest. In this sense, the experiment
attempts to capture any divergence in the similarity assessment of objects of a different

kindd] natural vs. constructed.
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The first three questions ask users to judge the same set of entity classes, but
using different contextual information. Question 1 represents the default case of
similarity assessment with no explicit contextual information. Questions 2 and 3
specify context defined as desired operations (i.e., “play a sport” and “compare
constructions,” respectively). Question 4 uses a set of transportation-type entities,
which becomes the contextual information of this question. As in the first question, the
last question assumes the default case of a similarity assessment (i.e., no explicit

contextual information).

In the MD model contextual information that is described as a natural-language
statement is mapped onto a context specification. Table 5.1 shows the questions and
the derived context specifications in the MD model. This mapping is manual, and
future work should explore the automatic extraction of contextual information from
natural-language statements. Although we assume that no context is given in Questions
1 and 5, contexts could be extracted in terms of the entity clatsesandentity,
respectively. The term@aceandentity, however, are used in a generic way such that

no particular application domain is implied.
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Question  Natural-Language Statement MD’s Specification

1 How similar is astadium(anathletic field C=<>
to the following places?

2 How similar is astadium(anathletic field C = <(play*,{})>
to the following places if you want fgay a
sport?

3 How similar is astadium(anathletic field C=<(compare,
to the following places if youwcompare {constructiorn)>
construction®

4 How similar is atravelway(path) to these C=<(compare,
othertransportation-typeentities? {transportatiori*})>

5 How similar is daketo these other entities? C=<>

Table 5.1: Contextual information asnatural-language statement and a formal

specification in the MD model. (Symbol * denotes the sense of playing
a sport and symbol ** denotes the sense of a transportation system.)

We can characterize questions by comparing the set of entity classes that are
actually compared and the application domain that is derived from the context
specification in the MD model. This comparison may yield some interesting
conclusions, since the sets of entity classes that are actually compared in each question
have also been described as contextual information that may influence the similarity
evaluations (Krumhansl 1978, Tversky 1977). For instance, Question 2 contains
ballpark (i.e., an entity class in the application domain) lo@ry (i.e., an entity class
outside of the application domain). Among all entity classes evaluated, Question 2
includes 50% of entity classes that are outside of the application domain, Question 3
has 45% of entity classes that are outside of the application domain, and Question 4

contains only entity classes in the application domain.
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In order to keep the experiment short and check asymmetric evaluations, two
guestionnaires were prepared (Survey A and Survey B) with the same set of entity
classes, but with different targets for the similarity evaluations. These different targets
are related by either an is-a relation or a part-whole relation. For example, Questions 1-
3 in Survey A ask for entity classes that are similar stadium while Questions 1-3
in Survey B ask for entity classes that are similar tathtetic field which is part of a
stadium Likewise, Question 4 in Survey A asks for entity classes that are similar to a
travelway whereas Question 4 in Survey B asks for entity classes similapdtha

which is a subclass ¢favelway

Each entity class used in the experiment has its corresponding definition in the
ontology of the MD model. This ontology was derived from the combination of
WordNet (Miller et al. 1990) and SDTS (USGS 1998) (Section 3.3). Since the goal of
the experiment is to evaluate the similarity model rather than the entity class
definitions, subjects were asked to judge similarity based on the set of definitions that

were provided to them during the experiment and used by the MD model.

Seventy-two students (forty-three female and twenty-nine male) of an
undergraduate English class at the University of Maine participated in the experiment.
A group of thirty-seven students (twenty female and seventeen male) answered Survey
A and a group of thirty-five students (twenty-three female and twelve male) answered
Survey B. For all subjects U.S. English is their mother tongue and their ages range
from 18 to 36 years old. Subjects were paid for participating in the experiment ($2.00)

and answered the questions at the same time and in less than twenty minutes.
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5.2  Subjects’ Responses

To avoid ambiguities, incomplete answers were eliminated. Thirty-three completed

guestionnaires were considered for Questions 1, 2, 4, and 5 in each survey. For
Question 3 there were 32 completed answers. The subjects’ answers varied in the
number of ranks used to classify entity classes. Most of them, however, assigned to
each entity class a different rank. To compare subjects’ answers, tied ranks were
normalized by the mean of the ranks for which they tie, assuming a number of ranks

equal to the number of entity classes compared (Table 5.2).
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Original rank 1 1 2 3 3 3 4 4 4 5
Normalizedrank 15 15 35 35 6 6 6 9 9 9 11

Table 5.2: An example of the normalization of subjects’ responses.

The normalized answers were averaged and compared against the MD model.
We found no significant evidence for differences based on gender, so the following
results consider the total of responses for each survey. Figures 5.1 and 5.2 show the

answers to Questions 1-3 of Survey A and Survey B, respectively.
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For the ranking of entity classes there is less variation across the answers to
Questions 1-3 in Survey B than there is across the answers to Questions 1-3 in Survey
A. While the three most similar entity classes in Survey A are the same independently
of context, large variations exist for ranks higher than rank 4. In Survey B, in contrast,

variations of ranks are confined between rank 5 and rank 9.

Table 5.3 presents the subjects’ answers to question 4 in Survey A and Survey
B. In both surveysoad was the most similar entity class to eithdravelwayor a
path. This was an unanticipated result, sipeghwas explicitly defined as a subclass
of travelwaythat is used for the “passage of persons or animals on land,” whereas a

road is also a subclasstodvelway,but used for the “passage of vehicles on land.”

Figure 5.3 corresponds to the subjects’ responses to Question 5 in Survey A and
Survey B. As expected, answers in Survey A and Survey B were very similar. Small

variations are due to swapping of ranks 3-4 and 5-6.
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Rank Survey A: Question 4 Survey B: Question 4

1 road road

2 highway travelway

3 path bridge

4 railway highway

5 bridge railway

6 transportation transportation
7 subway station subway station
8 airport * terminal

9 terminal * port

10 port airport

Table 5.3: Answers to Question 4 in Survey A and Survey B. (Symbol * denotes

Entity Classes

tied ranks.)

Similarity Ranks
o 1 2 3 4 5 6 7 8 9 10 11

B Survey A

I Survey B

beach e
E—— ]
bridge C—

mountain
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Figure 5.3:  Subjects’ responses to Question 5 in Survey A and Survey B.
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5.3  Analysis

Four research hypotheses were formulated and statistically tested. While the first two
hypotheses compare answers among subjects, the last two hypotheses compare

subject’s answers with respect to the MD model.

Hypothesis 1: Answers are associated.

The hypothesis is tested with Kendall's coefficient of concordddder multiple
rankings (Daniel 1978). The coefficieitleads to a non-parametric test; that is, it is a
valid test under very general assumptions. The valW isf a measure of association
whose extreme values 0 and 1 mean no association and perfect association,
respectively. For situations with ties, the test statistic is given in Equation 5.1, where

is the number of sets of rankingsis the number of objects that are rankgds the

sum of the ranks assigned to jtieobject, and® is the is the number of observations in

any set of rankings tied for a given rank.

122_‘_ R? - 3mn(n +1)>2
W: =1
m’n(n® -1) - mZ(t3 -t)

(5.1)

For large samples (n > 30), a chi-square value is computed (Equation 5.2) and
compared for significance with tabulated values of chi-square nvithdegrees of

freedom.

X? =m(n-DW (5.2)

This test uses the normalized subjects’ responses such that each entity class in a

question has 33 or 32 different ranks. The test stati$tand its correspondinyg®
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value for each question in Survey A and Survey B are shown in Table 5.4. Based on
the corresponding degrees of freedom, the research hypothesis is accepted with a
probability of Type | equal to 0.005; that is, a probability of 0.005 that we accept the
hypothesis when it is false. The large number of answers makes the test statistically
significant; however, the values W for Questions 3 and 4 are small (under 0.5),

which means less agreement in these answers.

Questions in Survey A Questions in Survey B

1 2 3 4 5 1 2 3 4 5

W 0.70 0.76 037 045 064 069 064 033 045 0.70

X? 230 252 120 134 210 226 210 107 135 231

Table 5.4:  Test statistioW and the corresponding® valuefor each question of
Survey A and Survey B.

The standard deviations of the normalized rankings of each question in Survey
A and Survey B (Figures 5.4 and 5.5) are an indication of whether people’s judgments
are more associated with some particular ranks. For instance, we expected that people
would agree on the first and last ranks, but would have discrepancies in the similarity
evaluations of the middle ranks. Figures 5.4 and 5.5, however, show that the agreement
across ranks does not have a clear pattern. There is only a slight tendency to have more
agreement among the first four ranks. As the coefficient of concord&medicates,

Questions 3 and 4 in both surveys have the largest standard deviations.
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Hypothesis 2: People’s judgments of similarity are context dependent.

This research hypothesis assumes that if people’s judgments of similarity depend on
context, their answers should vary across context. To test the hypothesis we compare
the subjects’ answers to questions with the same set of entity classes and different
contextual information; that is, we compare Questions 1-3 of each survey. Since the
same subject answers the three questions, we assume that his or her answers should be
in perfect agreement to reject the hypothesis of context dependence. The normalized
responses were averaged and this average was compared for each ranked entity class
across different contexts using Kendall’'s coefficient of concord@hdéhe value oW

for Survey A is 0.88 and for Survey B is 0.96. These valu&¥ afe high and suggest

that the ranks are associated with a probability greater than 0.99 in both surveys.

To make sure that the similarity among contexts could not affect the result of
the test statistic, we compare only the two questions with explicitly different context
(i.e., Questions 2 and 3). Question 1, without explicit contextual information, could be
a default context that is implicit in the contextual information of other questions. For
comparing two sets of rankings, the test statistic is the Spearman rank correlation
coefficient (Gibbons 1976). Equation 5.3 gives the expression of the Spearman
coefficient under the presence of ties, where the number of objects that are ranked,

D is the difference between paired ranks, arahdv are the numbers of observations
in each set of rankings that are tied for a given rank. The test statistic is also a measure
of association. As such should be equal to +1 when there is a perfect direct
relationship between rankings.

n(n-1)-6% D’ -6(u +Vv)

r,= , , with
Jn(n® -1) —12u /n(n? -1) -12u
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u :(iugT;Zi) and v :(2%21) (5.3)
The values of in Survey A and Survey B are 0.80 and 0.95, respectively. Like
the values oW, values ofr are high, which suggests that ranks are associated with a
probability of accepting the association when it is false equal to 0.01. Such a high level
of agreement suggests that people would give more or less the same evaluation under

different contexts, which is against the hypothesis.

Hypothesis 3: People’s judgments of similarity and results of the MD model
with default weights are correlated.

This test compares people’s judgments of similarity with the results of the model,
assuming that distinguishing features are equally important and people’s judgments are
independent of context. The comparison is based on the average of the normalized
responses that were given to entity classes in each question. The average of the
normalized responses is used since, by the first research hypothesis, we found that
responses were associated. This hypothesis is tested with the Spearman rank
correlation coefficient (Equation 5.3). The test statistior each question is shown in
Table 5.5. All values of are over 0.75, which supports the hypothesis that people’s
judgment and the MD model are associated with a probability that accepting the

hypothesis when it is fail 0.01.

Question in Survey A Question in Survey B

1 2 3 4 5 1 2 3 4 5

096 083 09 090 078 092 087 090 0.88 0.86

Table 5.5: Spearman rank correlation coefficients between subjects’ responses and
the MD model with default weights.
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Hypothesis 4: The correlation between people’s judgments and the
MD model improves when context is
considered.

This test uses the same approach of the evaluation of hypothesis 3, but considering
only questions with explicit contextual information (i.e., Questions 2-4). The goal is to
compare the correlation between the subjects’ responses and the MD model when
weights of distinguishing features are calculated based on contextual information. The
correlation of the results is calculated with the Spearman rank correlation coefficient
(Equation 5.3). Table 5.6 shows that all values,@fre high, which represents a high

association between the subjects’ answers and the computational model.

Default Commonality  Variability
Question 2 A 0.83 0.85 0.68
B 0.87 0.87 0.88
Question 3 A 0.95 0.87 0.96
B 0.90 0.87 0.91
Question 4 A 0.90 0.78 0.96
B 0.88 0.84 0.91
Table 5.6: Spearman rank correlation coefficients between subjects’ responses and

the MD model with different approaches for weight determination.

The commonality and variability approaches have opposite effects on the
results. While one of the approaches increases the correlation, the other one decreases
it. The default setting and the weights derived from the variability approach in

Question 3 have no significant difference. The correlation between people and the MD
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model for Question 2 in Survey B has no significant difference across contexts. The
greatest improvement of the correlation is found in Question 4 when the variability

approach is used for the determination of the weights of distinguishing features.

Another observation from Table 5.6 is that a wrong strategy for weight
determination may decrease more strongly the correlation than a right strategy may
increase it. For instance, in Question 4 of Survey A the commonality approach
decreases by 13% the correlation between the subjects’ answers and the default
evaluation of the MD model. The variability approach for the same question, in

contrast, increases the correlation by 7%.

In summary, the results support the thesis hypothesis stated in Chapter 1 that
the model matches people’s judgments. The model can better represent people’s
judgments when context and the right approach for weight determination are
considered. In general, the experiment has suggested that the variability approach
produces a better correlation between the computational model and the subjects’
answers when context specifies a particular type of entity classes. The commonality
approach, in contrast, works well for context specifications based on particular

functions of the entity classes.

54 Discussion

Previous work on semantic similarity has also applied human-subject experiments to
determine the effectiveness of computational models. The experiments found a
correlation of 0.60 using a semantic distance approach, 0.79 using an information
content approach, and 0.83 using a combined distance approach (Jiang and Conrath
1997, Resnik 1999). Our human-subject experiment is not comparable to these

experiments, because it has focused on a narrow domain, spatial entity classes, and has
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considered contextual information for the similarity assessment. In addition, while
most previous experiments evaluate similarity among quite different concepts (e.g., car,
brother, coast, and journey), our experiment uses entity classes that are semantically
related (e.g.pallpark, stadium andathletic field to study the performance of the

model at a detailed scale.

The results of the human-subject experiment support the use of the MD model
for semantic similarity among entity classes. Correlation between the model and the
subjects’ answers was 0.78 in the worst case and 0.96 in the best case. An important
observation is that although subjects’ responses are associated, the degree of
concordance among subjects’ answers is unsatisfactory (0.33 — 0.76) when compared
to previous experiments on semantic similarity (e.g., 0.90 in Resnik’'s (1999)
experiment). This low degree of concordance may be due to the large number of entity
classes that were evaluated with respect to the same target and the use of entity classes

that are semantically related.

The experiment shows a small improvement in performance (6% in the best
case) when weights of distinguishing features were determined based on contextual
information. This improvement is still relevant since the results are nearing the
observed upper bound; however, the major determinant for the high correlation
between the MD model and subjects’ answers seems to be the correct identification of
distinguishing features of entity classes. For example, an important difference between
the model and subjects’ answers was the least similar entity clasake #hile the
model assigns lbridge as the least similar entity class, subjects selecti$artas the
least similar entity class to lake. This suggests that not only the existence of a

prototypical feature, but also the negation of this feature may affect considerably the
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similarity assessment. In this example, a characteristiadetartis the lack of water,

whereas water is the common feature of all entity classes that are similakéo a

In Question 4 subjects identified@ad as the most similar entity class tpath
andtravelway This result suggests that although definitions that were given to subjects
indicate thattravelwayis a more general concept thpathandroad, subjects
consideredoad as the prototypical entity for the class transportation. This type of
result could lead to a further study that considers the classification of entities in terms
of prototypical characteristics rather than necessary and sufficient conditionsgtMark

al. 1999, Rosch 1973, Rosch and Mervis 1975).

5.5 Summary

This chapter has evaluated the performance of the MD model with a set of similarity
evaluations under different contexts. The experiment confirmed that the MD model
gives a good approximation of human subjects' similarity assessment among spatial
entity classes. A small improvement of the correlation was found when contextual
information was used to determine weights of distinguishing features. The experiment
suggests that the major factor for the high correlation of the computational model with
people’s judgments is the correct characterization of entity classes through
distinguishing features. Next chapter further expands the basic MD model to account

for definitions that come from different ontologies.
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Chapter 6

A Computational Model for Semantic Similarity Across Ontologies

With the increasing interest in providing seamless access to distributed information,
information integration has become more relevant. At the semantic level, information
systems that have different conceptualizations also differ in the intended models of
these conceptualizations, that is, in their underlying ontologies (Guarino 1998). Current
approaches to dealing with definitions that come from different ontologies make the
original ontologies subscribe to a shared ontology (Bishr 1997, Beight. 1994,
Colletet al. 1991, Fankhauser and Neuhold 1993, Weinstein and Birmingham 1999) or
create a global ontology from the integration of the existing ones (Berganeasahi

1998, Kashyap and Sheth 1998, Menal. 1996). Both approaches have limitations
when updates in the original ontologies occur, since changes may invalidate the
relationships between the existing ontologies and the global or integrated ontology.
They also require off-line user intervention for choosing the terms to integrate or for
formalizing the shared ontology; therefore, alternative methods are needed to allow

information access across ontologies.

This chapter introduces the Triple Matching-Distance model (MD3) that
connects existing ontologies through a concept of similarity. The MD3 model extends
the MD model to evaluate semantic similarity across independent ontologies. The

similarity model aims at finding the most similar entity classes across ontologies by
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using the common specification components of the entity class representations. Such a
similarity relation establishes anchors between ontologies while keeping each ontology
autonomous. It is a weak form of integration because it does not allow deep processes;
that is, it cannot be used for making inferences about the relationship among other
concepts in the ontology and cannot insure computations that require particular
components of the entity class representation. It provides, on the other hand, a
systematic way to detect what terms are the most similar and, therefore, what terms are
the best candidates for establishing an integration across the ontologies. This form of
integration is particularly useful in dynamic environments, such as the Internet, where

it would be unrealistic to force users to subscribe to a single, global ontology.

The following section discusses ontology mismatches that affect similarity
evaluations across ontologies. This discussion is followed by the strategy that is used to
extend the MD model and the presentation of the computational formalization of the
MD3 model. Subsequently, the performance of the MD3 model is tested with three
different ontologies: WordNet (Milleet al. 1990), the Spatial Data Transfer Standard
(USGS 1998), and a combination of WordNet and SDTS (Section 3.3).

6.1 Ontology Mismatches

Handling multiple ontologies at the same time requires solving discrepancies in the
definition of entity classes. To illustrate different scenarios when comparing two
ontologies, assume two entity clas€esand E, belonging to two independent

ontologies. The possible scenarios are:

* E, andE, are the same entity class that is represented in the same way,

* E, andE, are the same entity class that is represented in different ways,
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* E, andE, are different entity classes that are represented in the same way, and

* E, andE, are different entity classes that are represented in different ways.

Among these scenarios, the second and third scenarios represent ontology
mismatches. Vissaat al.(1998) gave a comprehensive description and classification of
ontology mismatches in terms of the two processes that are involved in the creation of
an ontology: (1) conceptualizing a domain and (2) explicating the conceptualization
(Table 6.1). This classification of ontology mismatches resembles the studies of
semantic heterogeneity in the database field (Ceri and Widom 1993, Kim and Seo
1991). Indeed, ontology mismatches are present in any form of conceptualization, such

as databases and knowledge bases.

This research compares representations of entity classes and defines a similarity
model in terms of the commonality among these representations. Since the semantics
of an entity class may be represented in more than one way, equivalent or similar entity
classes whose definiens are different are not detected, which estallidimieans
mismatch For example, consider an ontology in which entity classes are represented in
a hierarchical structure of is-a relations and a second ontology in which entity classes
are represented by attributes. Although both ontologies may include similar entity
classes, their representations are different and, therefore, comparing representations is

insufficient for identifying any similarity between them.
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Mismatches Description

Class Class and subclass distinction
Categorization Same class and different subclasses
Aggregation-level  Classes at different levels of abstraction

Relation Relation distinction
Structure Same classes with different relations

Attribute assignment Same attribute, but different classes

Conceptualization mismatches

Attribute type Same attribute with different instantiations
Concept-Term Same definiens for different terms and concepts
0
% Concept-Definiens Same term for different concepts and definiens
§ Concept Same term and definiens for different concepts
-% Term-Definiens Same concept with different terms and definiens
(@]
E" Term Same concept and definiens with different terms
Definies Same concept and terms with different definiens

Table 6.1:  Types of ontology mismatches. (Term refers to concepts’ names and
definiens refers to the elements that define concepts.)

6.2 Extending the Matching-Distance Model

The MD model applies over an ontology in which entity classes are semantically
interrelated in a hierarchical structure. This hierarchical structure corresponds to a
partially ordered set (Birkhoff 1967) in which any two entity classes can be linked by a
common superclass (i.e., least upper bound). In a cross-ontology evaluation, however,

there is no such common superclass between entity classes, which constrains the MD

104



model to environments with a single ontology. Since a common superclass in the MD
model is used for determining the relative level of abstraction of entity classes, it is
possible to obtain an approximation of this level of abstraction by considering that two
independent ontologies are connected by an imaginary and more general entity class

anything(Figure 6.1).

T anything* T
AT g \\\\‘
erltity entity type
depth o ect / l \
l building  stadium building ¥
' complex
artifact (b)
structure way
Y building  stadium Egmﬁ‘gx

(a)
Figure 6.1:  Connecting independent ontologies: (a) partial WordNet ontology and
(b) partial SDTS ontology. (Anything* denotes an imaginary root.)

Using this connected ontologyg, of the MD model (Equation 3.2) could be
expressed as a function of tlepthof the entity classes (Equation 6.1). The function
depti() corresponds to the shortest distance from the entity class to the imaginary root.
Equation 6.1 is equivalent to Equation 3.3 of the MD model, since the imaginary root
is the only common superclass between entity classes of independent ontologies.
Equation 6.1, however, results in values greater than zero and less than or equal to 0.5.

This range ofa excludes the extreme values (i.e., 0 and 1) that characterarel
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(1-a) of the MD model when an entity class is subsumed by another one, which is an
impossible situation for cross-ontology evaluations. For example, consider the
ontologies in Figure 6.1. While WordNet's hierarchy has multiple levels, SDTS defines
a large number of concepts that are unrelated, which yields a shallow hierarchy. When
building in WordNet puilding") is compared tduilding in SDTS puilding),
depth{building") is 5 whereaslepth{building’) is 2, such thatr (building”, building’) is

0.28.

O  depth(a)
depth(a®) < depth(b*
“tepth(a®) + depth(b°) epth(a) < depth(b™)
a(a®,b®) =

O depth(a®)
1- depth(a®) > depth(b?
5 depin(a) + dept(@y) P )T RNED

Different levels of explicitness and formalization of the ontologies influence the
way entity classes can be compared. This type of discrepancy in the entity class
representation becomes more important when comparing entity classes from different
ontologies. Indeed, similarity evaluations across ontology can only be achieved if the
representation of entity classes in those ontologies share some common components.
Since the MD model gives similarity values in terms of common and different
distinguishing features (i.e., parts, functions, and attributes), it is unable to assess
similarity in existing ontologies whose definitions exclude distinguishing features, such
as the SENSUS taxonomy (Knight and Luk 1994) and the UMLS Metathesaurus
(NLM 1997). An approach to overcome this limitation of the MD model is to consider
all components of the entity class representation such that the chance of having
common elements upon which similarity could be determined is increased. Section 3
discussed the main components of the entity class representation, which are

summarized in Table 6.2.
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Components Description

Definiendum Lexicon or synonym set that refers to an entity class
Definiens What is used to define an entity class
Semantic Relations Relations to other entity classes
Hyponymy Is-a relation (Smith and Smith 1977)
Meronymy Component-object and stuff-object relations (Winston
et al.1987)

Distinguishing Features  Property of the entity classes

Parts Structural elements
Functions What is done to or with instances of a class
Attributes General characteristics of a class

Table 6.2: Components of the entity class representations.

Besides features, lexicons and semantic relations are components of entity class
representations that can be compared. Comparing entity class lexicons is an
inconclusive form of similarity assessment, since lexicons can be different, but the
entity classes can still be semantically similar. An examphauilsling andhospital
which have only a few characters in common and, therefore, their string matching is
very low. Their semantic similarity, however, is fairly high. Inversely, entity class
lexicons can be the same whereas the entity classes are semantically unrelated
(polysemous terms). In a cross-ontology evaluation, comparing entity class lexicons
exploits the general agreement in the use of terms and detects equivalent terms that

likely refer to the same entity class. Thus, similar entity class lexicons can be used to
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detect equivalent or synonym entity classes across ontologies. As such it makes a

syntactic comparison and provides a very basic level of similarity assessment.

Unlike approaches that use semantic relations to determining semantic
distances in a hierarchical structure (Ratlal.1989), our approach treats the semantic
relations themselves as the subject of comparison. Since the types of semantic relations
are predefined, the interesting aspect of comparing semantic relations is whether target
entity classes (i.e., entity classes that are the subject of comparison) are related to the
same set of entity classes. If target entity classes are related to the same set of entity
classes, they may be semantically similar. For exarplspitalandhouseare related
to the same superclabsilding and they are semantically similar. Thus, comparing
semantic relations becomes a comparison betweesetmantic neighborhoodsf

entity classes.

The semantic neighborhood of an entity class in a semantic network is the set of
entity classes whos#istanceto the entity class is less than or equal to a specified
value, a value called thadius of the semantic neighborhood. THistancebetween
two entity classes in the semantic network is measured as the shortest path, which is
formed by the smallest number of undirected arcs that connect the entity classes. These
arcs represent subclass-superclass or part-whole relations.d&tareceis a metric
function that satisfies the property of minimality (i.e., the self-distance is equal to
zero), the semantic neighborhood of an entity class also contains this entity class.
Equation 6.2 gives a formal definition of the semantic neighborhdpdvherea® and
¢’ are entity classes in an ontologyr is the specified radius, amff) is the distance

between the two entity classes.

N(a®,r) ={c} suchthat Di d(a°,c’x r (6.2)
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The distance between two entity classes in the ontology is measured along the
shortest path, which is formed by the smallest number of undirected arcs that connect
the entity classes. These arcs represent subclass-superclass or part-whole relations.
Since distance is a metric function that satisfies the property of minimality (i.e., the
self-distance is equal to zero), the semantic neighborhood of an entity class also
contains this entity class. For example, the immediate semantic neighborhood (i.e.,
semantic neighborhood of radius 1)stadiumin a portion of the WordNet ontology
(Miller et al.1990) includes thetadium its superclasstructureand, its partathletic

field andsports arengFigure 6.2).

structure

i stadium buildin
building : complgx
» “a ;
. athletic sports  / <«—— Hyponymy relation
- field arena YROIVIY
- Meronymy relation

-------------- Neighborhood’s boundary

Figure 6.2: Example of the immediate semantic neighborhoodtafdiumin a
portion of the WordNet ontology.

Logically, there is an inverse relation between the similarity of semantic
neighborhoods and the determination of a semantic distance éRatla989). As the
semantic distance increases between entity classes, the semantic neighborhood
becomes less similar. Unlike semantic distance, however, semantic neighborhood does

not require a connecting path between entity classes.
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Comparing all components of the entity class representation raises the issue of
dependence among these components (Figure 6.3). This type of dependence implies
that comparing semantic neighborhood is a recursive process, since it involves the
similarity assessment of entity classes in the neighborhood. Since part features may
also be entity classes, comparing parts may also involve a recursive process. This
work, however, considers part features in the same way as the other types of features

whose representation is given by the term or the synonym terms that refer to them.

[
Parts

Feature Functions

Attributes

A\ 4
entity classes— Name
A

A

Semantic neighborhood

Figure 6.3:  Dependence among components of the entity class representation.

The following section describes an approach for the similarity assessment
among components of the entity class representation in independent ontologies, which

is called the Tripe Matching-Distance model.

6.3 The Triple Matching-Distance Model

As in the case of a single ontology, the MD3 model compares components of entity
class representations in terms of a matching process (Tversky 1977). A matching
process is exempt from having the ontologies’ hierarchies interconnected, which is a
characteristic of models based on semantic distance. A matching process can result in

asymmetric values and account for context dependencies (Section 2.2).
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For cross-ontology evaluations the matching process is applied in successive
steps to different specification components: (1) lexicon matching, (2) feature matching,
and (3) semantic-neighborhood matching. The global similarity is then a weighted sum
of the similarity of each component (Equation 6.3). The param®&&sandS, are the
similarity among names, features, and semantic neighborhoods, respectively, and their
weightsaw, w,, andw, add up to 1.0. A threshold over the global similarity can be used

to avoid irrelevant calculations.
@ b%) = w [§(a’,b?) + w, [{(a’,b) + g [§,(a°,b%) for @, @ and ¢ =0 (6.3)

Weights assigned t&,, S,, and S, depend on the characteristics of the
ontologies. Only common specification components can be used in a similarity
assessment and their respective weights should add up to 1.0. Lexicon similarity can
always be a factor of the similarity assessment, but when polysemous terms occur
within an ontology, lexicon similarity is a less likely indication of semantic similarity
among entity classes. For example, one ontology may include different meanings of the
termbank(e.g., a financial institution, a sloping of land, and a pile), whereas another
ontology may contain only one meaningba&nk (e.g., a financial institution). Using
only lexicon similarity, we would assign maximum similarity between each of the
meanings obankin the first ontology and the single meaningbahkin the second
ontology, which is clearly incorrect. Lexicon similarity complemented with feature and
semantic-neighborhood similarity, on the other hand, can highlight the similarity

between corresponding senses of the teak

6.3.1 Lexicon Matching

In the MD3 model, lexicon matching checks the number of common and different
words in the names of entity classes. For example, consider the ontologies of Figure

6.1. The lexicon matching betwedénilding of WordNet puilding”) and building
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complexof SDTS bpuilding_compley is 0.58 fora = 0.28 (Equation 6.4). Likewise,

lexicon matching betweestadiunt and stadiurmresults in 1.0, independently of the

valuea.
S(building”, building_complex®) = ——— |{building} |
|{building} | +0.28|{} | +0.72 |{complex} | 6.4)
=1 0.58
1.72

In cases where synonym sets refer to entity classes, the lexicon matching finds
the most similar terms between synonym sets. For example, given the synonym sets
(Sy3g in Equation 6.5 that refer to the entity clasisesding” andbuilding_compleXof
Figure 6.1, respectively, the result of the lexicon matching is 0.58. This value of
lexicon matching results from comparibgilding” andbuilding_compleX since the
lexicon matching betweesdifice’ andbuilding_complekis zero.

Sys(building™) ={building, edifice

6.5
Sys(building__complex®) ={building_ complex} (6:5)

Giving the result of lexicon matching as a function of only the most similar
terms between synonym sets, we consider it unlikely to have the same number of
synonyms in different ontologies. Using a stricter approach, the model could also apply
a matching process over the synonym sets such that the number of common and
different synonyms in the sets would affect the similarity value. This approach may
result in low values of lexicon matching, since the mere missing of one of the
synonyms in the set reduces the value of lexicon matching considerably. For example,
consider the synonym sets of the entity classgsort” andairport® (Equation 6.6).

Using the most similar terms between synonym sets, lexicon matching between
airport” and airport® is equal to 1.0, whereas using the common and different

synonyms in the sets yields to a lexicon matching equal to 0.&,dqual to 0.5.
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$_me ={airport,airdrome, aerodrome

={airport} (6.6)

airport®

6.3.2 Feature Matching

Feature matching is equivalent to the MD model for independent ontologies connected
by an imaginary root (Equations 3.1 and 3.2). If both ontologies classify features into
parts, attributes, and functions, a weighted sum of the corresponding similarity of each
type of features yields the global feature similarity (Equation 3.1). By default, the types
of distinguishing features that are present in the ontologies’ specifications are
considered equally important. When no classification of distinguishing features is

given, a global feature-matching process is performed.

Existing ontologies may have schematic conflicts that are the product of
different feature classifications. For example, while WordNet’s definitions identify
parts of entity classes, SDTS denotes the features of entity classes as attributes. In such
a case, a comparison of features by type would find no common features in cross-
ontology evaluations. In order to avoid this type of schematic conflict, different types
of distinguishing features can also be compared. For example, a fieateican be a

part or anattributein the entity class representation abad.

This work makes a syntactic, rather than semantic, representation of
distinguishing features. Thus, a distinguishing feature is represented by a lexicon or a
synonym set and the feature matching process applies a string matching over the
lexicons or synonym sets that refer to these features. String matching over
distinguishing features is a strict string matching such that distinguishing features
match only if they are represented by the same lexicon or by synonym sets that
intersect. This process ignores similarity between compound terms, such as between

lane andnumber of laneshowever, strict string matching is a fast comparison of
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feature lexicons for large ontologies where the percentage of partial string matching
among feature lexicons is limited. For example, consider the distinguishing features of
stadiumin WordNet 6tadiunt) and in anad-hocontology called WS stadiunt?).

While WS identifies parts, functions, and attributes of entity classes, WordNet has only
parts and, therefore, feature matching is confined to the comparison among parts of

entity classes (Equations 6.7a-b).

Ofoundation™, midfield”, playing__ field”, plate”,[]

. O . O
Parts(stadium™) = gports__arena”, stands"”, standing_ room"”, (6.7a)
%trutural _elements”tiered _seats"” %

(ressing__room™, foundation™, midfield"™®,

Parts(stadium™®) =
o ) gjlayi ng_ field"®, spectator stands™,ticket _office™

E(e.m)

Both WordNet and WS represent distinguishing features by synonym sets
(Equations 6.8a-0), whef@ysdenotes the representation of a distinguishing feature as

synonym sets.

Sys( foundation®) = { foundatior} (6.8a)
Sys(midfield™) = { midfield (6.8b)
Sys(playing_ field™) ={ playing_ field, athletic_ field, field} (6.8c)
Sys(plate”) ={ platg (6.8d)
Sys(sports_arena”) ={sports_arena, field_housg (6.8e)
Sys(stands”) ={standg (6.8f)
Sys(standing_room®) ={ standing_roon} (6.89)
Sys(tiered _seats") = {tiered _seatg (6.8h)
Sys(structural _elements") = {structural _elementg (6.8i)
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Sys(dressing_room") ={dressing_roont} (6.8))

Sys( foundation") = { foundatior} (6.8k)
Sys(midfield™®) :{midfielc} (6.80)
Sys(spectator _stands™) = {spectator_stands, stands} (6.8m)

Sys(ticket _office™) = {ticket _office, box _office ticket _boott} (6.8n)

Sys(playing_ field™) = { playing_ field,athletic_ field, sports__ fielo} (6.80)

For representations based on synonym sets, we say that two distinguishing

features are the same if the intersection of their synonym sets is different than the

empty set (Equation 6.9).
F=G iff Sys(F)n Sys(G) #{} (6.9)

The set of common distinguishing features betwstandliunt andstadiunt®

defines their set intersection (Equation 6.10a-e).

) , Ofoundation”, midfield”, O )
X = Parts(stadium”) n Parts(stadium™) =g . O with
playing_ field”, stands"

(6.10a)

foundation” = foundation™® (6.10b)
midfield" = midfield"® (6.10c)
playing _field"” = playing_ field™ (6.10d)
stands” = spectator _ stands™ (6.10e)

The set difference between featurestafdiunt andstadiuni® or vice versa, is

defined by the set of features that belongtidiunt and not testadiunt® (Equations

6.11a-b).
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(plate”, sports_arena”

Y = Parts(stadium”) — Parts(stadium™) =]
rstructural _elements”,

Biered _seats” H

,U
Estandi ng_room” =
g_reom 4 (6.11a)

0

Z = Parts(stadium™) — Parts(stadium™) :{dr ng_room™,ticket _ offi cews} (11b)

The similarty measure between distinguishing featurestatliun and
stadiunt® is then determined by Equation 6.12 forequal to 0.45. This equation is
equivalent to Equation 3 whekandB are replaced by the set of partstddiunt and
stadiunt®, respectively.

S (stadium®, stadium™) = S (stadium®, stadium™)

_ | X|
| X |+0.45|Y | +0.55[]Z |

= 4 =0.54
4+0.45*5+0.55* 2

(6.12)

Since string matching for feature names is a weak form of similarity
assessment, a further analysis should consider the semantics of distinguishing features.
For example, these studies could exploit the use of set intersection between features
based on a shared domain (i.e., attribute domain) or semantic interrelationships (e.g.,

entailment of functions).

6.3.3 Semantic-Neighborhood Matching

Semantic-neighborhood matching)(is a recursive process, because comparing entity
classes in the semantic neighborhoods is also a similarity evaluation. This recursion
stops when the specified radius is reached, at which point entity classes can be
compared based on lexicon or feature matching. Semantic-neighborhood meghing (

with radiusr between entity classes andb® of ontologiesp andq, respectivelyjs
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function of the cardinality (| |) of the semantic neighborhobisd the approximate

intersection (,) between these semantic neighborhoods (Equation 6.13).

a’n_ b
a’n, b'+a(a’b?)d(a”,a’ n, bhr)+ (1-a(a”,b?))d(a’ n, A br)

S (@",b%r) =

with

(6.13)

5(@",a" n,b%r)= BN(ap'r)l_ap n,b* if [N@"r)[>a" n, b
0

0 otherwise

The intersection over semantic neighborhoods is approximated by the similarity
of entity classes across neighborhoods (Equation 6.14), v8felie the semantic
similarity of entity classesa” and b are entity classes in the semantic neighborhood
of a” and b", respectively; and n andm are the number of entity classes in the

corresponding semantic neighborhoods.
a’n, b= § maxS(aJ’,bﬁ)ﬁ—qﬁS(a”,bq) and
= Ism

A if Sa°b")=maxSa’ b')
¢=0 J=m (6.14)
D otherwise
Since§() in Equation 6.14 is an asymmetric function, the approximate set-

intersectionn, is also asymmetric. The approximate set intersection over semantic
neighborhoods matches corresponding entity classes with maximum similarity. This
matching excludes the similarity between the two entity classes that are actually being
compared, which would be a redundant evaluation. It allows multiple entity classes in a
semantic neighborhood to match the same entity class in a second semantic
neighborhood. Thus, the approximate set intersection may reach a value greater than

the actual cardinality of the set of entity classes in the second semantic neighborhood.

In such a case, the model considers the maximum between the approximate set

117



intersection and the cardinality of the semantic neighborhood. No matching between
entity classes of the same role (i.e., superclass-superclass or subclass-subclass) is
enforced, because this type of correspondence emphasizes similarity among classes
with the same superclass while ignoring similarity between classes and their

superclasses.

For example, consider WordNet and SDTS and the evaluation between
stadiunt andstadiuni(Figure 2). In a first instance, we consider a radius of 1 and
compare how many entity classes in the immediate neighborhood (i.e., immediate
superclasses, subclasses, parts, and wholes) are common bstadirmY and
stadiuni(Equations 6.15a-b). Semantic-neighborhood matching takes each entity class
in N(stadiun{) and finds the corresponding most similar entity clads(atadiun).

Based on lexicon and feature matching, the only similar entity classes in the
neighborhoods arstadiunt andstadiuni, which are the original entity classes that are

compared; therefore, the semantic-neighborhood matching is equal to zero.
N(stadium”,1) ={stadium"”,structure”, athletic _ field", sports_arena"} (6.15a)

N(stadium?®,1) ={stadium®,entity _type°} (6.15b)

Analogously to the notion adhallowanddeepequality in object orientation
(Khoshafian and Copeland 1986, Zdonik and Maier 1990), semantic-neighborhood
matching defines shallow and deep matching depending on the radius of the semantic
neighborhood. Shallow matching corresponds to an evaluation that is based on the
similarity of the immediate neighborhood of entity classes (i.e., radius is 1). For
semantic neighborhoods with radius greater than 1, deep matching is the evaluation
that is based on the similarity of the end nodes (i.e., leaves) of the semantic
neighborhood. These nodes are the entity classes located at the end of the path in the

network of semantic relations that connect the entity classes in the semantic
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neighborhood. A similar notion of shallow and deep could be applied to the feature

matching among parts if we had used a semantic in lieu of a syntactic evaluation.

6.4 Cross-Ontology Evaluations

The tests of the MD3 model address two main questions:

* How does the MD3 model perform with ontologies that differ in their specification

components?

* How does the MD3 model perform compared to the MD model?

These tests employ the combination of WordNet and SDTS (WS) described in
Section 3.3 (257 definitions) and subsets of the original definitions in WordNet (334
definitions) and SDTS (498 definitions) (Table 6.3). Since the ontologies used in these
tests vary in terms of domain (i.e., general vs. specific) and specificity (semantic
relations vs. distinguishing features), the potential conclusions of these tests can
provide a good indication of the performance of the MD3 model under different

scenarios.

The derived ontology from SDTS includes all entity types of SDTS as well as
the included terms foboundary building, building complexcontrol point road,
tower, utility, andwatercourse Included terms in SDTS can be either synonyms or
subclasses of the corresponding entity type; however, the subsequent evaluations
consider all included terms as subclasses. This assumption has the effect of increasing
the size of the ontology without altering the similarity evaluations, since all included
terms have the same definitions as their respective entity types. In order to create a
hierarchy, SDTS’s entity classes are interconnected through a supemciabéng

which contains no particular information.
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The ontology derived from WordNet is a set of definitions whose terms match
with the names in the VMAP Level 0 specification (NIMA 1999). This ontology also
includes the intermediate entity classes that create the hierarchical structure. Like
SDTS, WordNet does not have a common superclass for all definitions (multiple

hierarchies), therefore, a common superciesghingis created.

Characteristcs SDTS WordNet WS
Lexicon
Synonymy v v
Polysemy v v v
Relations
Is-a Vv Vv Vv
Part-of Vv Vv
Whole-of Vv Vv
Features
Parts Vv Vv
Functions Vv
Attributes Vv Vv
Table 6.3: Characteristics of the specification components of SDTS, WordNet, and
WS.

6.4.1 Test 1: Evaluations Using Ontologies with Different Specification Components

The performance of the model is studied by using different combinations of ontologies
in cross-ontology similarity evaluations (Table 6.4). These combinations correspond to

diverse grade of similarity among entity classes and components of the entity class
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representations. They include identical ontologies (1-2), ontology and sub ontology (3),

overlapping ontologies (4), and different ontologies (5-6).

Case Ontology-Ontology Description

1 WordNet-WordNet ~ Same ontology with is-a and part-whole relations

2 SDTS-SDTS Same ontology with is-a relations and attributes

3 WordNet-WordNet*  Subset with same specification components

4 WordNet*-WS Overlapping semantic relations and attributes

5 WordNet*-SDTS* Different ontologies and specification components

6 SDTS*-WordNet*  Different ontologies and specification components

(inverse evaluation)

Table 6.4: Cases of cross-ontology evaluations. (Symbol * denotes small subsets of
the entire ontology.)

Analogously to evaluations for information retrieval (Korfhage 1997), we use
the concepts afecall andprecisionto evaluate the results of the model. For this work,
recall corresponds to the proportion of similar entity classes that are detected by the
model (Equation 6.12a), while precision is the proportion of entity classes detected by
the model that are actually similar (Equation 6.12b). In Equations 61&aslihe set
of similar entity classe® is the similar entity classes obtained by the model, and | | is

the counting measure.

(6.12a)

(6.12D)
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A critical issue for calculating recall and precision is to know what entity
classes are similar. To simplify this determination, we take only the most similar entity
classes across ontologies, that is, we want to detect synonyms or equivalent entity
classes. For example, building in WordNeti{ding") is similar to building luilding’)
and building_complexbuilding_comple® in SDTS; however, onlpuilding"-

building® is considered, because this pair has the highest similarity.

In the first two cases of the test (i.e., WordNet-WordNet and SDTS-SDTS),
each entity class in the first ontology has its corresponding entity class in the second
ontology. The most similar entity class of an entity in the first hierarchy should be the
entity class with the same name in the second ontology. When the definitions in the
first ontology are a super set of the definitions in the second ontology (i.e., WordNet-
WordNet*), the model should find the corresponding entity classes of the sub-ontology
in the super-ontology. Case 4, WordNet*-WS*, represents the combination of
ontologies where the specification components in the first ontology are a subset of the
specification components in the second ontology. In this case, WordNet has parts and
semantic relations, whereas WS has parts, functions, and attributes as well as semantic
relations. From the manual integration of WordNet and SDTS into WS (Section 3.3)
we derive what entity classes in WordNet correspond to what entity classes in WS. A
more complex situation occurs when specification components have major differences
(i.e., WordNet*-SDTS* and SDTS-WordNet*). To simplify this task, the test considers
a small portion of the two original ontologies (i.e., 240 WordNet definitions and 48
SDTS definitions). Using these subsets of the ontologies, a manual identification of
corresponding entity classes found 22 from the total of 48 entity classes in SDTS

whose definitions are also included in WordNet.

122



The test performs multiple evaluations with different combinations of weights
for name, feature, and semantic neighborhood matching. They start with single-
matching evaluations over each of the specification components. Table 6.5 shows
results for the single-matching evaluations in terms of nhames, features, and semantic
neighborhoods. This table presents the best results obtained from the single matching
of semantic neighborhood, that is, when similarity among entity classes in the semantic

neighborhoods is determined by the matching of entity class names.

Table 6.5 demonstrates that single matching over entity class names tends to
have better measures of recall and precision than single matching over features.
Obviously, for identical ontologies recall of the lexicon matching is 100%, since
corresponding entity classes have the same names. Precision, however, is not
necessarily 100% for cases with identical ontologies (i.e., Cases 1 and 2) due to the
presence of polysemous terms. A general observation indicates that entity classes in all
ontologies overlap; that is, corresponding entity classes have the same name, but not all
entity classes with the same name are in fact semantically similar. Overlapping of
entity class names is more likely in situations where an ontology handles synonym sets,
such as WordNet, since the chance increases for using one of the terms in the synonym

set to refer to an entity class.

Feature matching alone is insufficient for detecting the most similar entity
classes across ontologies. Many entity classes share common features or have a
common superclass from which they inherit common features. This situation is

particularly true for the SDTS ontology, which has a low value for precision.
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Case Weights (%) Recall Precision

Lexicon Feature Neighborhood (%) (%)

WordNet-WordNet 100 0 0 100 74
WordNet-WordNet 0 100 0 48 10
WordNet-WordNet 0 0 100 100 97
SDTS-SDTS 100 0 0 100 87
SDTS-SDTS 0 100 0 100 2
SDTS-SDTS 0 0 100 100 1
WordNet-WordNet* 100 0 0 100 74
WordNet-WordNet* 0 100 0 62 10
WordNet-WordNet* 0 0 100 100 94
WordNet*-WS 100 0 0 100 78
WordNet*-WS 0 100 0 17 37
WordNet*-WS 0 0 100 29 12
WordNet*-SDTS* 100 0 0 100 42
WordNet*-SDTS* 0 100 0 0 0
WordNet*-SDTS* 0 0 100 27 2
SDTS*-WordNet* 100 0 0 100 38
SDTS*-WordNet* 0 100 0 0 0
SDTS*-WordNet* 0 0 100 32 3
Table 6.5: Recall and precision of single-matching evaluations and threshold equal

to 75%. (Symbol * denotes small subsets of the entire ontology.)
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Semantic-neighborhood matching is very sensitive to the hierarchical structure
underlying the ontology. In general, neighborhood matching produces unsatisfactory
results unless the ontologies are similar and they have detailed identification of
hyponymy (is-a) relation, such as in WordNet. When features are shared by many
entity classes and ontologies have a shallow semantic hierarchy (e.g., SDTS-SDTS),

semantic-neighborhood matching is imprecise.

Single-matching evaluations are followed by double-matching evaluations that
combine two specification components: name with feature, name with semantic
neighborhood, and feature with semantic neighborhood (Table 6.6). Recall and
precision in double-matching evaluations are reduced drastically for combinations that
ignore lexicon matching. The combination of name and semantic neighborhood
matching obtains the best evaluations of recall and precision. As it was expected, the
worst results are associated with evaluations over different ontologies (i.e., WordNet*-
WS, WordNet*-SDTS*, and SDTS*-WordNet*). In these cases, precision is still over
or equal to 75%, but recall is considerably lower (41%-55%). When differences
between ontologies increase, the model loses its effectiveness. Differences in the
specification components between WordNet and WS (i.e., Case 4) are less than the
differences between WordNet and SDTS (i.e., Case 5) or between SDTS and WordNet
(Case 6). Hence, precision (over 90%) and recall (over 50%) for WordNet and WS are
better than the measures obtained from the cases with different ontologies (i.e.,

WordNet*-SDTS* and SDTS*-WodNet*).
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Case Weights (%) Recall Precision

Lexicon Feature Neighborhood (%) (%)
WordNet-WordNet 50 50 0 46 97
WordNet-WordNet 0 50 50 46 14
WordNet-WordNet 50 0 50 100 97
SDTS-SDTS 50 50 0 100 100
SDTS-SDTS 0 50 50 100 2
SDTS-SDTS 50 0 50 100 100
WordNet-WordNet* 50 50 0 59 97
WordNet-WordNet* 0 50 50 28 14
WordNet-WordNet* 50 0 50 99 98
WordNet*-WS 50 50 0 17 100
WordNet*-WS 0 50 50 0 0
WordNet*-WS 50 0 50 55 95
WordNet*-SDTS* 50 50 0 0 0
WordNet*-SDTS* 0 50 50 0 0
WordNet*-SDTS* 50 0 50 50 92
SDTS*-WordNet* 50 50 0 0 0
SDTS*-WordNet* 0 50 50 0 0
SDTS*-WordNet* 50 0 50 41 75

Table 6.6: Recall and precision of double-matching evaluations and threshold
equal to 75%. (Symbol * denotes small subsets of the entire ontology.)
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Finally, the triple-matching evaluations combine the names, features, and
semantic neighborhoods and assign the same importance to each matching process
(Table 6.7). They result in lower values of recall and precision than the values obtained
by the best of the double-matching processes (i.e., name with semantic neighborhood
matching). Tripe-matching evaluations keep a high value for precision, but a low value
for recall, with the exception of the SDTS-SDTS combination. A reason is that many
of the entity classes at the top levels of the hierarchical structures (i.e., general
concepts) do not have features in their descriptions such that the consideration of
features in the similarity assessment decreases instead of increases the chances of
finding similar entity classes. Although SDTS has features in all its entity-class
definitions, many features are shared by entity classes and, therefore, there is no
significant distinction among these entity classes. A lower threshold increases the
chances of finding similar entity classes, but also increases the chances of selecting
dissimilar entity classes. For triple-matching evaluations with a threshold of 50%, the
model does not have better statistics than the results of double-matching evaluations

with 75%.

An important observation is the asymmetric result of the model. The model
gives slightly better results when the direction of the similarity evaluation goes from
SDTS to WordNet, that is, from a shallow to a deep ontology. A general conclusion,

however, is impossible, since both ontologies differ strongly in their specifications.
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Case Weights (%) Recall Precision

Lexicon Feature Neighborhood (%) (%)
WordNet-WordNet 34 33 33 44 97
SDTS-SDTS 34 33 33 100 100
WordNet-WordNet* 34 33 33 57 97
WordNet*-WS* 34 33 33 1 100
WordNet*-SDTS* 33 33 33 0 0
SDTS*-WordNet* 34 33 33 0 0
Table 6.7: Recall and precision of tripe-matching evaluations and threshold equal

to 75%. (Symbol * denotes small subsets of the entire ontology.)

This test has shown that the results of the MD3 model are highly sensitive to
the components of the entity class representations. As ontologies share more
components in their entity class specifications, the model produces more accurate
results. Thus, in an environment with multiple ontologies, a similarity function should
emphasize those components of an entity class representation that are likely shared by

all ontologies.

In an ideal scenario where ontology specifications are complete (i.e., entity
class representation contains semantic relations and distinguishing features) and
detailed (i.e., features differentiate entity classes), the MD3 model is a good estimator
for similarity. In a realistic scenario with different ontologies, however, the test found
that semantic neighborhood and name are more stable specification components than
the set of features associated with entity classes. Moreover, features can be shared by

many entity classes within an ontology such that the determination of the most similar
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entity class becomes more difficult. High recall with low precision is obtained when
only lexicon matching is considered. High precision, however, is obtained as lexicon
matching is combined with semantic-neighborhood matching. With this combination
and with ontologies that have different specification components, the model has better
precision than recall; that is, the model detects less of the total of similar entity classes,
but the ones it detects are indeed similar (over 75% for precision in the worse case).
Although feature matching proved to be a less adequate method for detecting the most
similar entity classes across ontologies, this method may still be suitable for
determining the similarity of entity classes within an ontology or the similarity of

semantically related entity classes across ontologies.

6.4.2 Test 2: MD3 Model vs. MD Model

Taking an ontology that has semantically similar entity classes, an interesting question
is to find similar entity classes across the same ontology and to check whether the
model detects the same similar entity classes that were identified with the MD model in
a single ontology. Since both MD and MD3 models use a matching process over
features, differences between the results of these models may indicate how adequate
name and semantic neighborhood matching are for a similarity assessment with a

unique ontology.

To carry out this analysis, the combined ontology of WordNet and SDTS (WS)
of Section 3 was used, because it gives good results for the MD model with respect to
the human-subject experiment (Chapter 4). The test evaluates similarity across the
same ontology (WS-WS) with a threshold equal to zero to detect all similar entity
classes. The first column in Table 6.8 shows the results of the MD model between

stadiumand the rest of entity classes in the same ontology. The second and third

129



columns present the results of the MD3 model betve¢atiumand the entity classes

in the second, but identical, ontology.

MD MD3 MD3
(33,33,33) (50,0,50)
Sports arena (0.74) Stadium (1.0) Stadium (0.50)
Athletic field (0.74) Sports arena (0.57) Sports arena (0.34)
Ballpark (0.74) Athletic field (0.46)

Construction (0.67) Ballpark (0.32)

Tennis court (0.61) Tennis court (0.26)

Table 6.8: Most similar entity classes tst@mdiumusing the MD model and the
MD3 model.

The MD3 model was applied with two sets of weights for name, feature, and
semantic neighborhood matching. The first evaluation considers the default case of all
three types of matching that are considered equally important (i.e., name: 33; feature:
33; and semantic neighborhood: 33), whereas the second evaluation considers the
weights of the best double-matching evaluations found in the previous section (i.e.,
name: 50; feature: 0; semantic neighborhood: 50). Since the first evaluation considers
feature matching, the results of the evaluation come close to the results obtained from
the MD model. Using the MD3 model, however, the similarity values decrease. The
second evaluation gives a subset of the value obtained from the MD model, since
semantic neighborhood is unable to detect similarity when entity classes are far apart in

the hierarchical structure (e.gtadiumandathletic field.

In conclusion, the relationship between the results obtained from the MD and

MD3 models varies depending on the components of the entity class representations. In
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cases when the MD model is a good estimator of semantic similarity (i.e., when
features characterize entity classes) the MD3 model gives a set that is equal to or
smaller than the set of similar entity classes that are found by the MD model. The MD3
model, however, is useful for cases when features are not well specified or semantic

relations are the main components of the entity class representations.

6.5 Summary

This chapter introduced a model to evaluate semantic similarity across autonomous
ontologies. The model, called MD3, uses a matching process over name, feature, and
semantic neighborhood. Experiments using SDTS, WordNet, and the combination of
SDTS and WordNet suggest that the lexicon and semantic neighborhood matchings are
a good approach to detecting the most similar entity classes across ontologies. Feature
matching, on the other hand, is most useful in detecting similar entity classes within an

ontology.
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Chapter 7

Conclusions and Future Research Directions

This thesis created and investigated computational models that assess semantic
similarity among spatial entity classes. The thesis took a top-down approach for
similarity assessment by concentrating on entity classes that represent concepts in the
real world rather than data stored in a database. The study explored the cognitive
aspects of a similarity assessment and the computational formalization of semantic
similarity measures. Such similarity measures contribute to the design of systems that
compare and process information on a semantic basis and, therefore, bring information
systems close to users’ expectations in terms of information and knowledge

management.

7.1 Summary of the Thesis

This thesis defined a novel approach for semantic similarity assessment among spatial
entity classes. This approach is based on a matching process that, combined with a
semantic distance, produces an asymmetric similarity measure of entity classes. In this
thesis, an ontology was defined as the set of entity class representations that are
composed of distinguishing features and semantic relations. As a first implementation
of this approach, the Matching-Distance (MD) model applies to similarity evaluations

within a single ontology. The main characteristics of the MD model are:
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» asymmetric evaluations of semantic similarity for entity classes that represent

different levels of abstraction in the hierarchical structure,

» use of is-a and part-whole relations in the entity class representation,

* treatment of synonymy and polysemy of entity class names,

» weighted contribution of the similarity assessment among distinguishing features,

and

» asystematic approach to weight determination in terms of contextual information.

This work also extended the MD model and defined the Triple Matching-
Distance (MD3) model for similarity evaluations across autonomous ontologies. The
MD3 model assumes that ontologies may differ in the level of formalization and
explicitness of their definitions and; therefore, it evaluates similarity depending on the
common components of the entity class representations. Thus, three similarity
measures are defined: lexicon matching, feature matching, and semantic-neighborhood

matching.

A prototype of the MD and MD3 models was created in C++ and used with
diverse ontologies, such as WordNet (Milétral. 1990), SDTS (USGS 1998), and an
ad hocontology created from the combination of both WordNet and SDTS. The thesis
tested the cognitive plausibility of the MD model with a human-subject experiment and

the performance of the MD3 model with evaluations that combine WordNet and SDTS.

7.2 Major Results

The major contribution of this thesis is the definition of the MD model that considers

cognitive properties of similarity assessment (i.e., asymmetry and context dependence)
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and that matches people’s judgments. The model identifies three types of
distinguishing featurés parts, functions, and attributéghat characterize spatial

entity classes and that allow the independent determination of the features’
contributions to similarity assessment. The model calculates distinguishing features’
weights according to the specification of contextual information by the user’s intended
operations. This type of contextual information defines an application domain, which

can also partially solve word-sense ambiguity.

The use of synonym sets to refer to entity classes proved to be a practical
approach for treating different ways to express the same concepts and polysemous
terms. As polysemous terms are allowed, ontological hierarchies become simpler,
because each concept tends to have a unique superordinate concept. Even more, a
distinction among polysemous terms focuses the similarity evaluation on the
distinguishing features of entity classes associated with a particular sense rather than

comparing entity classes whose distinguishing features relate to more than one sense.

Although contextual information affects similarity evaluations, the major factor
for the MD model’s performance is the correct representation of entity classes in terms
of distinguishing features and semantic relations. Experiments with existing ontologies
demonstrated that accurate definitions of distinguishing features are possible at or
below Rosch’s (1975) basic level of a hierarchical structure. At the top level, however,
more abstract concepts, sucheasity andorganization lack the characterization that

make the MD model adequate for similarity evaluations.

Overall, experiments suggested that the selection of the approach for weight
determination should consider the type of context specification. While the

commonality approach seems to work well for specific applications where users seek
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particular features of entity classes, the variability approach produces good results for

cases when users seek a type of entity classes.

A disadvantage of the MD model is the lack of existing ontologies that use
functions in their entity class representations. Functions, behavior, or affordances were
suggested to be determinant for the meaning of objects; however, their formalization in
existing ontologies is still missing. Likewise, the MD model is constrained to
applications with all entity classes semantically interrelated (i.e., a single ontology) and

entity classes characterized by distinguishing features.

Another important contribution of this thesis is the definition of the MD3 model
for evaluation across ontologies. The MD3 model provides a systematic way to detect
similar entity classes across ontologies based on the matching process of each of the
specification components in the entity class representations (i.e., names, distinguishing
features, and semantic neighborhoods). The MD3 model is useful as a first step in an
ontology integration, since it detects the most similar entity classes across ontologies.
These similar entity classes could be then analyzed with user input to derive semantic
relations, such as is-a relation or synonym relations, and used as bass to create a single,

integrated ontology.

Examples that used the MD3 model with different ontologies indicated that
components of entity class representations have varied effects on the similarity
evaluations. While names and semantic neighborhoods are good elements for detecting
equivalent or most similar entity classes across ontologies, distinguishing features are
suitable for detecting entity classes that are just similar, that is, entity classes that are
not synonyms and are located far apart in the hierarchical structuresf@dgumand

athletic fieldin the WordNet ontology).
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7.3 Future Work

Several new research questions have resulted from this thesis. They involve extensions
of both the MD and MD3 models, comparison of the MD and MD3 models with
existing models, data modeling, context specification, ontology integration, reasoning

about similarity, and similarity assessment among spatial scenes.

7.3.1 Extensions of the MD and MD3 Models

Inheritance is a powerful feature of a semantic network with is-a relation. This feature,
however, might cause problems in situations where subclasses represent exceptions and
they do not inherit all properties of their superclasses. A typical example is the case of
a “penguin” that is linked to a “bird.” Since a typical feature of a bird is “to fly,” a
penguin would inherit this feature as well. This is obviously a mistake. Thus, the
ontology of entity classes could be improved by defining a strategy for exception
handling (Durkin 1994) or by considering the classification of entities in terms of
prototypical characteristics rather than necessary and sufficient conditionsdMark

1999, Rosch 1973, Rosch and Mervis 1975).

The thesis has concentrated on entity classes and has compared distinguishing
features in terms of a basic string matching between synonym sets that refer to those
features. The semantic similarity among features, however, has been left for future
work. For example, parts are also entity classes that could be semantically compared in
a recursive process. Verbs could be related by the semantic redstaiment
(Fellbaum 1998) (e.g., buy and pay) or could be formally specified such that they could
be semantically compared. Likewise, the specification of attributes in terms of their
domains (i.e., the set of possible values) could lead to exhaustive similarity evaluations

among entity classes.
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The extension of the models by considering instances of entity classes is
another area for future research. Instances have attributes with associated values. As a
first approach, values could be compared with a syntactic approach (i.e., string
matching), but a serious effort should compare values depending on the type (e.g.,

numerical values, range values, and nominal values) and domain.

This study has suggested an entity class representation with components
consisting of semantic relations and distinguishing features. Although these
components seem to be adequate for a large number of entity class definitions, they
may be insufficient to capture the semantics of some entity classes. For example, a
historical building is a building whose age is greater than a specific value. This type of
semantics is well represented by axioms, which are not incorporated in the MD and
MD3 models. If axioms are included into the entity class representations, the model

must compare them and infer a similarity value among them.

This work has produced a prototype of the MD and MD3 models that uses an
object-oriented representation in C++. Future work may consider an implementation of
the semantic similarity model that uses a formalism for expressing structured and
sharable knowledge, such as description logic or terminological logic (Brachman and
Schmolze 1985). Description logic gives a logical basis for frames, semantic networks,
and object-oriented representations as well as for semantic models. It can automatically

classify definitions with subsumption inferences.

7.3.2 The MD and MD3 Models vs. Existing Models

The study highlighted main differences between the MD model and existing models
that are based on semantic distance and information content. Thus, we have claimed

that the MD model is a good estimator of the semantic similarity among entity classes
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located at the medium and low levels of abstraction in the hierarchical structure. At

these levels, the model uses features to distinguish entity classes that belong to the
same sub-hierarchy and have the same common superclass. A further study, however,
should examine whether or not the performance of the MD model under the same set of
evaluations is better than the performance of existing models. Such as study could lead
to the conclusion that the different approaches provide complementary answers and
that no single model, but multiple approaches to semantic similarity should be

considered depending on the semantic organization of entity classes.

The comparison of the MD3 model with current models of similarity across
ontologies is another area for further research. An interesting methodology for
comparing these models is to calculate the correlation between the models’ results for
the entity classes that are similar to a user’s request and the probability that instances of
these entity classes will satisfy the request under a logical interpretation (Weinstein and
Birmingham 1999). A major difficulty for comparing different models is that while
most of the current models require an integrated or shared ontology, the MD3 model
uses unconnected ontologies. Although current models of similarity assessment could
have a slightly better performance than the MD3 model, the MD3 model would still be
advantageous, because it does not require a pre-processing for creating the integrated

or shared ontology.

7.3.3 Ontology vs. Database Schema

The motivation of this thesis is the enhancement of geographic information systems for
information retrieval and integration. In order to make use of the similarity models in
information systems, entity classes (i.e., concepts in the real world) should be linked to

entity classes modeled in those systems.
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Ontologies and database schemas are related, but not equivalent. Ontologies
have explicit representations of the entity classes’ semantics, whereas database
schemas usually use implicit semantics and describe entity classes in terms of attributes
and operations required by a specific application. Thus, semantic similarity evaluations
are better obtained by comparing definitions in an ontology rather than in a database
schema. Entity classes in a database could be associated with their corresponding
ontological definitions through a semantic directory. The creation and maintenance of
these directories are areas for further research as well as solving schematic conflicts
that are product of different levels of abstraction in the entity class representations. For
example, a conflict occurs when a database schema handles an atiyrpmite
distinguish among subclasses, which are explicitly represented in the ontology as entity

classes.

7.3.4 Context Specification

Context was specified as the user’s intended operations. This type of specification may
be extended by considering additional features of entity classes. For example, a user
may want to search for sports facilities that have spectator stands. Although context is
still determined by an intended operation, parts and attributes may also describe the

desired domain of entity classes.

An interesting area of research is the inferences derived from the combination
of contexts. Context could be seen as abstract objects and used as any other object
(McCarthy 1987). Then a relation between contextspiscializes(cl, c2), which
means that “context2 involves no more assumption than contettand every
proposition meaningful islis translated into one meaningfolc2’ (McCarthy 1993).

This type of relation is particularly useful for definififfing rules that relate the
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propositions and terms in subcontexts to possibly more general propositions and terms

in their outer contexts.

7.3.5 Ontology Integration

The determination of similar entity classes across ontologies could be used as a first
step for ontology integration. A relation of similarity may overlap with is-a, synonymy,
and part-whole relations: for instance haspitalis abuilding and ahospitalis
semantically similar to &uilding. A further analysis of the commonality among
similar entity classes could contribute to identify whether these entity classes are also
related by synonymy, is-a, or part-whole relations. In this way, a stronger type of

ontology integration could be achieved.

7.3.6 Reasoning about Similarity

Reasoning about similarity involves a process in which inferences about the similarity
relations among entity classes are determined by using a subset of known similarity
relations. These types of inferences are very useful, since they may reduce the process
of comparing entity classes; moreover, they may be indispensable for comparing entity
classes when no complete information exists about them. Similarity assessment,
however, is a subjective judgment that follows no strict logical properties, such as
transitivity, symmetry, and reflexivity, defined mathematically. As such, it is very

difficult to compose measures of semantic similarity to derive new similarity values.

For reasoning about similarity, we envision two lines of investigations that are
worthwhile to follow. From a cognitive point of view, research could address
properties of the composition of semantic relations. In particular, the research question

is whether there is any situation or context in which inferences and composition of
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semantic relations (i.e., is-a and similarity relations) could be solved. From a
mathematical point of view, it is interesting to compose measures that result in ranges
of possible values of similarity. In this sense, a potential approach is the study of
Boolean combinations of graded sets (Fagin 1999) using fuzzy logic (Zadeh 1965). A
graded set could be associated with the set of entity classes that have a value of

similarity (i.e., grade) with respect to a target.

7.3.7 Similarity Among Spatial Scenes

Geographic information systems deal with geographic scenes, which are described by
spatial and non-spatial properties. A next study should consider the similarity
evaluation among spatial scenes. This similarity evaluation could be based on the
combination of the semantic similarity model with similarity models for geometric
characteristics, such as those related to topological relations and cardinal directions
(Bruns and Egenhofer 1996, Paiva 1998, Papadiat 1998). This type of similarity
assessment requires a strategy to handle scenes with different numbers of elements and

the analysis of correspondences among these elements.

Semantic similarity assessment is obtaining much attention by information scientists,
because it has an important effect on many areas of information management. We
expect that research in this area will contribute to the design of the next generation of
information systems that respond adequately to real user needs. The development of
technology that is not only useful, but also desired by broad groups of users, is still an

open field for research
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Appendix

Survey

This is not a test that has right or wrong answers. We are studying how people judge
similar things and how their views change under different contexts. This survey has 5
parts. Each part describes a situation with a set of places. The list of places and their
definitions are also given. Then, you will be asked to rank places according to your
judgment of similarity. Start with 1 for the most similar place and assign the same rank

for places that you consider equally similar.

The whole test should take less than 20 minutes.

Your completion of this task is voluntary, and you may skip any or all parts you
choose to. Your responses will remain anonymous, please do not write your nathe

anywhere on this form.

Please read the description at the top of each page and use the definitions of places that

are given. Fill in your evaluation, and then turn the page. Please do not go back.
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General Information

Age:  years Gender: Female Male

Place of birth: Place of residence:

Native (first) language spoken:

Definitions

1. Stadium: large often unroofed structure in which athletic events are held.

2. Sports arena building where games, contest, and other exertions are performed.

3. Athletic field: open area where sports events, exercise, or games occur.

4. Theater: building for the presentation of plays, motion pictures, or other dramatic

performances or spectacles.

5. Museum: a depository for collecting and displaying objects having scientific or

historical or artistic value.

6. Ball park: a facility in which ball games are played (especially baseball games).

7. Tennis court a specially marked area within which tennis is played.

8. Transportation system the roads and equipment necessary for the movement of

passengers or goods.

9. Library : a facility built to contain books and other materials for reading and study.

10. Commonsa piece of open land for recreational use in an urban area.
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11. Building: permanent walled and roofed construction.

12. House building in which something is sheltered or located.

13. Path: open way for the passage of persons or animals on land.

14. Roadopen way (generally public) for the passage of vehicles on land.

15.Port: landing place provided with terminal and transfer facility for loading and

discharging cargo or passengers.

16.Bridge: structure erected over a depression or obstacle to carry traffic or some

facility such as a pipeline.

17. Railway: permanent way having one or more rails which provides a track for cars.

18. Airport: facility, either on land or water, where aircraft can take off and land.

19. Terminal where transport vehicles load or unload passengers or goods.

20. Subway station terminal where subways load and unload passengers.

21. Highway major road for any form of motor transport.

22. Travelway open way for the passage of vehicles, persons, or animals on land.

23. Lake: body of (usually fresh) water surrounded by land.

24. Forest land that is covered with trees and shrubs.

25. City large and densely populated urban area

26. Desertarid region with little or no vegetation.
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27.

28.

29.

30.

31.

32.

33.

River: large natural stream of water (larger than a creek).

Beacharea of sand sloping down to the water of a sea or lake.

Lagoon: body of water cut off from a larger body by a reef of sand or coral.

Island: land mass (smaller than a continent) that is surrounded by water.

Wetland: low area where the land is saturated with water.

Pond: small lake.

Mountain: land mass that projects well above its surroundings; higher than a hill.
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Part A

How similar is a stadium to the following places (1: the most similar)?

1. [ ] A sports arena

2. [ ] An athletic field

3. [ ] Atheater

4. [ ] Amuseum

5. [ ] Aball park

6. [ ] Atennis court

7. [ ] A transportation system

8. [ ] Alibrary

9. [ ] Acommons

10. [ ] A building

11. [ ] Ahouse
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Part B

How similar is a stadium to the following places if you are searching for a place to play

a sport (1: the most similar)?

1. [ ] Abuilding

2. [ ] Aball park

3. [ ] Atheater

4. [ ] Amuseum

5. [ ] Ahouse

6. [ ] A sports arena

7. [ ] A transportation system

8. [ ] Acommons

9. [ ] An athletic field

10. [ ] Alibrary

11. [ ] Atennis court
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Part C

How similar is a stadium to the following places if you are comparing

constructions (1: the most similar)?

1. [ ] Acommons

2. [ ] Atransportation system

3. [ ] Atennis court

4. [ ] A building

5. [ ] Alibrary

6. [ ] A sports arena

7. [ ] A ball park

8. [ ] Amuseum

9. [ ] Ahouse

10. [ ] An athletic field

11. [ ] Atheater

165



Part D

How similar is a travelway to each of these other transportation-type entities (1: the

most similar)?

1. [ JAroad

2. [ ]A port

3. [ ]A bridge

4. [ ]A railway

5. [ ] A transportation system

6. [ ]An airport

7. [ ]Aterminal

8. [ ] A subway station

9. [ ]A highway

10. [ ] A path
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Part E

How similar is a lake to these other entities (1: the most similar)?

1. [ ] Aforest

2. [ ] Aciy

3. [ ] Adesert

4. [ ] Ariver

5. [ ] Abeach

6. [ ] Alagoon

7. [ ] Anisland

8. [ ] Awetland

9. [ ] Abridge

10. [ ] Apond

11. [ ] A mountain

Thanks for your cooperation.
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